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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 213 { 243AUTOMORPHISMS OF SPATIAL CURVESIVAN BRAD�A�CAbstract. Automorphisms of curves y = y(x), z = z(x) in R3 are inves-tigated; i.e. invertible transformations, where the coordinates of the trans-formed curve �y = �y(�x), �z = �z(�x) depend on the derivatives of the original oneup to some �nite order m. While in the two-dimensional space the problemis completely resolved (the only possible transformations are the well-knowncontact transformations), the three-dimensional case proves to be much morecomplicated. Therefore, results (in the form of some systems of partial di�er-ential equations for the functions, determining the automorphisms) only forthe special case �x = x and orderm � 2 are obtained. Finally, the problem ofin�nitesimal transformations is briey mentioned.1. The problem of automorphisms1.1. General formulation of the problemOur aim is to investigate the group of automorphisms h of the family of smoothcurves yi =yi(x) of the underlying space Rn+1 with coordinates x; y1; :::; yn in avery broad sense which is as follows: The curve appearing after the automorphismis given by certain formulae �yi = �yi(�x) where�x(x) = h0(x; y1(x); :::; yn(x); dy1dx (x); :::; dyndx (x); :::; dmy1dxm (x); :::; dmyndxm (x)) ;�yi(x) = hi(x; y1(x); :::; yn(x); dy1dx (x); :::; dyndx (x); :::; dmy1dxm (x); :::; dmyndxm (x))(1)and we suppose the existence of the inversion x = x(�x) of the �rst line of (1)to ensure the change of independent variable. If the functions hi are arbitrarilychosen (in the sense of the note above), then then the formulae (1) make a goodsense and determine a transformed curve; however, we are interested in the case1991 Mathematics Subject Classi�cation. 58A17, 58G37, 58B99.Key words and phrases. automorphisms of curves, in�nite-dimensional space, contact forms.Received May 29, 1995



214 IVAN BRAD�A�Cof the automorphisms when the inversionx(�x) = g0(�x; �y1(�x); :::; �yn(�x); d�y1d�x (�x); :::; d�ynd�x (�x); :::; dm�y1d�xm (�x); :::; dm �ynd�xm (�x)) ;yi(�x) = gi(�x; �y1(�x); :::; �yn(�x); d�y1d�x (�x); :::; d�ynd�x (�x); :::; dm�y1d�xm (�x); :::; dm �ynd�xm (�x)(2)of (1) in the family of all curves exists for appropriate functions gi. Undoubtedly,this is a classical problem of fundamental importance. As yet, only partial resultsare known. For instance, if m=0 and we suppose hi = hi(x; y1; : : : ; yn), then theinversion exists in the case of the invertible point transformation. If n=1, it maybe proved that the only case of automorphism is possible when m=1, which is thecase of the familiar contact transformations (cf.[1]). If however n > 1, then thereexist automorphisms with m arbitrarily large, for instance�x(x) = x; �y1(x) = y1(x); �y2(x) = y2(x) + dmy1dx (x)(here n=2) with the obvious inversionx(�x) = �x; y1(�x) = �y1(�x); y2(�x) = �y2(�x) � dm�y1d�xm (�x)and many other analogous examples can be constructed by compositions.An overwiev of such automorphisms is a highly non-trivial task. Therefore weshall restrict to the case of x-preserving automorphisms, i.e., the �rst line of (1) ischosen as �x = x (hence h0 = x) and even only some particular subcases with n=2will be investigated. We shall also briey mention the problem of in�nitesimalautomorphisms of curves later on. It is however desirable to delay the formulationto more convenient place since quite other principles are appearing.Since the order of derivatives in (1) is not apriori limited, in�nite-dimensionalspaces involving the derivatives of all orders are employed. Our reasonings will beof local nature based on the category of C1 smooth real valued functions. Beforeproceeding to explicit calculations, we summarize some necessary concepts andtools.1.2. Fundamental conceptsOur reasonings will be carried out in the space R1 of all real in�nite sequencesP = (p1; p2; : : : ). Denoting by x1; x2; : : : ; the coordinates in R1 de�ned byxi(P ) = pi, we shall deal with the structural family F of all real valued smoothfunctions of the kind f = f(x1; : : : ; xm); m = m(f), depending on a �nite num-ber of arguments. In order to keep brevity, the de�nition domains will not beexplicitly mentioned. Then R1 may be equipped with the F-module � of alldi�erential forms ' = P f idgi (a �nite sum, f i; gi 2 F) and the F-module Tof all vector �elds Z = P zi @@xi (an in�nite sum, zi 2 F). If f = f(x1; : : : ; xm);then df = Pmi=1 @f@xi dxi denotes the common di�erential. The di�erentials of co-ordinates dxi(i = 1; 2; : : :) constitute a basis of � and the vector �elds @=@xiconstitute a basis of T in the weak sense (since in�nite developments are allowed).



AUTOMORPHISMS OF SPATIAL CURVES 215We shall deal with exterior di�erentials d' = P df i ^ dgi with the well-knownexterior multiplication, and Lie derivatives LZ in the direction of vector �elds.Remind the common duality relationships between di�erential forms and vector�eldsZf = df(Z) =X zi @f@xi ; Zc' = '(Z) =X f idgi(Z) =X f iZgi 2 Fand the familiar rules for the Lie derivativeLZ' = Zcd' + d(Zc') =XZf idgi + f iZgi ;LZf = Zf ; LZY = [Z; Y ] (Y 2 T )where Zcd' =XZf idgi � Zgidf iand [Z; Y ] = ZY � Y Z is the Lie bracket.We shall be interested in various admissible mappings h : U ! V where U; V �R1 are open subsets (which need not be explicitly speci�ed); they are de�ned bythe property h�F � F where h�f = f � h is the pull-back of a function f 2 F .The pull-back of a di�erential form ' =P f idgi is given by h�' =P h�f idh�gi(in particular h�df = dh�f). The vector �elds cause some troubles but if theinversion h�1 exists then Z is transformed into the vector �eld h�Z de�ned by(h�Z)f = (h�1)�Z(h�f) :Remind the familiar relationshipZc(h�!) = (h�Z)c!where Z 2 T ; ! 2 �. In terms of coordinates, denoting by hi = h�xi 2 F , wehave �P = (�p1; �p2; : : : ) = hP = (h1(p); h2(p); : : : ):Quite explicitly, if hi = hi(x1; : : : ; xmi), then �pi = hi(p1; : : : ; pmi). The invert-ibility of h means that there are some inverse substitutions pi = gi(�p1; : : : ; �pmj(i) )where gi = (h�1)�xi. If the functions hi are given in advance, it is not quite easyto decide whether such functions gi exist; even to �nd some non-trivial examplesof invertible mappings of R1 is not a trivial task.1.3. Automorphisms of curvesIn this section, we shall express the problem of automorphisms of family ofcurves in Rn+1 in explicit and geometrical terms. For this aim, alternativelydenote by x; yis (i = 1; : : : ; n; s = 0; 1; : : :) the coordinates in R1, introducethe submodule 
 � � of all forms ! = P ais!is (�nite sum, ais 2 F) where!is = dyis � yis+1dx are the familiar contact forms, and the submodule 
? � T of



216 IVAN BRAD�A�Call vector �elds satisfying !(Z) = 0 for all ! 2 
. One can see that 
? consistsof all multiples of the vector �eldX = @@x + 1X yis+1 @@yis ;which is the familiar formal (or total) derivative operator. The coordinates x; yisand the contact forms are regarded for a mere technical tool; in reality only thesubmodule 
 � � (equivalently, the submodule 
? � T ) is an intrisical object.We shall deal with the family � of all curves x = x(t); yis = yis(t) (the domainof t will not be speci�ed) satisfying the Pfa�an system ! = 0 (! 2 
), that is,satisfying the recurrences yis+1(t) = dyis(t)dt .dx(t)dt :We shall deal only with curves which can be parametrized by means of x; thenthe recurrences simplify as yis+1(x) = dyisdx (x) so thatyis(x) = dsyi0dxs (x) :The family � is de�ned by means of 
; on the other hand, � determines thesubmodule 
:Lemma 1. If a Pfa�an equation ' = 0 is satis�ed for all curves from �, where' 2 � is �xed, then ' 2 
.We are interested in automorphisms of the family of all curves inRn+1, equippedwith coordinates x; y10; : : : ; yn0 , given by certain formulae (1), (2). This means, wesearch for invertible mappings h: U ! V (U; V � R1) transforming the family� into itself.The requirement of invertibility will be expressed by the condition that h� isan invertible mapping of �. In terms of coordinates, let h be given by certainformulae h�x = �x 2 F ; h�yis = �yis 2 F :The invertibility of h� : � ! � is ensured if a certain basis of � is again trans-formed into a basis of � ; it follows that the formsh�dx = dh�x = d�x ; h�dyis = dh�yis = d�yisshould constitute a basis of �.The invariance of � will be explicitly expressed in following lemma; its proof isquite easy.



AUTOMORPHISMS OF SPATIAL CURVES 217Lemma 2. Let an invertible mapping h : U ! V (U; V � R1) be given. Thenthe following conditions are equivalent:(i) h transforms � into itself;(ii) h�X = �X where � 2 F ; � 6= 0;(iii) h�
 � 
;(iv) �yis+1 = X�yis=X�x; i = 1; 2; : : :; n; s = 0; 1; : : :1.4. The aim of present paperWe shall deal only with automorphisms h of the family of all curves in Rn+1which preserve the coordinate x, i.e., �x = h�x = x and X�x = Xx = 1. Then therecurrences (iv) of lemma 2 simplify into�yis+1 = X�yis = Xs�yi0so that the functions �yi0; : : : ; �yn0 2 F can be chosen, the remaining �yis (s � 1) areuniquely determined, and our task is only to ensure that the di�erentialsd�x = dx; d�yis = dXs�yi0 = LsXd�yi0constitute a basis of �.Recall that the main aim of the present paper will be a modest one: to examinesome very particular examples especially for the case n = 2. We shall abbreviateour notation by y1s = us; y2s = vs so that the fundamental recurrences for thefunctions �us = h�us; �vs = h�vs a little simplify as�us+1 = X�us; �vs+1 = X�vswhere X = @@x + 1Xus+1 @@us + 1X vs+1 @@vsis the total derivative operator after the change of notation.Our task is to �nd the initial functions u0; v0 in such a manner thatdx; d�u0; d�v0; d�u1; d�v1; : : :may be used for a basis of �. We shall examine two methods of solution. The �rstone directly investigates the sought functions �u0; �v0, which leads to quite explicitresults. In the second one, �rstly we shall try to determine only the submoduleof � generated by dx; d�u0; d�v0; then from the form of this submodule we obtaincertain conditions for �u0; �v0.



218 IVAN BRAD�A�C2. The direct method2.1. The point transformationNow let us proceed to explicit calculations. Assuming h�x = x, we choosefunctions h�u0 = �u0; h�v0 = �v0 in accordance with the notation above; thenh�us = �us = Xs�u0; h�vs = �vs = Xs�v0 ;and we ask if dx = d�x; d�us; d�vsmay serve for a basis of �. For convenience of notation, we shall occasionalyabbreviate �u0 = f; �v0 = g and @F=@us = Fs; @F=@vs = F sfor various composed functions F (i.e., excepting F = u; F = v where the lowerindices distinquish the coordinates).Firstly let us deal with the zeroth order case f = f(x; u0; v0); g = g(x; u0; v0)which is quite easy. Thend�u0 ' f0du0 + f0dv0 (mod dx) ;d�v0 ' g0du0 + g0dv0 (mod dx) ;:::d�us = dXs�u0 = LsXd�u0 ' f0dus + f0dvs (mod dx; du0; dv0; : : : ; dus�1; dvs�1) ;d�vs = dXs�v0 = LsXd�v0 ' g0dus + g0dvs (mod dx; du0; dv0; : : : ; dus�1; dvs�1) ;: : :and dx; d�us; d�vs make up a basis of � if and only ifdet �f0 f0g0 g0� 6= 0 :This is the classical case of the prolonged point transformation already mentionedabove.2.2. The �rst order caseNow let us assume thath�u0 = �u0 = f(x; u0; v0; u1; v1); h�v0 = �v0 = g(x; u0; v0; u1; v1):Excluding the case f1 = f1 = g1 = g1 = 0 , we may assume f1 6= 0. Analogouslyas above, we haved�us ' f1dus+1 + f1dvs+1 (mod dx; du0; dv0; : : : ; dus; dvs) ;d�vs ' g1dus+1 + g1dvs+1 (mod dx; du0; dv0; : : : ; dus; dvs) :If det �f1 f1g1 g1� 6= 0 ;



AUTOMORPHISMS OF SPATIAL CURVES 219then du0; dv0 could not be expressed by means of the primed di�erentials, hencenecessarily det �f1 f1g1 g1� = 0 :This condition means g = G(x; u0; v0; f)(3)and then d�v0 ' G0du0 +G0dv0 (mod dx; d�u0) ;d�v1 = LXd�v0 ' XG0du0 +XG0dv0 + G0du1 + G0dv1 (mod dx; d�u0; d�u1) ;and we can writed�u0 ' f0du0 + f0dv0 + f1du1 + f1dv1 (mod dx) ;d�v0 ' G0du0 + G0dv0 (mod dx; d�u0) ;d�u1 ' f1du2 + f1dv2 (mod dx; du0; dv0; du1; dv1) ;d�v1 ' XG0du0 +XG0dv0 +G0du1 +G0dv1 (mod dx; d�u0; d�u1) ;: : :d�us ' f1dus+1 + f1dvs+1 (mod dx; du0; dv0; : : : ; dus; dvs) ;d�vs ' G0dus + G0dvs (mod dx; du0; dv0; : : : ; dus�1; dvs�1; d�u0; : : : ; d�us);: : :Analogously as above, necessarilydet �f1 f1G0 G0� = 0must hold. If G0 = 0 then G0 = 0 and �v0 = G(x; f); d�v0 = Gxdx+Gfd�u0 and theforms dx; d�us; d�vs could not constitute a basis of � ; so we may conclude G0 6= 0and the last condition can be rewritten in the formG0G0 = f1f1 :(4)



220 IVAN BRAD�A�CUsing (4), we obtaind�u0 ' f0du0 + f0dv0 + f1du1 + f1dv1 (mod dx) ;d�v0 ' G0du0 + G0dv0 (mod dx; d�u0) ;d�u1 ' f1du2 + f1dv2 (mod dx; du0; dv0; du1; dv1) ;f1d�v1 ' (f1XG0 �G0f0)du0 + (f1XG0 �G0f0)dv0 (mod dx; d�u0; d�u1) ;: : :d�us ' f1dus+1 + f1dvs+1 (mod dx; du0; dv0; : : : ; dus; dvs) ;f1d�vs ' (f1XG0 �G0f0)dus�1 + (f1XG0 � G0f0)dvs�1(mod dx; du0; dv0; : : : ; dus�1; dvs�1; d�u0; : : : ; d�us) ;: : :If det � G0 G0f1XG0 � G0f0 f1XG0 �G0f0� 6= 0 ;(5)then the forms du0; dv0 can be calculated in terms of dx; d�u0; d�v0; d�u1; d�v1 andafter applying LsX , everydus = dXsu0 = LsXdu0 ; dvs = dXsv0 = LsXdv0can be calculated in terms of dx; d�u0; d�v0; : : : ; d�us+1; d�vs+1: Since (4) is valid,det � f0 f0f1XG0 �G0f0 f1XG0 � G0f0� 6= 0is ensured and the di�erentials dx; d�u0; d�v0; d�u1; d�v1; : : : are linearly independent.So we may conclude:Theorem 1. Let f = f(x; u0; v0; u1; v1); g = g(x; u0; v0; u1; v1); f1 6= 0: Thesefunctions determine an x-preserving automorphism of curves in R3 byh�x = x; h�us = Xsf; h�vs = Xsg (s = 0; 1; : : :)if and only if g = G(x; u0; v0; f) whereG0 6= 0; f1f1 = G0G0 ; det � G0 G0f1XG0 �G0f0 f1XG0 �G0f0� 6= 0:Except for a more explicit example, we shall not continue this elementary methodat this place.



AUTOMORPHISMS OF SPATIAL CURVES 2212.3. ExampleLet us examine the linear choice�u0 = f(x; u0; v0; u1; v1) = A+ ax+ bu0 + cv0 + du1 + ev1 ;�v0 = g(x; u0; v0; u1; v1) = P + px+ qu0 + rv0 + su1 + tv1 ;A; a; b; c; d; P; p; q; r; s; t2 R; d 6= 0Then due to (3) and (4) we have�v0 = G(x; u0; v0; f) = H + hx+ ku0 + edkv0 + l�u0; h; k; l 2 R; k 6= 0 :The condition (5) det � k edk�kb �kc� 6= 0gives cd� eb 6= 0 :In this case it is quite easy to compute explicitly the inverse transformation; bydirect calculation we obtainv0 = ~f (�x; �u0; �v0; �u1; �v1) == dk(cd� eb) (dh� kA+ bH + (�ka + bh)�x+ (k + bl)�u0 � b�v0 + dl�u1 � d�v1) ;u0 = ~G(�x; �u0; �v0; ~f) == ebH + ecdH + (ebh � cdh)�x+ (ebl � cdl)�u0 + (cd� eb)�v0 � edv0 ;us = Xsu0; vs = Xsv0 :Notice that after the transformation the variables us; vs changed their roles and@ ~f@�v1 = �d 6= 0; @ ~G@�v0 = cd� eb 6= 0 ;det 0@ @ ~G@�v0 @ ~G@�u0X @ ~G@�v0 � @ ~G@�v0 @ ~f@�v0 X @ ~G@�u0 � @ ~G@�v0 @ ~f@�u01A == dk(cd�eb)det  cd� eb ebl � cdl(cd� eb)b �(cd� eb)(k + bl)! == d(eb� cd) 6= 0is ensured.



222 IVAN BRAD�A�C3. The method of submodules3.1. Introduction into the methodIn this chapter, we shall not investigate directly the di�erentials d�us; d�vs; dx, butonly the submodules fdx; d�u0; d�v0; : : : ; d�us; d�vsg and fdx; du0; dv0; : : : ; dus; dvsg.Especially denoting by � = fdx; du0; dv0g � � , the following lemma gives us themethod of calculations:Lemma 3. If a mapping h performs an x-preserving automorphism of curves inR3, then the submodule �� = h�� has these properties:(i) dx 2 ��;(ii) �� is completely integrable;(iii) [10 LsX �� = �.Conversely, if �� � � is any submodule meeting the conditions (i), (ii), (iii), thenthere exists an x-preserving automorphism h of curves in R3 such that h�� = ��.Proof. If h is an x-preserving automorphism of curves in R3, then�� = h�� = fdx; d�u0; d�v0gis completely integrable andLsX �� = fdx; d�u0; d�v0; : : : ; d�us; d�vsghence [10 LsX �� = �.On the other hand, let �� � � be a submodule satisfying (i), (ii), (iii). Theconditions (i), (ii) mean that �� = fdx; df; dgg for appropriate f; g. Denoting by�u0 = f; �v0 = g; �us = Xsu0; �vs = Xsv0 ;consider the mapping h de�ned byh�x = x; h�us = �us; h�vs = �vs :According to the de�nition h preserves x, transformes the family � into itself andsince fdx; d�u0; d�v0; : : :g = [10 LsX �� = � ;the di�erentials dx; d�us; d�vs (s = 0; 1; : : :) generate �.At last, we have to prove that the di�erentials dx; d�us; d�vs are linearly indepen-dent. Let us assume that there is an identityd�us = s�1Xr=0Ard�ur + RXr=0Brd�vr +Cdx :Then LKs d�us = d�us+K = s�1+KXr=0 AKr d�ur + R+KXr=0 BKr +CKdx



AUTOMORPHISMS OF SPATIAL CURVES 223hence l(LKX ��) � const +Kfor K large enough (where l(LKX ��) is the dimension of LKX ��). On the other hand,since (iii) is valid, � � LpX �� for appropriate p so thatLKX� � Lp+KX ��for all K � 0. We obtain3 + 2K = l(LKX�) � l(Lp+KX ��) � const +Kfor K large enough, which is a contradiction concluding the proof.The method of submodules will consist of two steps. In the �rst one, we shallsearch for submodules�� = fdx; �; �g � � such that [ LsX �� = � ;and, according to the Frobenius theorem,d� ' 0 (mod ��) ; d� ' 0 (mod ��) :We obtain certain as a rule overdetermined systems of partial di�erential equationsfor the coe�cients of the forms � and �. After this step, the existence of theautomorphisms already is ensured.In the second step, we search for explicit equations of the automorphisms. Theidentity fdx; �; �g = fdx; df; dggprovide us necessary and su�cient conditions (again in the form of systems ofpartial di�erential equations) for the functions f; g which can be (in principle)obtained by solving ordinary di�erential equations.The following reasoning will facilitate us to describe systematicaly the class ofall automorphisms under consideration. If �� = f�; �; dxg � LmX�, then the forms�; � cannot be linearly independent (mod Lm�1X �) or else LX�; LX� would belinearly independent (mod LmX�), L2X�; L2X� would be linearly independent(mod Lm+1X �),. . . and [10 LsX �� = � could not hold. Thus we can introducefollowing notation:An x-preserving automorphismof curves inR3 is of the type [p; q], if � 2 LpX�; � =2Lp�1X �; � 2 LqX�; � =2 Lq�1X � and p < q .From now on, we shall abbreviate our terminology and speak of an \automor-phism" instead of an \x-preserving automorphism of curves in R3".



224 IVAN BRAD�A�C3.2. The point transformationLet us examine the most simple case �� � � just corresponding to the ze-roth order case in 2.1. Then necessarily �� = � = fdx; du0; dv0g and we ob-tained the identity. However, the choice of the �rst integrals is not unique andfdx; du0; dv0g = fdx; df; dgg if and only if f = f(x; u0; v0); g = g(x; u0; v0) aresuch functions that det 0@ 1 0 0fx f0 f0gx g0 g01A = det �f0 f0g0 g0� 6= 0 :Therefore automorphisms h with the property h�� = � are the invertible pro-longed point transformations. One can observe that the reasonings were shorterthan in section 2.1.If a submodule �� � � satisfying (i), (ii) and (iii) is given and dx; d�u0; d�v0 areits �rst integrals then �� = fdx; d�u0; d�v0g = fdx; df; dggif and only if the functions f; g can be expressed in the formf = f(x; �u0; �v0); g = g(x; �u0; �v0) ; det  @f@�u0 @f@�v0@g@�u0 @g@�v0! 6= 0It means that the automorphism h given by �� is given up to a transposition withan invertible prolonged point transformation.3.3. Automorphisms of the type [0,1]Let � 2 �; � 2 LX�; � =2 � ;then we can take � = Adu0 + Bdv0 + Cdx ;� = �Adu1 + �Bdv1 + �Cdu0 + �Ddv0 + �Edxwhere A;B;C; �A; �B; �C; �D; �E 2 F . We can suppose A 6= 0; �A 6= 0 and omit theterms with dx, hence we may choose� = du0 + adv0 ;� = du1 + �adv1 + �bdv0for appropriate a; �a;�b;2 F . Since the forms LX� and � cannot be linearly inde-pendent (mod �) (according to the note in 3.1) andLX� = du1 + adv1 +Xadv0 ;we can take � = du0 + adv0 ;� = du1 + adv1 + bdv0(6)



AUTOMORPHISMS OF SPATIAL CURVES 225for appropriate a; b 2 F and [10 LsX� = � is ensured ifXa� b 6= 0 :(7)The condition of complete integrability givesd� = da ^ dv0 = (axdx+Xs=0 asdus +Xs=0 asdvs) ^ dv0 == (axdx+ a0(� � adv0) + a1(� � adv1 � bdv0)+Xs=2 asdus +Xs=0 asdvs) ^ dv0 '' (�a1a+ a1)dv1 ^ dv0 +Xs=2 asdus ^ dv0 +Xs=2 asdvs ^ dv0 = 0 ;where ' means (mod �). Then necessarily�a1a+ a1 = 0; a = a(x; u0; v0; u1; v1) :(8)Furthermore, d� = da ^ dv1 + db ^ dv0 == (axdx+ a0(�� adv0) + a1(� � adv1 � bdv0) ++Xs=2 asdus +Xs=0 asdvs) ^ dv1 ++ (bxdx+ b0(�� adv0) + b1(� � adv1 � bdv0) ++Xs=2 bsdus +Xs=0 bsdvs) ^ dv0 '' (�a0a� a1b+ a0 + b1a� b1)dv0 ^ dv1 ++Xs=2 asdus ^ dv1 +Xs=2 asdvs ^ dv1 ++Xs=2 bsdus ^ dv0 +Xs=2 bsdvs ^ dv0 = 0hence �a0a� a1b+ a0 + b1a� b1 = 0; b = b(x; u0; v0; u1; v1):(9)Notice that the equation (8) for the unknown function a is solvable by�(au1 + v1; a; x; u0; v0) = 0where � is arbitrary (smooth) function and then b can be determined from (9).



226 IVAN BRAD�A�CIf we take any couple of functions a; b, satisfying (7), (8), (9), then some rela-tionships � = du0 + adv0 = Pdf +Qdg == P (f0du0 + f0dv0 + f1du1 + f1dv1 + : : : ) ++ Q(g0du0 + g0dv0 + g1du1 + g1dv1 + : : : ) ;(10) � = du1 + adv1 + bdv0 = Rdf + Sdg == R(f0du0 + f0dv0 + f1du1 + f1dv1 + : : : ) ++ S(g0du0 + g0dv0 + g1du1 + g1dv1 + : : : )are valid for appropriate P;Q;R; S; f; g 2 F . Then1 = Pf0 + Qg0 ; 0 = Rf0 + Sg0 ;a = Pf0 + Qg0 ; b = Rf0 + Sg0 ;0 = Pf1 + Qg1 ; 1 = Rf1 + Sg1 ;0 = Pf1 +Qg1 ; a = Rf1 + Sg1(11)and necessarily det �f1 g1f1 g1� = 0 (or else P = Q = 0)and f1 = af1 :We may assume that f = f(x; u0; v0; u1; v1); g = g(x; u0; v0; u1; v1): If, e.g., f2 6=0, then from (10) we have 0 = Pf2 + Qg2;0 = Rf2 + Sg2hence det �P QR S� = 0and the �rst line of (11) implies R = S = 0. Moreover, from (11) it follows thateither f1 6= 0 or g1 6= 0; we may suppose f1 6= 0 and then the condition above canbe expressed in the form g = G(x; u0; v0; f) :(12)Substituting this into (10), we have� = du0 + adv0 = (P +GfQ)df +QG0du0 +QG0dv0 ;� = du1 + adv1 + bdv0 = (R+GfS)df + SG0du0 + SG0dv0 ;(13)



AUTOMORPHISMS OF SPATIAL CURVES 227and combining(R +GfS)(du0 + adv0) � (P + GfQ)(du1 + adv1 + bdv0) == ((R+ GfS)QG0 � (P +GfQ)SG0)du0++((R +GfS)QG0 � (P + GfQ)SG0)dv0we obtain P + GfQ = 0 ;R+ GfS = (R+ GfS)QG0 ;a(R+GfS) = (R+ GfS)QG0hence f1f1 = a = G0G0 :(14)Furthermore, (13) gives 1 = (R+ GfS)f1 ;0 = (R+ GfS)f0 + SG0 ;b = (R+ GfS)f0 + SG0 ;which implies (using (14)) b = f0f1 � f0f1f1f1 :(15)The condition Xa � b 6= 0 can be expressed in the formX �G0G0�� f0 � f0af1 = XG0G0 � G0 �XG0G0G0 � f0 � f0af1 6= 0 ;which is equivalent todet � G0 G0f1XG0 � G0f0 f1XG0 � g0f0� 6= 0 :(16)If we take any functions a; b, satisfying (7), (8), (9) and search for functions f; g,determining an automorphism such that fdx; df; dgg = fdx; �; �g, where �; � aregiven by (6), then the functions f; g must be of the form (12) and satisfy (14), (15)and (16). The validity of (7), (8), (9) ensure us the existence of such functions.On the other hand, let us take any functions f; g, satisfying (12), f1=f1 = G0=G0and (16) and de�ne a and b by (14), (15). Thenfdx; df; dgg= fdu0 + adv0; du1+ adv1 + bdv0g ;the relationships (7), (8), (9) are valid and f; g determine an automorphism of thetype [0,1].



228 IVAN BRAD�A�CNot surprisingly, this concludes Theorem 1 from section 2.2. For this case, themethod of submodules could seem a little arti�cal. However, we obtained someadditional information about the structure of the automorphisms, given by ex-pressions f1=f1 = G0=G0 = a; (f0f1� f0f1)=f1f1 = b determining the submodulefdx; �; �g, which satisfy (8) and (9). Moreover, while the reasonings would be-come very complicated for the higher order cases if using the direct method, theformer calculations will a little prolong but remain rather straightforward.3.4. Automorphisms of the type [1,2]Let�� = f�; �; dxg � L2X� ; � 2 LX� ; � =2 � ; � 2 L2X� ; � =2 LX� :Then, analogously as above, we can take � and � in the form� = du1 + adv1 + bdu0 + cdv0 ;� = du2 + adv2 + edv1 + hdu0 + kdv0(17)where a; b; c; e; h; k 2 F . The formsLX�� � = bdu1 + (Xa + c � e)dv1 + (Xb � h)du0 + (xc� k)dv0 ;� = du1 + dv1 + bdu0 + cdv0must be linearly dependent (mod �) and soe = Xa + c� ab :(18)Then the formsLX(LX�� � � b�) = LX ((Xb� h� bb)du0 + (Xc � k � bc)dv0) == (Xb� h� bb)du1 + (Xc � k � bc)dv1 ++X(Xb � h� bb)du0 +X(Xc � k � bc)dv0 ;� = du1 + adv1 + bdu0 + cdv0must be linearly dependent (mod �), which givesa(Xb � h� bb) = Xc � k � bc :(19)Since LX�� � � b� = (Xb � h� bb)(du0 + adv0) ;we have Xb � h� bb 6= 0 :(20)To ensure the equality [LsX �� = �, the formsdu0 + adv0 (= 1Xb� h� bb((Xb � h� bb)du0 + (Xc � k � bc)dv0)) ;LX(du0 + adv0) � � = �bdu0 + (Xa � c)dv0



AUTOMORPHISMS OF SPATIAL CURVES 229must be linearly independent, i.e. ,Xa + ab� c 6= 0 :(21)Applying the condition of complete integrability,d� = da ^ dv1 + db ^ du0 + dc ^ dv0 '' (a0du0 + a1(�bdu0 � cdv0) + a2(�adv2 � hdu0 � kdv0) +Xs=3 asdus ++Xs=0 asdvs) ^ dv1 + (b1(�adv1 � cdv0) + b2(�adv2 � edv1 � kdv0) ++Xs=3 bsdus +Xs=0 bsdvs) ^ du0 ++ (c0du0 + c1(�adv1 � bdu0) + c2(�adv2 � edv1 � hdu0) ++Xs=3 csdus +Xs=1 csdvs) ^ dv0 = 0 ;d� = da ^ dv2 + de ^ dv1 + dh ^ du0 + dk ^ dv0 '' (a0du0 + a1(�adv1 � bdu0 � cdv0) + a2(�edv1 � hdu0 � kdv0) ++Xs=3 asdus +Xs=0 asdvs) ^ dv2 ++ (e0du0 + e1(�bdu0 � cdv0) + e2(�adv2 � hdu0 � kdv0) ++Xs=3 esdus +Xs=0 esdvs) ^ dv1 ++ (h1(�adv1 � cdv0) + h2(�adv2 � edv1 � kdv0) ++Xs=3 hsdus +Xs=0hsdvs) ^ du0 ++ (k0du0 + k1(�adv1 � bdu0) + k2(�adv2 � edv1 � hdu0) ++Xs=3 ksdus +Xs=1 ksdvs) ^ dv0 = 0 ;then from (18) it follows that a = a(x; u0; v0; u1; v1) and we obtain conditions for



230 IVAN BRAD�A�Cthe coe�cients a = a(x; u0; v0; u1; v1) and b; c; e; h; k of variables x; u0; v0; u1; v1; u2; v2b2a� b2 = 0c2a� c2 = 0b1c+ b2k � b0 + c0 � c1b� c2h = 0a0 � a1b+ b1a + b2e� b1 = 0a0 � a1c+ c1a+ c2e � c1 = 0h1c+ h2k � h0 + k0 � k1b� k2h = 0e0 � e1b� e2h+ h1a+ h2e � h1 = 0a0 � a1b+ h2a� h2 = 0e0 � e1c� e2k + k1a+ k2e� k1 = 0a0 � a1c+ k2a � k2 = 0a1 � a1a+ e2a� e2 = 0 ;(22)(18) and (19). Moreover, the inequalities (20) and (21) must hold.If a; b; c; d; e; h; k are such functions, then� = du1 + adv1 + bdu0 + cdv0 = Pdf +Qdg ;� = du2 + adv2 + edv1 + hdu0 + kdv0 = Rdf + Sdg(23)where f; g are functions of variables x; u0; v0; u1; v1; u2; v2 (analogously as in theprevious section) . Comparing the coe�cients at du2; dv2 we obtain0 = Pf2 +Qg2 ; 1 = Rf2 + Sg2 ;0 = Pf2 +Qg2 ; a = Rf2 + Sg2hence det �f2 g2f2 g2� = 0 (or else P = Q = 0)and f2 = af2 :We may assume f2 6= 0 so thatg = G(x; u0; v0; u1; v1; f)(24)Substituting this into (23) we have� = du1 + adv1 + bdu0 + cdv0 == (P + QGf )df + QG0du0 + QG0dv0 + QG1dv1 + QG1dv1 ;� = du2 + adv2 + edv1 + hdu0 + kdv0 == (R+ SGf )df + SG0du0 + SG0dv0 + SG1du1 + SG1dv1 ;



AUTOMORPHISMS OF SPATIAL CURVES 231and after combining(R+ SGf )(du1 + adv1 + bdu0 + cdv0) �� (P + QGf )(du2 + adv2 + edv1 + hdu0 + kdv0) == ((R+ SGf )QG0 � (P +QGf )SG0)du0 ++ ((R + SGf )QG0 � (P +QGf )SG0)dv0 ++ ((R + SGf )QG1 � (P +QGf )SG1)du1 ++ ((R + SGf )QG1 � (P +QGf )SG1)dv1 ;necessarily P + QGf = 0 ;R+ SGf = (R+ SGf )QG1 ;a(R+ SGf ) = (R+ SGf )QG1 ;b(R+ SGf ) = (R+ SGf )QG0 ;c(R+ SGf ) = (R+ SGf )QG0must hold, which gives G1G1 = a = f2f2 ; b = G0G1 ; c = G0G1 ;(25)where G1 6= 0 is ensured. Substituting this again into (23), then the �rst line of(23) is ful�lled identicaly and� = du2 + adv2 + edv1 + hdu0 + kdv0 == (R+ SGf )(f0du0 + f0dv0 + f1du1 + f1dv1 + f2du2 + f2dv2) ++ SG0du0 + SG0dv0 + SG1du1 + SG1dv1implies 1 = (R + SGf )f2 hence R+ SGf = 1=f2 ;0 = f1=f2 + SG1 hence S = �f1=(G1f2) ;and we obtainede = f1=f2 � G1f1=G1f2 = (G1f1 � G1f1)=G1f2 ;h = f0=f2 � G0f1=G1f2 = (G1f0 �G0f1)=G1f2 ;k = f0=f2 �G0f1=G1f2 = (G1f0 �G0f1)=G1f2 :(26)Comparing (18), (19), (25) and (26), we obtain(G1f1 �G1f1)G1 = (G1XG1 �G1XG1 +G0G1 �G1G0)f2 ;(27)



232 IVAN BRAD�A�CG1f2(G1XG0 �G0XG1) �G1G1(G1f0 � G0f1)� f2G1G0G0 == G1f2(G1XG0 � G0XG1)� G1G1(G1f0 � G0f1) � f2G1G0G0 :(28)The condition (20) can be rewritten in the formf2(G1XG0 � G0XG1 �G0G0) + G1(G0f1 �G1f0) 6= 0 ;(29)and similarly (21) givesG1XG1 � G1XG1 + G1G0 � G0G1 6= 0 :(30)So we may conclude: If functions a(x; u0; v0; u1; v1) and b; c; e; h; k of variablesx; u0; v0; u1; v1; u2; v2 satisfy the conditions (18){(22), then there exist functionsf; g of the form (24) such that fdx; �; �g = fdx; df; dgg where the forms �; �are given by (17), and the relationships (25){(30) are valid. The functions f; grepresent an automorphism of the type [1,2].On the other hand, if f; g are functions of the form (24) such that the relation-ships G1=G1 = f2=f2, (27){(30) are valid and we de�ne a; b; c; e; h; k by (25) and(26), then fdx; �; �g = fdx; df; dggwhere �; � are de�ned by (17), the relationships(18){(22) hold and f; g determine an automorphism of the type [1,2].3.5. ExampleAs in section 2.3, let us examine the linear case� = du1 + adv1 + bdu0 + cdv0 ;� = du2 + adv2 + edv1 + hdu0 + kdv0 ;wherea; b; c; e; h; k 2 R; e = c� ab; k = a(h+ bb)� bc; ab� c 6= 0; h+ bb 6= 0due to (18), (19), (20) and (21), so that� = d(u1 + av1 + bu0 + cv0) ;� = d(u2 + av2 + ev1 + hu0 + kv0) :The linear automorphisms of the type [1,2] are of the form�u0 = h�u0 = h�pH�u0 = h�p �U0; �us = Xs�u0 ;�v0 = h�v0 = h�pH�v0 = h�p �V0; �vs = Xs�v0 ;where H is given by�U0 = u1 + av1 + bu0 + cv0 ;�V0 = u2 + av2 + (c � ab)v1 + hu0 + (a(h+ bb)� bc)v0 ;�Us = Xs �U0; �Vs = Xs �V0 ;ab� c 6= 0; h+ bb 6= 0 ;



AUTOMORPHISMS OF SPATIAL CURVES 233and hp is the prolonged point transformation�u0 = A+ Bx+ C �U0 +D �V0 ;�v0 = E + Fx+ G �U0 +H �V0 ;�us = Xs�u0; �vs = Xs�v0 ;A;B;C;D;E; F;G;H 2 R ;det �C DG H� = CH �GD 6= 0 :Then the inversion is given byu0 = (h�)�1�u0 = (H�)�1(h�p)�1�u0 = (H�)�1 �U0; us = Xsu0 ;v0 = (h�)�1�v0 = (H�)�1(h�p)�1�v0 = (H�)�1 �V0; vs = Xsv0 ;and after some calculations we obtain the inverse relationships for h�p andH�: Thetransformation h�1p is expressed by�U0 = 1CH � GD (�AH +ED + (�HB +DF )x+H�u0 �D�v0) ;�V0 = 1CH � GD (�CE + GA+ (�CF + GB)x� G�u0 +C�v0) ;�Us = Xs �U0; �Vs = Xs �V0 ;and H�1 is given byu0 = 1(h+ bb)(c� ab) ((cb � a(h+ bb)) �U0 + c�V0 + (�c + ab) �U1 + a�V1 � a �U2) ;v0 = 1(h+ bb)(c� ab)(h �U0 � b�V0 + 2b�U1 + �V1 � �U2) ;us = Xsu0; vs = Xsv0 :3.6. Automorphisms of the type [0,2]Let � 2 � ; � 2 L2X� ; � =2 LX� :Then we may assume that� = du0 + adv0 ;� = du2 + Adv2 + Bdu1 +Cdv1 +Ddv0 :The forms L2X� = du2 + adv2 + 2Xadv1 +X2adv0



234 IVAN BRAD�A�Cand � must be linearly dependent (mod LX�) hence� = du0 + adv0 ;� = du2 + adv2 + bdu1 + cdv1 + edv0 :(31)Analogously the formsL2X�� � = �bdu1 + (2Xa � c)dv1 + (X2a� e)dv0 ;LX� = du1 + adv1 +Xadv0must be linearly dependent (mod �) but linearly independent so that2Xa + ab� c = 0 ;(32) X2a+ bXa � e 6= 0 :(33)Analogously as in the previous sections, from the complete integrability conditionswe obtain the system of partial di�erential equationsb2a� b2 = 0c2a� c2 = 0e2a� e2 = a0 � a0a(34) e1 + b2e � e2b = b0 � b0ae1 + c2e � e2c = c0 � c0awhere a = a(x; u0; v0) (which follows from (32) and a1 � a2b = 0; a1 � a2c = 0)and b; c; e are functions of variables x; u0; v0; u1; v1; u2; v2.If we take any functions, satisfying (32){(34), then� = du0 + adv0 = Pdf + Qdg;� = du2 + adv2 + bdu1 + cdv1 + edv0 = Rdf + Sdgwhere f; g are functions of variables x; u0; v0; u1; v1; u2; v2, which implies1 = Pf0 +Qg0 ; 0 = Rf0 + Sg0 ;a = Pf0 + Qg0 ; e = Rf0 + Sg0 ;0 = Pf1 + Qg1 ; b = Rf1 + Sg1 ;0 = Pf1 + Qg1 ; c = Rf1 + Sg1 ;0 = Pf2 +Qg2 ; 1 = Rf2 + Sg2 ;0 = Pf2 + Qg2 ; a = Rf2 + Sg2 :Thus h�f1 f1 f2 f2g1 g1 g2 g2� = 1



AUTOMORPHISMS OF SPATIAL CURVES 235hence (assuming f2 6= 0) f = f(x; u0; v0; u1; v1; u2; v2) ;g = G(x; u0; v0; f)(35)and a = f2f2 ; b = f1f2 ; c = f1f2 :(36)As in sections 3.3 and 3.4, after some calculations we deriveG0G0 = a = f2f2 ;(37) e = f0f2 � f0G0G0f2 = f0G0 � f0G0G0f2 ;(38)and notice that the second equation of (37) is solvable byf = �(u2 + av2; x; u0; v0; u1; v1) :The condition (32) can be expressed in the formf1f2 = 2X(f2f2 ) + f2f2 f1f2(39)and the condition (33) meansX2(f2f2 ) + f1f2X(f2f2 )� f0f2 + f0G0G0f2 6= 0 :(40)If we take any functions a(x; u0; v0) and b; c; e of variables x; u0; v0; u1; v1; u2; v2,satisfying (32){(34), then there exist functions f; g of the form (35) such thatfdx; �; �g = fdx; df; dgg where �; � are de�ned by (31), and the conditions (36),(37){(40) hold. The functions f; g determine an automorphism of the type [0,2].On the other hand, if the functions f; g satisfy the conditions (35),G0=G0 = f2=f2, (39) and (40) and we de�ne a; b; c; e by (36) and (38), thenfdx; �; �g = fdx; df; dgg where �; � are de�ned by (31), the relationships (32){(34) are valid and f; g determine an automorphism of the type [0,2].Using the achievements of sections 3.4 and 3.6, we can state the following the-orem:Theorem 2. Let f = f(x; u0; v0; u1; v1; u2; v2); g = g(x; u0; v0; u1; v1; u2; v2);f2 6= 0: These functions determine an x-preserving automorphism of curves in R3,if and only if one (and only one) of the following conditions holds:(i) g = G(x; u0; v0; u1; v1; f); G1 6= 0 ; G1G1 = f2f2 ; (27)�(30):



236 IVAN BRAD�A�C(ii) g = G(x; u0; v0; f) ; G0 6= 0 ; G0G0 = f2f2 ; (39); (40) :4. The infinitesimal symmetries4.1. The in�nitesimal symmetries in R1For the convenience of exposition, let us briey mention the �nite-dimensionalspace Rn with points x = (x1; : : : ; xn), di�erential forms ' = Pmi=1 fidgi andvector �elds Z = Pni=1 zi @@xi , where fi = fi(x); gi = gi(x); zi = zi(x) are smoothfunctions. Given a submodule 
 of di�erential forms, a vector �eld Z is called anin�nitesimal symmetry of 
, if LZ
 � 
 :(41)Recall that such a vector �eld generates a one-parameter group of transformationsin the senseZf(x) = @@�f(h(x; �))j�=0; h(x; 0) = id; h(x; �+ �) = h(h(x; �); �) ;(42)where � and � are real parameters near enough to zero, and, for �xed � thetransformation h(x; �) preserve the module 
 in the senseh�(x; �)
 � 
 :Now let us proceed to the in�nite-dimensional space R1 with the coordinatesx1; x2; : : : , the structural family F and the F-modules �; T of di�erential formsand vector �elds according to the notation of section 1.2. In R1, given a submod-ule 
 � � , a vector �eld Z 2 T is called a generalized in�nitesimal symmetry of
, if (41) holds and an in�nitesimal symmetry of 
, if (41) holds and Z generatesa one-parameter group of transformations in the sense (42). The generalized in-�nitesimal symmetries can be in principle calculated by �nite algorithms; however,as yet no method exists to determine the in�nitesimal symmetries or even to proveor disprove their existence for a given module 
 in the in�nite-dimensional space.Our approach will be based on the following lemma. We state only the proof ofthe necessity; the su�ciency is more delicate and lengthy and cannot be discussedhere (see, e.g., [6]).Lemma 4. A vector �eld Z generates a one-parameter group of transformations ifand only if for any function f 2 F all the functions of the sequence f; Zf; Z2f; : : :can be expressed in a �nite number of coordinates.Proof. If f 2 F and h(x; �) generates a one- parameter group of transformations,then f(h(x; �)) depends on a �nite number of coordinates, hence @n@�n f(h(x; �))j�=0



AUTOMORPHISMS OF SPATIAL CURVES 237depends on a �nite number of coordinates; therefore it is su�cient to prove thatZnf(x) = @n@�n f(h(x; �))j�=0(43)for all n 2 N.If n = 1, then Z(f(x)) = @@�f(h(x; �))j�=0 by de�nition. Let us assume thatthe formula (43) is valid for some n 2 N; n � 1; thenZn+1f(x) = Z(Znf(x)) = Z( @n@�n f(h(x; �))j�=0) == @@� ( @n@�n f(h(h(x; �); �))j�=0)j�=0 == @@� ( @n@�n f(h(x; �+ �))j�=0)j�=0 = @n+1@�n+1 f(h(x; �))j�=0and (43) is valid for all n 2N, which concludes the proof.If x1; x2; : : : are coordinates in R1, it is su�cient to verify the requirementonly for the coordinate functions xi (i = 1; 2; : : :): If the �niteness condition oflemma 4 holds for the coordinate functions xi (i = 1; 2; : : :), then for any otherfunction f 2 F ; f = f(x1; : : : ; xk) clearly isZf =X fxiZxi; Z2f =X(X fxixjZxjZxi + fxiZ2xi); : : :and the functions f; Zf; Z2f; : : : depend on a �nite number of coordinates.4.2. The in�nitesimal symmetries in our caseWe shall be interested in in�nitesimal symmetries of the very special submodule
 � � de�ned in the section 1.4. Returning to the coordinates x; us; vs and to thenotation from section 1.4, let us remind the contact formsdus � us+1dx; dvs � vs+1dx (s = 0; 1; : : :) ;generating the submodule 
 � �, and the formal derivative operatorX = @@x + 1Xus+1 @@us + 1X vs+1 @@vs :Before proceeding to another concept of our theory, we shall establish a usefulassertion; its proof is quite easy.Lemma 5. Let f; g 2 F . Then df � gdx 2 
 if and only if g = Xf .In accordance with our task, we shall be interested in vector �eldsZ = z @@x +Xus @@us +X vs @@vs



238 IVAN BRAD�A�Cpreserving the coordinate x, i.e., satisfying0 = Zx = z :Then the condition (41) is ful�lled if and only ifLz(dus � us+1dx) 2 
 ; Lz(dvs � vs+1dx) 2 
 :Since Lzdus = dZus = dus; Lzdvs = dZvs = dvs ;we obtain the requirementsdus � us+1dx 2 
; dvs � vs+1dx 2 
 ;which give, according to lemma 5,us+1 = Xus; vs+1 = Xvs :Thus it is quite easy to �nd the x-preserving generalized in�nitesimal symmetriesin T : The initial values u0 = a 2 F ; v0 = b 2 Fmay be arbitrarily chosen and thenZ = 1X0 Xsa @@us + 1X0 Xsb @@vsare the sought generalized in�nitesimal symmetries in T .Such vector �elds satisfy the following important condiditon, which can be eas-ily derived by direct calculation.Lemma 6. If Z is an x-preserving generalized in�nitesimal symmetry and Xis the formal derivative operator, then [X;Z] = 0.We have seen that generalized in�nitesimal symmetries can be easily found.Passing to in�nitesimal symmetries, the problem becomes much more di�cult.Recall that according to lemma 4 and to the note below, such a generalized in-�nitesimal symmetry generates a one-parameter group of transformations if andonly if for any �xed s 2N the functionsus; Zus; Z2us; vs; Zvs; Z2vscan be expressed by means of a �nite number of coordinates (we need not considerthe coordinate x since Zx = 0). It turns out that that the condition of lemma 4has to be veri�ed even only for the coordinates u0; v0 : If the functionsZu0; Z2u0; : : : ; Zv0; Z2v0; : : :are depending on a �nite number of coordinates and s 2 N is �xed, then (usinglemma 5) the functionsZus = ZXsu0 = XsZu0; Z2us = Z2Xsu0 = XsZ2u0; : : : ;



AUTOMORPHISMS OF SPATIAL CURVES 239Zvs = ZXsv0 = XsZv0; Z2vs = Z2Xsv0 = XsZ2v0; : : :are depending on a �nite number of coordinates, too. Consequently, since Zu0 =a; Zv0 = b, we search for all couples a; b 2 F such that all functionsa; Za; Z2a; : : : ; b; Zb; Z2b; : : :can be expressed by a �nite number of coordinates. We are not able to solve thisproblem in full generality. For this reason, we shall discuss only the particularcases when a = a(x; u0; v0); b = b(x; u0; v0)are of the zeroth order, or,a = a(x; u0; v0; u1; v1); b = b(x; u0; v0; u1; v1)are of the �rst order. The zeroth order case is quite trivial: If a = a(x; u0; v0),then Za = aa0 + ba0 = �a(x; u0; v0); Z2a = Z�a = ~a(x; u0; v0); : : :are depending only on zeroth order variables and the same reasoning can be car-ried out with b. The vector �eld Z generates a one-parameter group of pointtransformations.4.3. The �rst order caseLet a = a(x; u0; v0; u1; v1); b = b(x; u0; v0; u1; v1); a1 6= 0:The conditions for a and b are are equivalent to the condition thatZ �ab� ; Z2�ab� ; : : :are vectors depending only on a �nite number of coordinates. In all the followingcalculations, we shall consider only the top terms, i.e., the terms depending on thevariables of the highest order. We haveZ �ab�=�� � �+Xa � a1 +Xb � a1� � �+Xa � b1 +Xb � b1�=�� � �+ (u2a1 + v2a1)a1 + (u2b1 + v2b1)a1� � �+ (u2a1 + v2a1)b1 + (u2b1 + v2b1)b1�== � � �+ �a1a1 + b1a1 a1a1 + b1a1a1b1 + b1b1 a1b1 + b1b1��u2v2� = � � �+ �a1 a1b1 b1��a1 a1b1 b1��u2v2� == � � �+�a1 a1b1 b1�2�u2v2� ;Z2�ab� = � � �+�a1 a1b1 b1�2 Z �u2v2� = � � �+ �a1 a1b1 b1�2�X2aX2b� == � � �+�a1 a1b1 b1�2�u3a1 + v3a1u3b1 + v3b1� = � � �+�a1 a1b1 b1�3�u3v3� ;



240 IVAN BRAD�A�Cand in general Zs�ab� = � � �+ �a1 a1b1 b1�s+1�us+1vs+1� ;hence necessarily �a1 a1b1 b1�s = 0for s large. However, then even �a1 a1b1 b1�2 = 0 ;(44)so that det �a1 a1b1 b1� = 0 ;which can be expressed by b = B(x; u0; v0; a) :(45)Furthermore, the condition (44) is expressed bya1a1 + a1b1 = a1a1 + a1b1 = 0 ;b1a1 + b1b1 = b1a1 + b1b1 = 0 ;which is equivalent to a1 + b1 = 0(since a1 6= 0 or else a1 = 0), and we may express this condition in the forma1 +Baa1 = 0 :Let us assume that the condition (44) holds; then the functions a; �a = Za; b; �b =Zb are of order � 1 and we can continue our calculations withZ2�ab� = Z ��a�b� = � � �+ �Xa � �a1 +Xb � �a1Xa � �b1 +Xb � �b1� == � � �+ �(u2a1 + v2a1)�a1 + (u2b1 + v2b1)�a1(u2a1 + v2a1)�b1 + (u2b1 + v2b1)�b1� == � � �+ �a1�a1 + b1�a1 a1�a1 + b1�a1a1�b1 + b1�b1 a1�b1 + b1�b1��u2v2� = � � �+��a1 �a1�b1 �b1��a1 a1b1 b1��u2v2� ;Z3�ab� = � � �+ ��a1 �a1�b1 �b1��a1 a1b1 b1��a1 a1b1 b1��u3v3� ;so that the functions Z3a; Z3b are of order � 2. Furthermore, denoting by ~a =Z3a; ~b = Z3b , we haveZ4�ab� = Z �~a~b� = � � �+ �(u3a1 + v3a1)~a2 (u3b1 + v3b1)~a2(u3a1 + v3a1)~b2 (u3b1 + v3b1)~b2� =



AUTOMORPHISMS OF SPATIAL CURVES 241= � � �+�~a2 ~a2~b2 ~b2��a1 a1b1 b1��u3v3� ;Z5�ab� = � � �+ �~a2 ~a2~b2 ~b2��a1 a1b1 b1�Z �u3v3� == � � �+ �~a2 ~a2~b2 ~b2��a1 a1b1 b1��a1 a1b1 b1��u4v4�and the functions Z5a; Z5b are of order � 3.In general, the functions Z2ka; Z2kb; Z2k+1a; Z2k+1b are of order� k + 1 (k = 1; 2; : : :). If Z generates a one-parameter group of transformations,then necessarily there exist k 2 N such that the functions Z2ka; Z2kb are of order� k.At last, to obtain an explicit result, let us discuss the case when Z2a is of order� 1. Then Z2b = Z2B(x; u0; v0; a) = Z(B0a+ B0b+BaZa) == ZB0a+ B0Za + ZB0B + B0ZB + ZBaZa+ BaZ2ais of order � 1, too. According to the calculations above, we have��a1 �a1�b1 �b1��a1 a1b1 b1� = 0 ;which implies det ��a1 �a1�b1 �b1� = 0 ;so that �b = �B(x; u0; v0; �a) ;(46)excluding the case �a1 = �a1 = 0, i.e. ,(aa0 + ba0)1 = (aa0 + ba0)1 = 0 :Now let us assume that det �a1 a1�a1 �a1� 6= 0 :Then the functions u1; v1 can be expressed in terms of x; u0; v0; a; �a from therelationships a = a(x; u0; v0; u1; v1) ;�a = �a(x; u0; v0; u1; v1) ;hence the functions Zu1; Zv1 can be expressed in terms of x; u0; v0; a;�a; Z�a. SinceZ�a = Z2a is of order � 1, we obtained that the functions Zu1; Zv1 are dependingonly on variables x; u0; v0; u1; v1, which is a contradiction since Zu1 = Xa == u2a1 + v2a1 is depending on u2. Consequentlydet �a1 a1�a1 �a1� = 0 ;



242 IVAN BRAD�A�Cwhich means �a = �A(x; u0; v0; a)(47)and now the condition of lemma 4 (equivalently, the condition of the note below)is ful�lled : Since (47),(46) and (45) are valid and Zu0 = a; Zv0 = b; Za = �a,thefunctions a; Za = �a; Z�a; Z2�a; : : : ; b; Za = �b; Z�b; Z2�b; : : :are depending only on the variables x; u0; v0; a, i.e., only on the variablesx; u0; v0; u1; v1 .Let us summarize the achievements of this section:Theorem 3. Let a = a(x; u0; v0; u1; v1); b = b(x; u0; v0; u1; v1); a1 6= 0:(i) If a vector �eld Z = 1X0 Xsa @@us + 1X0 Xsb @@vsperforms an in�nitesimal symmetry of 
, then necessarily�a1 a1b1 b1�2 = 0 ;which is equivalent tob = B(x; u0; v0; a) and a1 + a1@B=@a = 0 :(ii) If a vector �eld Z = 1X0 Xsa @@us + 1X0 Xsb @@vsis given such that Z2a is of order � 1; Z2b is of order � 2 ; then evenZ2b is of order � 1 and if(aa0 + ba0)1 6= 0 or (aa0 + ba0)1 6= 0 ;then Z is an in�nitesimal symmetry of 
.
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