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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 335 { 348ON A CRITERION FOR THE EXISTENCE OF AT LEASTFOUR SOLUTIONS OF FUNCTIONAL BOUNDARY VALUEPROBLEMSSvatoslav Stan�ekAbstract. A class of functional boundary conditions for the second orderfunctional di�erential equation x00(t) = (Fx)(t) is introduced. Here F :C1(J) ! L1(J) is a nonlinear continuous unbounded operator. Su�cientconditions for the existence of at least four solutions are given. The proofsare based on the Bihari lemma, the topological method of homotopy, theLeray-Schauder degree and the Borsuk theorem.1. Introduction, notationLet X be the Banach space of continuous functions on a compact interval J =[a; b] with the norm kxk0 = maxfjx(t)j : a � t � bg and L1 (resp. AC1(J); Y)be the Banach space of Lebesgue integrable functions on J (resp. functions withabsolutely continuous derivative on J ; C1-functions on J) with the usual normkxkL1 = R ba jx(t)j dt (resp. kxkAC1 = kxk0+kx0k0+kx00kL1 ; kxk1 = kxk0+kx0k0).Denote by A the set of all functionals % : X! R that are(i) continuous,(ii) %(x) = %(jxj) for x 2 X,(iii) limu2R;u!1 %(u) =1 (we identi�cate the subset of X of constant functions with R)and(iv) x; y 2 X; jx(t)j < jy(t)j for t 2 J ) %(x) < %(y).Set A0 = n% : % 2 A; %(0) = 0o. For any ' : X! R, Im(') denotes the rangeof '.Remark 1. The sets A and A0 were stated on formulations of some functionalboundary value conditions in [17] for the �rst time. Observe that properties (i),(iii) and (iv) of the set A do not imply property (ii) (see Example 3, [17]).1991 Mathematics Subject Classi�cation: 34K10.Key words and phrases: functional boundary conditions, functional di�erential equation,existence, multiplicity, Bihari lemma, homotopy, Leray Schauder degree, Borsuk theorem.Received October 24, 1996.



336 SVATOSLAV STAN�EKExample 1. Let p 2 C0([0;1)) be increasing on [0;1) and limu!1 p(u) = 1:Set %(x) = R ba p(jx(t)j) dt for x 2 X. Then % 2 A. Equation %(x) = A was usedby Brykalov [7] as a boundary condition. Next functionals belonging to the set Acan be given like this:maxnjx(t)j : t 2 J1o; b�Za� q(t)maxfjx(s)j : t � s � b�g dt;minnjx(t)j : t 2 J1o; nXi=1 aijx(ti)j;where J1 � J is a compact interval, a � a� < b� � b, q 2 C0([a�; b�]) positive,ai > 0 for i = 1; 2; :::; n and a � t1 < t2 < � � � < tn � b.Let F : Y ! L1(J) be a continuous operator, !;  2 A. In the present paperwe consider the functional boundary value problem (BVP for short)x00(t) = (Fx)(t);(1) !(x) = A;(2) (x0) = B;(3)where !;  2 A and A;B 2 R.A function x 2 AC1(J) is said to be a solution of BVP (1){(3) if x satis�esboundary conditions (2), (3) and equation (1) is satis�ed for a.e. t 2 J .The aim of this paper is to give su�cient conditions for the existence of at leastfour solutions xi (i = 1; 2; 3; 4) of BVP (1){(3) satisfying the inequalitiesx1(t) > 0; x01(t) > 0; x2(t) > 0; x02(t) < 0;x3(t) < 0; x03(t) > 0; x4(t) < 0; x04(t) < 0(4)for t 2 J . The results are proved by the homotopy, the Leray-Schauder degreetheory and the Borsuk theorem (see, e.g., [8], [11]).We refer that there are many papers devoted to the existence of multiplicityresults for ordinary di�erential equations and functional di�erential equations thathave started by Ambrosetti and Prodi multiplicity results in [1]. A lot of resultshave been obtained for ordinary di�erential equations in [1], [12], [13], [15] andreferences cited therein and others (usually with periodic or Neumann or Dirich-let boundary conditions) and for functional di�erential equations with functionalnonlinear boundary conditions in [5]{[7], [14], [16]{[18] and the references therein.Interesting results for BVPs with �nitely many solutions one can �nd for instancein [4], [9] and [19]. Recall that a nontraditional approach to functional di�erentialequation is given in the remarkable monograph [2].In connection with multiply solutions we refer to Brykalov [5]. His resultsconcern the functional di�erential equation x(n)(t) = (F1x)(t) with functional



SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 337nonlinear boundary conditions. Here F1 : Cn�1(J) ! L1(J) is continuous andbounded. Results are proved by the Schauder �xed point theorem in cones. Fromthe corollary in [5] it follows the following proposition.Proposition 1. Let f satisfy the Carath�eodory conditions on J �R2 andjf(t; u; v)j � �(t)for a.e. t 2 J and each u; v 2 R, where � 2 L1(J). Then BVPx00 = f(t; x; x0); kxk0 = A; kx0k0 = Bhas at least four di�erent solutions provided12 bZa �(t) dt < B; B(b� a)2 < A:In our paper we use the well known Bihari lemma (see, e.g., [3], [10]) in thefollowing form.Lemma 1. (Bihari lemma) Let q 2 L1(J), f : [0;1)! (0;1) be a nondecreasingfunction, 1R0 dtf(t) =1, � 2 J , k 2 R, k � 0. Let w 2 C0(J) satisfy the inequalityjw(t)j � k + ��� tZ� jq(s)jf(jw(s)j) ds���for t 2 J . Then jw(t)j � G�1(G(k) + kqkL1)for t 2 J , where G�1 means the inverse function to G : [0;1)! R,G(u) = uZ0 dsf(s) :(5) 2. LemmasLemma 2. ([17]). Let % 2 A, B 2Im(%). Then(a) x; y 2 X; jx(t)j � jy(t)j for t 2 J ) %(x) � %(y),(b) %(0) � %(x) for x 2 Xand (c) there exists a unique nonnegative constant d such that %(d) = B:



338 SVATOSLAV STAN�EKLemma 3. ([17]) Let % 2 A and %(x) = %(y) for some x; y 2 X. Then there existsa � 2 J such that jx(�)j = jy(�)j.Corollary 1. Let % 2 A0 and %(x) = 0 for an x 2 X. Then there exists a � 2 Jsuch that x(�) = 0.Lemma 4. Let % 2 A and %(x) � %(y) for some x; y 2 X. Then there exists a� 2 J such that jx(�)j � jy(�)j.Proof. Assume, on the contrary, that jx(t)j > jy(t)j for t 2 J . Then %(x) > %(y),a contradiction. �For each % 2 A, de�ne (cf. property (iii) of the set A) q% : [0;1) ! R by theformula q%(c) = %(c):(6)Lemma 5. For each % 2 A, q% is a continuous increasing function mapping [0;1)onto [%(0);1).Proof. By properties (i) and (iv) of the set A, q% is continuous and increasing on[0;1). From (iii) and Lemma 2 it follows that q% maps [0;1) onto [%(0);1). �For each x 2 X, de�ne x+; x� 2 X by the formulasx+(t) = ( x(t) for x(t) � 00 for x(t) < 0; x�(t) = ( 0 for x(t) � 0�x(t) for x(t) < 0:(7)Then x = x+ � x�.For each ' : X! R, de�ne '+; '� : X! R by'+(x) = '(x+); '�(x) = '(x�):Lemma 6. Let % 2 A. Then %+ and %� are continuous functionals.Proof. Let fxng � X be a convergent sequence, limn!1 xn = x. Thenlimn!1(xn)+ = x+; limn!1(xn)� = x�:As % is continuous, we havelimn!1 %+(xn) = limn!1 %((xn)+) = %(x+) = %+(x);and similarly limn!1 %�(xn) = %�(x). �We now state the following important lemma:



SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 339Lemma 7. Let !;  2 A0 and r; k; l; K be positive constants, K > k. Set
 = n(x; �; �) : (x; �; �) 2 AC1(J)�R2; kxk0 < r +K(b� a);kx0k0 < K; kx00kL1 < l; j�j < r +K(b� a); j�j < Ko:Let �i : �
! AC1(J)�R2 (i = 1; 2; 3; 4) be given by�1(x; �; �) = ��+ �(t� a); �+ !(x+)� !(r); � + (x0+)� (k)�;�2(x; �; �) = ��+ �(t� a); �+ !(x+)� !(r); � � (x0�) + (k)�;�3(x; �; �) = ��+ �(t� a); �� !(x�) + !(r); � + (x0+)� (k)�and �4(x; �; �) = ��+ �(t� a); �� !(x�) + !(r); � � (x0�) + (k)�:Then D(I � �i;
; 0) 6= 0 for i = 1; 2; 3; 4:(8)Here "D" denotes the Leray-Schauder degree and I is the identity operator onAC1(J)�R2.Proof. We �rst see that 
 is an open bounded and symmetric with respect to0 2 
 subset of the Banach space AC1(J) �R2 with the usual norm. Moreover,!(r) > 0 and (k) > 0 since ; ! 2 A0 and r > 0; k > 0. Let (for i = 1; 2; 3; 4)Hi : [0; 1]� �
! AC1(J)�R2be de�ned byH1(�; x; �; �) = ��+ �(t� a); �+ !(x+)� !((1� �)x�)� �!(r);� + (x0+)� ((1� �)x0�)� �(k)�;H2(�; x; �; �) = ��+ �(t� a); �+ !(x+)� !((1� �)x�)� �!(r);� � (x0�) + ((1� �)x0+) + �(k)�;H3(�; x; �; �) = ��+ �(t� a); �� !(x�) + !((1� �)x+) + �!(r);� + (x0+)� ((1� �)x0�)� �(k)�;H4(�; x; �; �) = ��+ �(t� a); �� !(x�) + !((1� �)x+) + �!(r);� � (x0�) + ((1� �)x0+) + �(k)�:To prove (8) it is su�cient to show, by the homotopy theory and the Borsuktheorem (see, e.g., [8], [11]), that (for i = 1; 2; 3; 4)



340 SVATOSLAV STAN�EK(a) Hi(0; �; �; �) is an odd operator on �
; that is,Hi(0;�x;��;��) = �Hi(0; x; �; �)for (x; �; �) 2 �
;(b) Hi is a compact operator, and(c) Hi(�; x; �; �) 6= (x; �; �) for (�; x; �; �) 2 [0; 1]� @
.We prove, for instance, D(I ��i;
; 0) 6= 0 for i = 4. The case where i 2 f1; 2; 3gtreats similarly.Fix (x; �; �) 2 �
. ThenH4(0;�x;��;��)= ���� �(t� a);��� !(x+) + !(x�);�� � (x0+) + (x0�)�= ���+ �(t� a); �+ !(x+)� !(x�); � + (x0+)� (x0�)�= �H4(0; x; �; �)since (�u)+ = u� and (�u)� = u+ for any u 2 X. It follows that H4(0; �; �; �) isan odd operator on �
.To prove that H4 is a compact operator, let n��n; xn; �n; �n�o � [0; 1]� �
 bea sequence. Then 0 � �n � 1; kxnk0 � r +K(b � a); kx0nk0 � K; kx00nkL1 � l,j�nj � r + K(b � a) and j�nj � K for n 2 N. By the Bolzano-Weierstrasstheorem and the Arzel�a-Ascoli theorem, there exist subsequences of f�ng, fxng,f�ng and f�ng, which for simplicity of notation we will write f�ng, fxng, f�ngand f�ng again, such that limn!1 �n = �0, limn!1 �n = �0, limn!1 �n = �0(in R) and limn!1 x(i)n = x(i)0 for i = 0; 1 (in X) for some �0; �0; �0 2 R andx0 2 Y. Clearly, limn!1(x(i)n )+ = (x(i)0 )+, limn!1(x(i)n )� = (x(i)0 )� (i = 0; 1) andtherefore limn!1!((xn)�) = !((x0)�), limn!1!((1� �n)(xn)+) = !((1 � �0)(x0)+),limn!1 ((x0n)�) = ((x00)�), limn!1 ((1� �n)(x0n)+) = ((1� �0)(x00)+). Thenlimn!1H4(�n; xn; �n; �n) = H4(�0; x0; �0; �0)in AC1(J)�R2. Moreover, from the continuity of ! and  we deduce that H4 isa continuous operator. Hence H4 is a compact operator.It remains to prove that H4(�; x; �; �) 6= (x; �; �) for each (�; x; �; �) 2 [0; 1]�@
. Assume, on the contrary, thatH4(�0; x0; �0; �0) = (x0; �0; �0)for a (�0; x0; �0; �0) 2 [0; 1]� @
. Thenx0(t) = �0 + �0(t� a) for t 2 J;(9) !((x0)�)� !((1� �0)(x0)+) = �0!(r)(10)



SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 341and ((x00)�)� ((1� �0)(x00)+) = �0(k):(11)The next part of the proof is divided into three steps by the sign of �0.Step 1. Let �0 = 0. Then x0 = �0 by (9), and (11) implies that �0 = 0since (k) > 0 and ((x00)�) = ((1 � �0)(x00)+) = 0. If �0 � 0, then (cf.(10)) !(�0) = 0, and so �0 = 0 by Corollary 1, which contradicts (x0; �0; �0) =(0; 0; 0) 62 @
. If �0 < 0, then (cf. (10)) !(��0) = 0, and consequently (cf. Corol-lary 1) �0 = 0. This again gives (x0; �0; �0) = (0; 0; 0) 62 @
, a contradiction.Step 2. Let �0 > 0. Then (cf. (11))�((1� �0)�0) = �0(k):(i) Assume �0 = 0. Then (�0) = 0, and consequently �0 = 0 by Corollary 1,and so x0 = �0. By (10), !(�0) = 0 independent of the sign of �0. So�0 = 0 and then (x0; �0; �0) = (0; 0; 0), a contradiction.(ii) Assume �0 = 1. Then (k) = 0, a contradiction.(iii) Assume �0 2 (0; 1). Since �0(k) > 0, we have ((1 � �0)�0) < 0, acontradiction.Step 3. Let �0 < 0. Then (cf. (11))(j�0j) = �0(k)and therefore (j�0j) � (k). By Lemma 4 (with % = , x = j�0j, y = k),j�0j � k:(i) Assume x0(t) < 0 on J . By (10),!(�x0) = �0!(r) � !(r)and therefore (cf. Lemma 4 with % = !, x = �x0, y = r) �x0(�) � r fora � 2 J . Hence �0 � ��0(� � a) � r and x0(t) � �0(t � �) � r on J . Sojx0(t)j � j�0jjt��j+r � k(b�a)+r < K(b�a)+r; jx00(t)j = j�0j � k < Kfor t 2 J , j�0j = jx0(a)j < K(b � a) + r; j�0j < K, which contradicts(x0; �0; �0) 2 @
.(ii) Assume x0(t) > 0 on J . By (10),�!((1� �0)x0) = �0!(r):(12)If �0 = 0, then !(x0) = 0, a contradiction. If �0 = 1, then !(r) = 0,a contradiction. So �0 2 (0; 1), and consequently !((1 � �0)x0) > 0,�0!(r) > 0 which contradicts (12).(iii) Assume x0(") = 0 for an " 2 J . Then x0(t) = �0(t � ") and thereforejx0(t)j � j�0j(b� a) � k(b� a) < K(b� a); jx00(t)j = j�0j < K for t 2 J ,j�0j = jx0(a)j < K(b� a); j�0j < K which contradicts (x0; �0; �0) 2 @
.Hence our lemma is proved. �In this paper we assume that the operator F satis�es the following assumption:



342 SVATOSLAV STAN�EK(H) There exist a nonnegative function q 2 L1(J) and a nondecreasing functionf : [0;1)! (0;1) such that 1Z0 dtf(t) =1and j(Fx)(t)j � q(t)f(jx0(t)j) for a.e. t 2 J and each x 2 Y:Consider the functional di�erential equation(13�) x00(t) = �(Fx)(t); � 2 [0; 1]depending on the parameter �.Lemma 8. Let assumption (H) be satis�ed and m 2 R, m � 0. Let u(t) be asolution of (13�) on J with a � 2 [0; 1] and ju0(�)j = m for a � 2 J . Thenku0k0 � G�1(G(m) + kqkL1):If, moreover, u(�) = 0 for a � 2 J , thenkuk0 � (b� a)G�1(G(m) + kqkL1):Here G : [0;1)! [0;1) is de�ned by (5) and G�1 means the inverse function toG.Proof. From the inequalities (for a.e. t 2 J)ju00(t)j = �j(Fu)(t)j � q(t)f(ju0(t)j)and the assumption ju0(�)j = m we obtainju0(t)j � m+ ��� tZ� q(s)f(ju0(s)j) ds��� for t 2 J:By Lemma 1 (with w = u0 and k = m),ju0(t)j � G�1(G(m) + kqkL1) for t 2 J:If u(�) = 0 for a � 2 J , thenju(t)j � ��� tZ� ju0(s)j ds��� � (b� a)G�1(G(m) + kqkL1)for t 2 J . �Corollary 2. Let assumption (H) be satis�ed, �; % 2 J and let u(t) be a solutionof (13�) on J with a � 2 [0; 1] such thatju0(�)j > G�1(kqkL1)(14)



SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 343and ju(%)j > (b� a)G�1(G(ju0(�)j) + kqkL1):(15)Then ju(t)j > 0, ju0(t)j > 0 on J .Proof. Assume u0(�) = 0 for a � 2 J . Then, by Lemma 8 (with m = 0),ku0k0 � G�1(kqkL1) which contradicts (14).Assume u(�) = 0 for a � 2 J . By Lemma 8 (with m = ju0(�)j), kuk0 �(b� a)G�1(G(ju0(�)j) + kqkL1) which contradicts (15). �3. Existence resultsOur existence results are given in two theorems. BVP (1){(3) with !;  2 A0 isconsidered in Theorem 1. For any !;  2 A, a multiplicity result for BVP (1){(3)is obtained in Theorem 2. Recall that G : [0;1) ! [0;1) is de�ned by (5) andq% : [0;1)! R by (6). Let q�1% : [%(0);1)! [0;1) be the inverse function to q%(see Lemma 5).Theorem 1. Let assumption (H) be satis�ed and !;  2 A0. LetB > q(G�1(kqkL1)) and A > q!�(b� a)G�1(G(q�1 (B)) + kqkL1)�:Then any solution of BVP (1){(3) and its derivative do not vanish on J , and thereexist at least four di�erent solutions x1; x2; x3; x4 satisfying (4) for t 2 J .Proof. Fix A; B 2 R,B > q(G�1(kqkL1)); A > q!�(b� a)G�1(G(q�1 (B)) + kqkL1)�:Set k = q�1 (B); r = q�1! (A). Thenk > G�1(kqkL1); r > (b� a)G�1(G(k) + kqkL1):(16)Let u(t) be a solution of BVP (1){(3). Then !(u) = A, (u0) = B, andconsequently (cf. Lemma 3) ju(%)j = r, ju0(�)j = k for some %; � 2 J . Thus (cf.(16)) ju(%)j > (b� a)G�1(G(ju0(�)j) + kqkL1); ju0(�)j > G�1(kqkL1);and so ju(t)j > 0; ju0(t)j > 0 for t 2 J by Corollary 2 (with � = 1). Hence anysolution of BVP (1){(3) and its derivative do not vanish on J .We now show that there exists a solution x1(t) of BVP (1){(3) satisfying theinequalities x1(t) > 0; x01(t) > 0 for t 2 J:(17)Set K = G�1(G(k) + kqkL1) + 1 (> k + 1)



344 SVATOSLAV STAN�EKand
 = n(x; �; �) : (x; �; �) 2 AC1(J)�R2; kxk0 < r +K(b� a);kx0k0 < K; kx00kL1 < f(K)kqkL1 + 1; j�j < r +K(b� a); j�j < Ko:Then 
 is an open bounded subset of AC1(J)�R2. Let the operatorV1 : [0; 1]� �
! AC1(J)�R2be given by the formulaV1(�; x; �; �) = ��+ �(t� a) + � tRa sRa (Fx)(�) d� ds;�+ !(x+)�A; � + (x0+)�B�:Of course, V1(0; x; �; �) = �1(x; �; �) for (x; �; �) 2 �
, where �1 is de�ned inLemma 7 (with r = q�1! (A); k = q�1 (B) and l = f(K)kqkL1 + 1).Consider the operator equation(18�) V1(�; x; �; �) = (x; �; �); � 2 [0; 1];depending on the parameter �. We now show that (181) has a solution. AsD(I � �1;
; 0) 6= 0 by Lemma 7, it is su�cient to verify that (cf., e.g., [8])(a) V1(�; x; �; �) is a compact operatorand(b) V1(�; x; �; �) 6= (x; �; �) for each (�; x; �; �) 2 [0; 1]� @
.From the continuity F; !;  and Lemma 6 we deduce that V1 is a continuousoperator. Let f(�n; xn; �n; �n)g � [0; 1]� �
 be a sequence. We can now proceedanalogously to the proof of Lemma 7. Without restriction of generality we mayassume that the sequences f�ng; f�ng and f�ng are convergent in R and fxngis convergent in Y, say limn!1 �n = �0, limn!1 �n = �0, limn!1 �n = �0and limn!1 xn = x. Then limn!1 Fxn = Fx in L1(J) and limn!1 !((xn)+) =!(x+); limn!1 ((x0n)+) = (x0+). Hence fV1(�n; xn; �n; �n)g is convergent andlimn!1V1(�n; xn; �n; �n) = ��0 + �0(t� a) + �0 tRa sRa (Fx)(�) d� ds;�0 + !(x+)�A; �0 + (x0+)�B�:So V1 is a compact operator.To prove property (b) of V1 we assume, on the contrary, thatV1(�0; x0; �0; �0) = (x0; �0; �0)(19)for a (�0; x0; �0; �0) 2 [0; 1]� @
. Thenx0(t) = �0 + �0(t� a) + �0 tZa sZa (Fx0)(�) d� ds for t 2 J;(20)



SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 345!((x0)+) = !(r) (= A)(21)and ((x00)+) = (k) (= B):(22)By (20), x0(t) is a solution of (13�0) and x0(�) = (x0)+(�) = r, x00(�) = (x00)+(�) =k for some �; � 2 J by (21), (22) and Lemma 3. Hence, (cf. (16))x00(�) > G�1(kqkL1); x0(�) > (b� a)G�1(G(x00(�)) + kqkL1);and consequently x0(t) > 0; x00(t) > 0 for t 2 J by Corollary 2 (with � = �0).Moreover,x00(t) � k + �0��� tZ� (Fx0)(s) ds��� � k + ��� tZ� q(s)f(x00(s)) ds��� for t 2 J:Lemma 1 shows thatx00(t) � G�1(G(k) + kqkL1) < K for t 2 J:From the last inequality we deduce thatx0(t) � r + ��� tZ� x00(s) ds��� < r +K(b� a)for t 2 J . Moreover,kx000kL1 = �0 bZa j(Fx0)(t)j dt � bZa q(t)f(x00(t)) dt � f(K)kqkL1 < f(K)kqkL1 + 1:Since �0 = x0(a); �0 = x00(a), we have0 < �0 < r +K(b� a); 0 < �0 < K:Thus (x0; �0; �0) 62 @
, a contradiction.We have proved that the operator equation (181) has a solution, say (x1; �1; �1).Then x1 is a solution of (1) satisfying boundary conditions!((x1)+) = A; ((x01)+) = B:Since (x1)+(�) = r and (x01)+(�) = k for some �; � 2 J by Lemma 3, Corollary 2shows that x1(t) > 0 and x01(t) > 0 on J ; hence !(x1) = A; (x01) = B.If the operatorsV2(�; x; �; �) = ��+ �(t� a) + � tRa sRa (Fx)(�) d� ds;�+ !(x+)�A; � � (x0�) +B�;



346 SVATOSLAV STAN�EKV3(�; x; �; �) = ��+ �(t� a) + � tRa sRa (Fx)(�) d� ds;�� !(x�) +A; � + (x0+)�B�;V4(�; x; �; �) = ��+ �(t� a) + � tRa sRa (Fx)(�) d� ds;�� !(x�) +A; � � (x0�) +B�are considered on the set [0; 1] � �
 instead of V1(�; x; �; �), one can prove theexistence of solutions x2(t); x3(t) and x4(t) of BVP (1){(3) satisfying on J theinequalitiesx2(t) > 0; x02(t) < 0; x3(t) < 0; x03(t) > 0; x4(t) < 0; x04(t) < 0: �Theorem 2. Let assumption (H) be satis�ed and !;  2 A. LetB > q(G�1(kqkL1)) and A > q!�(b� a)G�1(G(q�1 (B)) + kqkL1)�:Then the conclusion of Theorem 1 holds.Proof. Fix B > q(G�1(kqkL1)) and A > q!�(b� a)G�1(G(q�1 (B)) + kqkL1)�and set �!(x) = !(x) � !(0); �(x) = (x) � (0) for x 2 X. Then �!; � 2 A0.Consider equation (1) subject to the boundary conditions�!(x) = A� !(0); �(x) = B � (0):(23)Obviously, B � (0) > q�(G�1(kqkL1));A� !(0) > q�!�(b� a)G�1(G(q�1� (B � (0))) + kqkL1)�:Applying Theorem 1 to BVP (1), (23), any solution of BVP (1), (23) and itsderivative do not vanish on J and there exist at least four solutions xi (i =1; 2; 3; 4) satisfying inequalities (4). Since x(t) is a solution of BVP (1){(3) if andonly if that is a solution of BVP (1), (23), our theorem is proved. �Example 2. Consider the functional di�erential equationx00(t) = (F1x)(t) + (F2x)(t)g(x0(t));(24)where F1; F2 : Y ! L1(J) are continuous, jg(v)j � jvj for v 2 R, j(F1x)(t)j ��q(t), j(F2x)(t)j � �q(t) for each x 2 Y and a.e. t 2 J , where �; � are positiveconstants, q 2 L1(J) and kqkL1 = b� a. Then (24) satis�es assumption (H) withf(u) = �+�u; u 2 [0;1): Clearly, G(u) = 1� ln(1+ �u� ); G�1(u) = �� (e�u� 1) foru 2 [0;1). Consider, for instance, the boundary conditionskxk0 = A; kx0k0 = B(25)



SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 347or bZa jx(t)j dt = A; minfjx0(t)j : t 2 Jg = B(26)or jx(�)j = A; bZa p1 + (x0(t))2 dt = B;(27)where � 2 J . Set!1(x) = 1(x) = kxk0; !2(x) = bZa jx(t)j dt; !3(x) = jx(�)j;2(x) = minfjx(t)j : t 2 Jg; 3(x) = bZa p1 + (x(t))2 dtfor x 2 X. Then !i; i 2 A for i = 1; 2; 3 and q!1(c) = q!3(c) = q1(c) = q2(c) =c, q!2(c) = (b � a)c; q3(c) = (b � a)p1 + c2 for c 2 [0;1). Of course, boundaryconditions (25) or (26) or (27) we can write in the form !1(x) = A; 1(x0) = Bor !2(x) = A; 2(x0) = B or !3(x) = A; 3(x0) = B. By Theorem 2 (withFx = F1x + g(x0)F2x; ! = !i and  = i; i = 1; 2; 3), any solution of BVP (24),(j) (j = 25; 26; 27) and its derivative do not vanish on J , and there exist at leastfour solutions x1; x2; x3; x4 satisfying (4) providedB > ���e�(b�a) � 1�; A > �(b�a)� ��1 + �B� �e�(b�a) � 1�for BVP (24); (25);B > ���e�(b�a) � 1�; A > �(b�a)2� ��1 + �B� �e�(b�a) � 1�for BVP (24); (26);and B > (b� a)r1 + ����e�(b�a) � 1��2;A > �(b�a)� ��1 + ��q( Bb�a )2 � 1�e�(b�a) � 1�for BVP (24); (27):
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