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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 323 { 334ON THE STRUCTURE OF OSCILLATORY SOLUTIONSOF A THIRD ORDER DIFFERENTIAL EQUATIONMiroslav Bartu¹ekAbstract. The aim of the paper is to study the structure of oscillatory solutionsof a nonlinear third order di�erential equation y000 + py00 + qy0 + rf(y; y0; y00) = 0.1. IntroductionThe aim of the paper is to study the structure of oscillatory solutions of thenonlinear di�erential equation(1) y000 + p(t)y00 + q(t)y0 + r(t)f(y; y0 ; y00) = 0where p; q 2 C0(R+); r 2 Lloc(R+), f 2 C0(R3), R+ = [0;1), R = (�1;1),(2) f(x1; x2; x3)x1 > 0 for x1 6= 0 on R3and(3) r does not change the sign on R+ :A function y 2 C2(I) is said to be a solution of (1) if y00 is absolutely continuous and(1) holds almost everywhere on I. It is called proper if I = R+ and sup�6t<1 jy(t)j > 0holds for an arbitrary � 2 R+. A proper solution is said to be oscillatory if it hasarbitrarily large zeros.Motivation for the study of properties of oscillatory solutions of (1) comes fromthe papers [1] and [8]. In [1] the structure of solutions of (1) is studied for p � q � 1.It is shown that every nontrivial solution y may have at most one interval of (haveno) double or triple zeros in case r > 0 (r 6 0) and the zeros of y and y0, with thepossible exception of the multiplied ones, are separated.Similar results are obtained for a special kind of (1)(4) y000 + p(t)y00 + q(t)y0 + r(t)g(y) = 0where p; q; r 2 C0(R+), g 2 C0(R), g(x)x > 0 for x 6= 0 and (3) holds. Thefollowing two theorems are due to Moravský [8]:1991 Mathematics Subject Classi�cation : 34C10, 34C15.Key words and phrases: oscillatory solutions, structure of solutions.Received March 14, 1996.



324 MIROSLAV BARTU©EKTheorem A. Let q 2 C1(R+), p > 0, q > 0 and r 6 0 on R+, and let a constantk > 0 exist such that jg(x)j 6 kjxj on R, q0+ pq� 2kr 6 0 on R+. Further, let thefunctions p and q0+ pq� 2kr be not equal to zero at any subinterval of R+ at thesame time. Let t0 2 R+ and y : R+ ! R be a solution of (4) for which2yy00 � y02 + qy2���t=t0 < 0 :Then the zeros of y and y0 are separated on (t0;1).Theorem B. Let r > 0, p > jqj on R+ and let k 2 (0;1) exist such thatjg(x)j > kjxj on R. Let y be a solution of (4) for which t0 2 R+ exists such thaty(t0)y00(t0) � 12y02(t0) < 0 :Further, let one of the following assumptions hold:(i) q 6 0, q + 2kr > 0 on R+ and the functions q + 2kr and p + q are notequal to zero on any subinterval of R+ at the same time;(ii) q > 0, q 6 2k2r on R+ and the functions p � q and q � 2k2r are not, atthe same time, equal to zero on any subinterval of R+.Then the zeros of y and y0 are separated on (t0;1).Our goal: To generalize and extend these results for Eq. (1), to study mutualposition of zeros of an oscillatory solution y and its derivatives y0 and y00. Thepaper does not deal with the existence of oscillatory solutions. As concern to thisproblem, see e.g. [3, 6, 8,9,10].2. Structure of oscillatory solutionsThe following equation plays an important role in investigations of (1):(5) h00 + ph0 + qh = 0 :A solution h : R+ ! R of (5) is called nonoscillatory if it is di�erent from zero insome neighbourhood of 1. Eq. (5) is said to be nonoscillatory if every nontrivialsolution is nonoscillatory. If Eq. (5) is nonoscillatory, then it is said to be discon-jugate if each nontrivial solution has at most one zero on R+. Note, that Eq. (5)is disconjugate if and only if it has a positive solution on (0;1), see [7].Let T 2 R+, J = (R;1) and h > 0 be a solution of (5) on J � R+. Together,with (1) let us consider the di�erential equation with quasiderivativesy[3] + rRhf1(y[0]; y[1]; y[2]) = 0(6)on J where R(t) = exp(Z t0 p(s) ds) ;(7) y[0] = y; y[1] = y0h ; y[2] = Rh2(y[1])0 = R(y00h� y0h0); y[3] = (y[2])0 ;(8) f1(x1; x2; x3) = f(x1; hx2; x3Rh + h0x2) on R3



ON OSCILLATORY SOLUTIONS 325and f1(x1; x2; x3)x1 > 0 for x1 6= 0 holds :A function y 2 C2(J) is said to be a solution of (6) if y00 is absolutely continuousand (6) holds almost everywhere on J . It is called oscillatory if it has arbitrarylarge zeros and sup�6t<1 jy(t)j > 0 holds for an arbitrary � 2 J .If (5) is nonoscillatory, then (1) can be transformed into the equation (6).Lemma 1. Let h > 0 be a solution of (5) on J � R+. Then a function y : J ! Ris a solution of (1) on J if, and only if, y is a solution of the equation (6).Proof. The statement can be obtained by the direct computation similarly as in[3] for p � 0. �Remark 1. It follows from (8) that(9) y0 = hy[1]; y00 = y[2]Rh + h0y[1] :If (5) is nonoscillatory, some results, obtained for Eq. (6), can be transformedinto (1).Lemma 2. Let � 2 f0; 1g, (�1)�r > 0 on R+ and T 2 R+. Let (5) be nonoscil-latory and h be its solution such that(10) h > 0 and (�1)�(ph+ 3h0) > 0 on [T;1) :Further, let y be a solution of (1) and(11) E(t) = (�1)�R[�2hy00y + 2h0yy0 + hy02]where R is de�ned by (7). Then E is nondecreasing on [T;1) andE0(t) = (�1)�R[2hryf(y; y0; y00) + (ph+ 3h0)y02] > 0 on [T;1) :Proof follows by the direct computation using (1) and (5). �First, let us sum up some results concerning Eq. (5).Lemma 3. (i) If p � 0 on R+ and lim supt!1 t2q(t) 2 [�1; 14 ), then (5) isnonoscillatory.(ii) If q > 0 on R+ and(12) Z 10 q(t)R(t) Z t0 dsR(s) dt <1; Z 10 dsR(s) =1 ;where R is given by (7), then Eq. (5) is nonoscillatory and there exists its eventuallypositive and nondecreasing solution.



326 MIROSLAV BARTU©EK(iii) Let q 6 0 on R+. Then Eq. (5) is disconjugate on R+ and there exist solutionsh0 and h1 such thath0 > 0; h00 6 0; h1 > 0 and h01 > 0 on R+ :Proof. Eq. (5) can be transformed into the equivalent equation(R(t)y0)0 + q(t)R(t)y = 0 :(i) See [7], Chap. XI, Th. 7.1.(ii) See [5].(iii) See [7], Chap. XI, Conseq. 6.4. �Lemma 4. Let Eq. (5) be nonoscillatory with a positive solution h on J and lety be an oscillatory solution of Eq. (6).(a) Let r > 0 on J . Then there exists at most one number � 2 J such thateither y(� ) = y[1](� ) = 0; y[2](� ) 6= 0; �1 = �(13)or y[1](t) = y[2](t) = 0 ; t 2 [�1; � ]\ J; �1 6 �(14) and sup jy[1](t)j 6= 0 in any right (left) neighbourhoodof t = � (of t = �1 if T < �1)holds.If � exist, put J1 = (T; �1), J2 = J3 = (�;1). In the opposite case putJ1 = (T; �� ); J2 = (T;1); J3 = (�� ;1)in case that(15) y y[1] < 0; y y[2] > 0 in a right neighbourhood of Tholds where �� is the smallest zero of y[1] on J andJ1 = ;; J2 = J3 = (T;1) otherwise :Then jyj is decreasing on J1, jy[1]j and jy[2]j are nonincreasing on J1,(16) y y[1] < 0; y y[2] > 0 on J1and y and y[1] have only simple zeros on J2 which are separated on J3.(b) Let r 6 0 on J . Then the zeros of y and y[1] are simple and separated on Jand for every zero � of y[1] y(�) y[2](�) < 0 holds. Moreover, if y 6= 0 in a right



ON OSCILLATORY SOLUTIONS 327neighbourhood of T and limt!T+ y[2](t) = 0, then jy[1]j 6= 0 is nonincreasing in a rightneighbourhood of T .Proof. The statement is a consequence of some results in [2]. Let us note, thatin spite of Ths. 3(ii) and 6(ii) of [2] were proved on R, they are valid on J , too {the proof is identical. Further, using (8), the assumptions of Ths. 1, 3 (ii), 4 and6 (ii) from [2] are ful�lled.(a) According to (6) { (8) the following relations hold: Let L � J .(i) Let j 2 f1; 2g and y[j] > 0 (6 0) on L. Then y[j�1] is nondecreasing(nonincreasing) on L.(ii) If y > 0 (y 6 0) on L, then y[2] is nonincreasing (nondecreasing) on L.From this, from Th. 3 (ii) and Remark 5 (i) of [2] the structure of (oscillatorysolution) y has three parts: T 6 �1 6 �2 <1,Part I.(17) y 6= 0; y y[1] 6 0; y y[2] > 0 on (T; �1) ;(Type V of [2]); this part may be missing (�1 = T ).Part II. y[i] � 0; i = 0; 1; 2; on [�1; �2](Type VIII of [2]); this part may be missing (�1 = �2), but if Parts I and II arepresent, then the inequalities (17) are sharp (see Th. 1(ii) of [2]).Part III. All zeros of y and y0 are simple and separated on (�2;1): According toTh. 3(ii) and Remark 5(i) there exists �3 2 [�2;1) such that y is nonoscillatory on(�2; �3) with simple and separated zeros of y and y0 on (�2; �3) and y is oscillatoryon (�3;1) with simple and separated zeros of y and y0 on (�3;1). The proof ofLemma 3 of [2] (or limt!�3) shows that they are no problems with t = �3; if �3 is azero of either y or y0, it is simple and zeros of y and y0 are separated on (�2;1).If Part II is present, we put � = �2, �1 = �1 and the conclusion holds. Let PartII be missing. Then all zeros of y and y0 are isolated. If Part I is missing thenthe statement holds. Thus, suppose, that �1 > T . According to (17), (i), (ii) thereexists at most one � such that either (13) or (14) with y 6= 0 on (�1; � ] holds. If �exists it is evident that � = �1 and the conclusion holds. If � does not exist, theny y[1] < 0 on (T; �1). Moreover, if �1 and ��1 > �1 are �rst two zeros of y[1] on J ,then y(�1)y[2](�1) > 0 and it is easy to prove that y 6= 0 on [�1; ��1] (use (i), (ii)and y y[3] 6 0 a.e. on J1) and zeros of y and y[1] are separated on (�1;1) only.(b) The statement can be proved similarly. Note that the situation is much moresimple and y is of Type II (from [2]) in a right neighbourhood of 1. If y 6= 0 ina right neighbourhood of T and limt!T+ y[2](t) = 0 then y is either of Type II or ofType IV from [2]. �



328 MIROSLAV BARTU©EKTheorem 1. Let Eq. (5) be nonoscillatory with a positive solution on (T;1),T > 0 and let y be an oscillatory solution of (1).(a) Let r > 0 on R+. Then there exists at most one number � 2 [T;1) suchthat either y(� ) = y0(� ) = 0; y00(� ) 6= 0 ; �1 = �(18)or y0(t) = y00(t) = 0; t 2 [�1; � ]; T 6 �1 6 �(19) and sup jy0(t)j 6= 0 in any right (left) neighbourhoodof t = � (of t = �1 if T < �1)holds.If � exist, then put I = [T; �1) and I1 = I2 = (�;1). In the opposite case denoteby �� the smallest zero of y0 on [T;1) and put I = [T; ��); I1 = (T;1); I2 =(�� ;1) in case that y(�� ) y00(�� ) > 0 and I = ;; I1 = [T;1); I2 = (T;1)otherwise.Then jyj is decreasing and y y0 < 0 on I, and y and y0 have only simple zeros onI1 which are separated on I2.(b) Let r 6 0 on R+. Then y and y0 have only simple zeros on [T;1) which areseparated on (T;1).Proof. Let h be a solution of (5), h > 0 on (T;1) and J = (T;1). Then theassumptions of Lemma 1 are ful�lled and Eq. (1) and Eq. (6) are equivalent on J .Moreover, according to (8) and (9) the relations(20) 8>>>>><>>>>>: y0(� ) = 0, y[1](� ) = 0 ;y(� ) = y0(� ) = 0; y00(� ) 6= 0, y(� ) = y[1](� ) = 0; y[2](� ) 6= 0 ;y(� ) 6= 0; y0(� ) = y00(� ) = 0, y(� ) 6= 0 ; y[1](� ) = y[2](� ) = 0 ;y(i)(� ) = 0 ; i = 0; 1; 2, y[i](� ) = 0 ; i = 0; 1; 2hold on J .(a) The statement of the theorem on J follows from Lemma 4(a) and from (20).It is necessary to extend it to the interval [T;1).Let there exist � 2 (T;1) such that either (18) or (19) holds. Then, accordingto Lemma 4, (20) and (8) all zeros of y and y0 are simple on I1 and separated onI2,(21) jyj is decreasing; y y[1] < 0;jy[j]j; j = 1; 2 are nonincreasing on (T; �1) :From this and from (8) y(T ) 6= 0, y y0 < 0 on (T; �1). We prove indirectly thaty0(T ) 6= 0. Thus, supposse that y0(T ) = 0. If h(T ) > 0 this result follows from (8)and (21). Let h(t) = 0. Thenlimt!T+ y[2](t) = limt!T+ [R(t) (y00(t)h(t)� y0(t)h0(t))] = 0



ON OSCILLATORY SOLUTIONS 329and (21) yields y[2] � 0, y[1] � const on (T; �1]. As y[1](�1) = 0 we have y[1] � 0on (T; �1] that contradicts to (21). Thus y0(T ) 6= 0, neither (18) nor (19) holds at� = T and y y0 > 0 on [T; �1).Let neither (18) nor (19) hold for � 2 (T;1). Then all zeros of y and y0 on(T;1) are simple.First, suppose, that(22) either (18) or (19) holds at � = T :It is necessary to prove that the zeros of y and y0 are separated on (T;1).Let (18) be valid at � = T . Then y y0 > 0 and, according to (8) y y[1] > 0 isvalid in some right neigbourhood of T . Thus, (15) does not hold and it followsfrom Lemma 4(a) that the zeros of y and y[1] , and thus also the zeros of y and y0are separated on J .Let (19) be valid at � = T . Then it follows from (8) and (22) that limt!T+ y[1](t) =limt!T+ y[2](t) = 0 (use L'Hospital rule in the �rst limit if h(T ) = 0). From this (15)does not hold and according to Lemma 4 the zeros of y and y[1], and thus the zerosof y and y0, are separated on J .Finally, suppose, that there exists no � 2 [T;1) for which either (18) or (19)holds, i.e. all zeros of y and y0 are simple on [T;1).If y(T ) 6= 0 and y0(T ) 6= 0 then the statement of the theorem follows fromLemma 4 and (8). In all other possible cases, i.e. if either y(T ) = 0, y0(T ) 6= 0or y(T ) 6= 0, y0(T ) = 0, it is easy to see, using (8), that (15) is not valid andaccording to Lemma 4 the zeros of y and y0 are separated on (T;1).(b) Using Lemma 4 (b) and (20) the zeros of y and y0 are simple and separatedon J and we must only prove that t = T is not multiplied zero of either y or y0.Thus, suppose(23) y0(T ) = 0 :Consider two cases:1� There exists a sequence of zeros of y on J tending to T ;2� y 6= 0 in a right neighbourhood J1 of T .Ad 1�. We prove that this case is impossible. As y(T ) exists we have(24) y(T ) = 0 :Let h1 be a solution of Eq. (5) with the initial condition h1(T ) = 1, h01(T ) < �p(T )3 .Let J2 = [T; �] be such interval that h1(t) > 0 on J2 and�ph1 � 3h01 > 0 on J2 :It is evident, that � > T exists. Then the functionE1 = R(2h1y00y � 2h0y y0 � hy02)



330 MIROSLAV BARTU©EK(see Lemma 2, E = E1, h = h1, � = �1) is nondecreasing on J2.Let �� 2 (T; �] be a zero of y0. Then, according to Lemma 4 (b), (8) and (9)y(�� )y00(�� ) < 0 and thus E1(�� ) < 0. The contradiction to E1(T ) = 0 (see (23),(24)) and E being nondecreasing proves that this case is impossible.Ad 2�. Let y(T ) = y0(T ) = 0, y00(T ) 6= 0. Then (8) yields y y[j] > 0, j = 1; 2 insome right neighbourhood of T and as y y[3] > 0 a.e. on J we can conclude thaty y[1] > 0, j = 1; 2 on J that contradicts to y being oscillatory.Thus, let y0(T ) = y00(T ) = 0. Then, According to (8) (use L'Hospital rule ifh(T ) = 0) we have limt!T+ y[1](t) = 0; limt!T+ y[2](t) = 0 :But Lemma 4 (b) yields y[1] 6= 0, jy[1]j is nonincreasing. A contradiction. �According to Th. 1 an oscillatory solution y may have one interval on whichy is trivial in case r > 0. All other zeros are isolated. But y0 (y00) may have oneinterval of zeros on which y 6= 0 (y 6= 0, y0 6= 0). The following lemma describesconditions, under which such intervals exist.Lemma 5. Let I = [�1; �2], �1 < �2 and let y be a solution of (1) de�ned on I.Then(a) y0 � 0 on I if, and only if y � C and r(t)f(C; 0; 0) = 0 on I.(b) y00 = 0 on I if, and only if constants C and C1 exist such that y = Ct+C1and(25) Cq(t) + r(t)f(Ct +C1; C; 0) = 0 on I :Especially, y 6= 0, y0 = y00 = 0 on I if, and only if y � C 6= 0 and r(t) � 0 on I.Proof follows directly from (1) and (2). �Remark 2. If the Cauchy problem of (1) is unique and if supt2I jr(t)j > 0, then�1 = 0, �2 =1 in case (a).Theorem 2. Let Eq. (5) be nonoscillatory with a solution h > 0 on (T;1),T 2 R+ and let y be an oscillatory solution of (1). Let I2 be de�ned as in Th. 1(a)(let I2 = (T;1)) if r > 0 (r 6 0) on R+. Let �1 and �2 be two consecutive zerosof y on I2, �1 < �2, i.e.y(�1) = y(�2) = 0; y(t) 6= 0 on (�1; �2) :Let y0(�1) 6= 0. Denote by �3 2 (�1; �2) the only zero of y0 on [�1; �2].(i) Let r > 0 and h0 > 0 on [T;1). Then y00 has a zero on [�1; �2] and all zerosof y00 from [�1; �2] are lying on (�1; �3). Moreover, if q > 0, then y00 has the onlyinterval of zeros on (�1; �3).(ii) Let r 6 0 and h0 6 0 on [T;1). Then y00 has a zero on [�1; �2] and all zerosof y00 are lying on (�3; �2). Moreover, if q > 0, then y00 has the only interval of zeroson (�3; �2).Proof. The number �3 exists according to Th. 1.



ON OSCILLATORY SOLUTIONS 331(i) Let for the simplicity y > 0 on (�1; �2). According to Lemma 1 Eq. (1) isequivalent to Eq. (6) and thus it follows from [2, Th. 3] that there exists the onlyinterval [�4; ��4], �4 6 ��4 of zeros of y[2] on [�1; �2] and(26) 8>>>><>>>>: �1 < �4 6 ��4 < �3 < �2 ;y[1] > 0 on [�1; �3) ; y[2] > 0 on [�1; �4) ;< 0 on (�3; �2] ; < 0 on ( ��4; �2] ;y[3] 6 0 on (�1; �2) :Note, that according to (8) y0 and y[1] have the same zeros and the same signs.Using (26) and (9) we have y00(�1) > 0, y00(�2) < 0. Thus, y00 has a zero on[�1; �2]. Moreover, (26) and (9) yieldsign y00(t) = sign y[2](t) on [�1; �4][ [�3; �2]and we can conclude that y00 has all zeros on [�4; �3) � (�1; �3).Further, suppose q > 0. Then according to (9), (8) and (26)(Ry00)0 = y[3]h + Ry[1](h00 + ph0) = y[3]h � qRhy[1] 6 0 a.e. on [�4; �3) :Thus Ry00 is nonincreasing and y00 has the only interval of zeros.(ii) The proof is similar. We must use Th. 6 from [2] instead of Th. 3. �Remark 3. According to Th. 3 the structure of zeros of a solution y and itsderivatives y0 and y00 of (1) is the same as in case p � q � 0, see [1].Remark 4. If (5) is disconjugate, then it has a positive solution on (0;1) andthe conclusions of Ths. 1 and 2 are valid on R+.Corollary 1. Let y be an oscillatory solution of (1).(i) Let either p � 0 and lim supt!1 t2q(t) 2 [�1; 14 ) or q > 0 on R+ and (12) bevalid. Then the zeros of y and y0 are separated in some neighbourhood of 1.(ii) Let q 6 0 and r 6 0 on R+. Then the zeros of y and y0 are separated on(0;1).(iii) Let p > 0, q 6 0 and r > 0 on R+. Let t0 2 R+ be such that(27) �2y00(t0) y(t0) + y02(t0) > 0; y(t0) y0(t0) > 0holds. Then the zeros of y and y0 are simple and separated on [t0;1) \ (0;1).(iv) Let q > 0 and r > 0 on R+ and let (12) be valid. Then there exists T > 0such that for arbitrary consecutive zeros �1 and �2, T 6 �1 < �2 of y the functionsy0 and y00 have the only zero �3 and the only interval [ ��4; �4] of zeros on [�1; �2],respectively, and �1 < ��4 6 �4 < �3 < �2 holds.Proof. (i) See Th. 1 and Lemma 3 (i), (ii).



332 MIROSLAV BARTU©EK(ii) See Th. 1 (b), Lemma 3 (iii) and Remark 4.(iii) It follows from Lemma 3 (iii) that there exists a solution h of (5) such thatthe assumptions of Lemma 2 are ful�lled and h0 > 0 on R+. Let E be given by(11). Then E(t0) > 0. Let I2 and �� be de�ned as in Th. 1(a). Let � be a doublezero of either y or y0. Then E(� ) = 0. As E is nondecreasing, then � < t0 andt0 2 I2. Further, let all zeros of y and y0 are simple on R+. If y(�� )y00(�� ) > 0 thenE(�� ) < 0 and thus �� < t0, t0 2 I2; in the opposite case I2 = (0;1). The conclusionfollows from Th. 1 (a) and Remark 4.(iv) See Th. 2 (i) and Lemma 3 (ii). �Remark 5. (i) Let the assumption of Cor. 1 (iii) be valid. Then there existst0 2 R+ such that (27) holds; t0 can be choosen as an arbitrary simple zero of y.(ii) Cor. 1 extends the results of Ths. A and B. Moreover, Cor. 1 (iii), in fact,generalizes Th. B: Let there exist t0 2 R+ such that y(t0)y00(t0)� 12y02(t0) < 0 isvalid and let t1 > t0 be the �rst simple zero of y y0. Then (27) is valid.Ths. 1 and 2 solve our problem in case that Eq. (5) is nonoscillatory. In theopposite case the transformation, described in Lemma 1, can not be used. Thus,further, let us turn our attention to the case that Eq. (5) may be oscillatory.Lemma 6. Let q 2 C1(R+), � 2 f0; 1g,(28) (�1)�p 6 0; (�1)�r 6 0; (�1)�(q0 + pq) > 0 on R+and y : R+ ! R be a solution of (1). Then the function(29) F (t) = (�1)�R(t) �2y00(t) y(t) � y02(t) + q(t) y2(t)� ; t 2 R+is nondecreasing on R+ andF 0(t) = (�1)�R(t) ��p(t) y02 + (q0(t) + q(t) p(t)) y2��2r(t) y(t) f(y(t); y0(t); y00(t))] > 0(30)holds where R is de�ned by (7).Proof follows by the direct computation from (28) and (2).Theorem 3. Let q 2 C1(R+), � 2 f0; 1g, (28) be valid and let the functions p, rand q0 + pq are not equal to zero on any subinterval of R+ at the same time. Lety be an oscillatory solution of (1).(i) Let � = 0. Then all zeros of y are simple on R+. Moreover, if q > 0 on R+,then all zeros of y0 are simple, too, on R+, and the zeros of y and y0 are separatedon R+.(ii) Let � = 1. Then at most one maximal interval [�1; �2], 0 6 �1 6 �2 < 1exists such that(31) y(t) = y0(t) = 0; t 2 [�1; �2] :If this interval exists and �1 > 0, then y has no zero on [0; �1).



ON OSCILLATORY SOLUTIONS 333(iii) Let � = 1 and q > 0 on R+, � be a simple zero of y. Then all zeros of y0on (�;1) are simple, i.e. the relation(32) y0(�� ) = 0; �� > � ) y00(�� ) 6= 0holds. Moreover, the zeros of y and y0 are separated on (�;1).Proof. First, solve the problem whenF � 0 on [T1; T2]; T1 < T2holds where F is de�ned by (29). In this case, F 0 � 0 and with respect to the factthat all three terms in (30) are nonnegative, we can conclude that they are equalto zero on [T1; T2]. From this and from the assumptions of the theorem(33) y � K = const.; y0 � y00 � 0 on [T1; T2]must be valid.(i) Let, on the contrary, � be a zero of y for which y(� ) = y0(� ) = 0 is valid. Asy is oscillatory, there exists its zero �� greater than � , �� > � , y(�� ) = 0, such that(34) max�6t6�� jy(t)j > 0 :Hence, Lemma 6 yields(35) F (� ) = 0 ;F (��) 6 0 and F is nondecreasing; thus F � 0 on [�; �� ] and (33) holds on [T1; T2] =[�; �� ]. As y(� ) = 0, then K = 0 and y � 0 on [�; �� ]. The contradiction to (34)proves that all zeros of y are simple.Let q > 0 on R+. The conclusion, that all zeros of y0 are simple, can be provedsimilarly to the same result for y. Only F (� ) > 0 must be used instead of (35).Further, let t1 < t2 be two consecutive zeros of y. Then y0 has a zero accordingto the Role's theorem. Let t3 < t4 be two consecutive zeros of y0. Suppose, on thecontrary, that(36) y(t) 6= 0 on [t3; t4] :Let t5 be an arbitrary zero of y greater then t4. As t5 is simple zero, then it followsfrom Lemma 6 that F (t5) < 0 and F is nondecreasing; thusF (t3) < 0; F (t4) < 0and using q > 0 we can concludey00(t3) y(t3) < 0; y00(t4) y(t4) < 0 :
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