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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 273 { 278ON A GENERALIZED WIENER{HOPF INTEGRAL EQUATIONMalcolm T. McGregorAbstract. Let � be such that 0 < � < 12 . In this note we use the Mittag-Le�erpartial fractions expansion for F�(�) = ��1� �� ����(�)=���� ����(1� �) toobtain a solution of a Wiener-Hopf integral equation.1. IntroductionWiener-Hopf equations, and the Wiener-Hopf technique for solving such equa-tions, arose out of a study of the radiation equilibrium of the stars. Since its in-troduction in 1931, the Wiener-Hopf technique has been re�ned and applied to avariety of problems involving integral equations and partial di�erential equations.Application of the Fourier transform (or the Laplace transform) to such equationsyields, in many cases, a Wiener-Hopf equation of the formA(�)P+(�) + B(�)Q�(�) = C(�)where � = � + i� belongs to a parallel-strip region S : �� < Im � < �+ (or�� < Re � < �+). Furthermore, P+(�) is regular in the upper half-plane � > ��,and Q�(�) is regular in the lower half-plane � < �+, whilst A(�), B(�), C(�) aregiven functions of � which are regular and non-zero in S. For an in-depth discussionof the Wiener-Hopf technique and its applications the reader is referred to [1] and[3].Let eP�(�) denote the Laplace transform of P�(y), where � is such that 0 < � <12 . We shall use complex analytic methods to solve the Wiener-Hopf equationsin(�� + �) eP�(��) + sin(�� � �) eP�(�) = 2 cos�� sin ��by showing that eP�(�) is expressible in terms of the Gamma function. As a result,we obtain the solution P�(y), as a series of exponentials, of a pair of associatedintegral equations. The case � = 14 was dealt with in an earlier paper.1991 Mathematics Subject Classi�cation : 45E10.Key words and phrases: Wiener-Hopf integral equation.Received July 17, 1995.



274 MALCOLM T. MCGREGOR2. Posing the problemIn [2] we solved the integral equation(1) Z 10 (cosh � cos �y � sinh � sin �y)P (y) dy = sinh ��by assuming that P (y) admits the series expansionP (y) = 1Xn=0Ene��nyso that its Laplace transform iseP (�) = L[P (y)](�) = 1Xn=0 En�n + � :In this case �n = �n+ 34��; n = 0; 1; 2; : : : , and the coe�cients fEng are subjectto the normalization 1Xn=0En=�n = 1 :By replacing � by i� in (1) we obtain the associated integral equation(2) Z 10 �sin��4 + �� e�y + sin��4 � �� e��y� P (y) dy = p2sin �� ;and (2) may be written as a Wiener-Hopf equation, namely:sin��4 + �� eP (��) + sin��4 � �� eP (�) = p2sin �� ;or sin��4 + �� 1Xn=0 En�n � � + sin��4 � �� 1Xn=0 En�n + � = p2sin �� :(3)In [2] we obtained eP (�) = 1Xn=0 En�n + � = (F (��) � 1)=� ;where F (�) = � �34 � �� �� �14�� �14 � �� �� �34� ;



ON A GENERALIZED WIENER{HOPF INTEGRAL EQUATION 275so that eP (�) =  � �34 + �� �� �14�� �14 + �� �� �34� � 1!,� :It was also shown in [2] that the coe�cients fEng in the series expansion for P (y)are given byEn = ��(14)�2 ��n+ 34�.n!�2p2 �n+ 34� = Kn=�n ;and that 1Xn=0En=�n = 1 ;as required.In this paper we shall solve a more general Wiener-Hopf equation than (3), andconsequently solve a more general integral equation than (2); the two equationswill now contain a parameter � with 0 < � < 12 . We shall show that(4) sin(�� + �) 1Xn=0 K�;na�;n(a�;n � �)+sin(�� � �) 1Xn=0 K�;na�;n(a�;n + �) = 2 cos�� sin �� ;where a�;n = (n + 1 � �)�; n = 0; 1; 2; : : : , and the coe�cients fK�;ng are givenby K�;n = �(�1)n+1�(�)=n! �(1� �)�(2�� n � 1) :The case � = 14 yields (3). In the �-case the analogue of (1) is the integral equationZ 10 (tan�� cosh � cos �y � sinh � sin �y)P�(y) dy = sinh �� ;(5)and when we replace � by i� (5) becomesZ 10 �sin(�� + �)e�y + sin(�� � �)e��y�P�(y) dy = 2 cos�� sin �� :(6)Clearly, (6) reduces to (2) when we set � = 14 .



276 MALCOLM T. MCGREGORLet � be such that 0 < � < 12 . We shall assume that P�(y) admits the seriesexpansion P�(y) = 1Xn=0E�;ne�a�;ny ;so that its Laplace transform iseP�(�) = L[P�(y)](�) = 1Xn=0 E�;na�;n + � ;and (6) takes the form of a Wiener-Hopf equationsin(�� + �) eP�(��) + sin(�� � �) eP�(�) = 2 cos�� sin �� :This latter equation is, of course, (4) withE�;n = K�;n=a�;n :3. Finding the coefficients E�;n and solving the problemWith 0 < � < 12 and a�;n = (n + 1 � �)�, n = 0; 1; 2; : : : , we shall show that(4) holds with K�;n = �(�1)n+1�(�)=n!�(1� �)�(2�� n� 1)by considering the meromorphic functionF�(�) = � �1� �� �� ��(�)� ��� �� ��(1� �) :(7)The function F� is such that F�(0) = 1, and F� has simple poles at � = (n+1��)�,n = 0; 1; 2; : : : , due to � �1� �� �� �, and simple zeros at � = (n + �)�, n =0; 1; 2; : : :, due to 1=� ��� �� �. With a�;n as above, the Mittag-Le�er expansionfor F�(�) gives F�(�) = 1 + 1Xn=0� K�;n� � a�;n + K�;na�;n �= 1 + � 1Xn=0 K�;na�;n(� � a�;n)



ON A GENERALIZED WIENER{HOPF INTEGRAL EQUATION 277with a corresponding expression for F�(��). Next, we form the sumsin(�� + �) 1Xn=0 K�;na�;n(a�;n � �) + sin(�� � �) 1Xn=0 K�;na�;n(a�;n + �)= sin(�� + �)(1 � F�(�))=� + sin(�� � �)(F�(��) � 1)=�= 2 cos�� sin �� ;provided sin(�� � �)F�(��) = sin(�� + �)F�(�) :(8)Using (7), we see that (8) is equivalent to���� ��� ��1� �+ ��� sin(�� � �) =���+ ��� ��1� �� ��� sin(�� + �) ;and each side of this equation reduces to � when we use the well-known formula�(z) �(1 � z) = �= sin�zwith z = �� �� and z = �+ �� respectively. Our proof of (4) will be complete whenwe determine the numbers K�;n.From the Mittag-Le�er expansion for F�(�) we haveK�;n = lim�!a�;n(� � a�;n)F�(�)= �(�)�(1� �)�(2�� n� 1) lim�!a�;n(� � a�;n) ��1� �� ��� ;and with z = 1� �� �� in�(z) = �(z + n+ 1)=z(z + 1) : : : (z + n)we deduce that K�;n = �(�1)n+1�(�)=n!�(1� �)�(2�� n� 1)as required. Clearly, if we set � = 14 in (4) we obtain (3) withEn = K 14 ;n�a 14 ;n ;



278 MALCOLM T. MCGREGORwhere a 14 ;n = �n = �n+ 34��; n = 0; 1; 2; : : :, andK 14 ;n = �(�1)n+1��14�.n!��34����n � 12�= ���14��2 ��n + 32�.n!�p2:Finally, we show that 1Xn=0 E�;na�;n = cot�� ;where E�;n = K�;n=a�;n :Clearly, 1Xn=0 K�;n(a�;n)2 = � lim�!0 F�(�) � 1� = �F 0�(0) ;and by (7) �F 0�(0) = 1� ��0(1� �)�(1� �) � �0(�)�(�) �and since �(�)�(1� �) = �= sin�� implies�0(�)�(�) � �0(1� �)�(1� �) = �� cot �� ;we have immediately �F 0�(0) = cot��, as required.References[1] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley& Sons, New York, 1966.[2] McGregor, M. T., On a Wiener-Hopf integral equation, J. Integral Eqns. & Applns. (4)7(1995), 475-483.[3] Noble, B., The Wiener-Hopf Technique, Pergamon Press, New York, 1958.Department of MathematicsUniversity of Wales SwanseaSingleton ParkSwansea SA2 8PP WalesUnited Kingdom
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