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ON A CRITERION FOR THE EXISTENCE OF AT LEAST
FOUR SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE
PROBLEMS

SVATOSLAV STANEK

ABSTRACT. A class of functional boundary conditions for the second order
functional differential equation z'/(t) = (Fz)(t) is introduced. Here F :
CY(J) — Li(J) is a nonlinear continuous unbounded operator. Sufficient
conditions for the existence of at least four solutions are given. The proofs
are based on the Bihari lemma, the topological method of homotopy, the
Leray-Schauder degree and the Borsuk theorem.

1. INTRODUCTION, NOTATION

Let X be the Banach space of continuous functions on a compact interval J =
[a,b] with the norm ||z|lo = max{|z(t)| : a« < ¢t < b} and L; (resp. AC'(J);Y)
be the Banach space of Lebesgue integrable functions on J (resp. functions with
absolutely continuous derivative on J; C'-functions on J) with the usual norm

b
lzllz, = [, lz@®)] dt (resp. |zl acr = [lello+1a"llo + 2"z, llzlh = llzllo+ l2"[lo)-
Denote by A the set of all functionals ¢ : X — R that are
(i) continuous,
(i) ofx) = o(|z]) for = € X,

(iii) lim  o(u) = 0o (we identificate the subset of X of constant functions with R)
u€ER,u—00

and
(iv) z,y € X, |z(t)| < |y(#)| for t € J = o(z) < o(y).

Set Ay = {Q c0€ A, 0(0) = 0}. For any ¢ : X — R, Im(p) denotes the range
of .

Remark 1. The sets A and Ay were stated on formulations of some functional
boundary value conditions in [17] for the first time. Observe that properties (i),
(iii) and (iv) of the set .4 do not imply property (ii) (see Example 3, [17]).
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Example 1. Let p € C°(]0,00)) be increasing on [0, 00) and lim,, p(u) = oo.
Set o(z) = f;p(|at(t)|) dt for x € X. Then ¢ € A. Equation o(z) = A was used
by Brykalov [7] as a boundary condition. Next functionals belonging to the set A
can be given like this:

b

mmﬁmnpteh}, /ﬂnmuﬂm@ptgsgbﬂm,

a*

n
mm“ﬂﬂhteﬁ}, 3 aile(ts)l,
i=1
where J; C J is a compact interval, a < a* < b* < b, ¢ € C°([a*, b*]) positive,
a; >0fori=1,2,...,nand a <t; <ty <---<t, <bh.
Let F: Y — Lyi(J) be a continuous operator, w, v € A. In the present paper
we consider the functional boundary value problem (BVP for short)

(1) ' (t) = (Fz)(t),
(2) w(z) = 4,
(3) ’Y(xl) = B,

where w, v € Aand A,B € R.

A function z € AC(J) is said to be a solution of BVP (1)—(3) if z satisfies
boundary conditions (2), (3) and equation (1) is satisfied for a.e. t € J.

The aim of this paper is to give sufficient conditions for the existence of at least
four solutions z; (i = 1,2,3,4) of BVP (1)-(3) satisfying the inequalities

z1(t) > 0, i (t) > 0; x2(t) >0, z5(t) < 0;
(4) x3(t) <0,  ah(t) >0; m4(t) <0, z)(t) <0

for t € J. The results are proved by the homotopy, the Leray-Schauder degree
theory and the Borsuk theorem (see, e.g., [8], [11]).

We refer that there are many papers devoted to the existence of multiplicity
results for ordinary differential equations and functional differential equations that
have started by Ambrosetti and Prodi multiplicity results in [1]. A lot of results
have been obtained for ordinary differential equations in [1], [12], [13], [15] and
references cited therein and others (usually with periodic or Neumann or Dirich-
let boundary conditions) and for functional differential equations with functional
nonlinear boundary conditions in [5]-[7], [14], [16]-[18] and the references therein.
Interesting results for BVPs with finitely many solutions one can find for instance
in [4], [9] and [19]. Recall that a nontraditional approach to functional differential
equation is given in the remarkable monograph [2].

In connection with multiply solutions we refer to Brykalov [5]. His results
concern the functional differential equation z(™(t) = (Fyz)(t) with functional
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nonlinear boundary conditions. Here F; : C" *(J) — Ly(J) is continuous and
bounded. Results are proved by the Schauder fixed point theorem in cones. From
the corollary in [5] it follows the following proposition.

Proposition 1. Let f satisfy the Carathéodory conditions on J x R* and
£ (t,u,0)] < aft)
for a.e. t € J and each u,v € R, where a. € L1(J). Then BVP
o' =f(t,z,a"), |lallo=A, [la'llo=B

has at least four different solutions provided

b

%/a(t)dt<B,

@

Blb=a) g4

In our paper we use the well known Bihari lemma (see, e.g., [3], [10]) in the
following form.

Lemma 1. (Bihari lemma) Let g € Ly(J), f : [0,00) — (0,00) be a nondecreasing
function, [ % =00, £€J, k€ R, k>0. Let we C°(J) satisfy the inequality
0

w ] < k+ | [ a1 ds
3

fort € J. Then
lw(t)] < GG (k) + llqllz,)

for t € J, where G~ means the inverse function to G : [0, ) = R,

u

ds
0
2. LEMMAS

Lemma 2. ([17]). Let ¢ € A, B €Im(p). Then

(@) z,y € X, |z()] < [y(t)] fort € J = o(z) < o(y),
(b) 0(0) < o(x) forz € X

and

(c) there exists a unique nonnegative constant d such that o(d) = B.
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Lemma 3. ([17]) Let 0 € A and o(z) = o(y) for some x,y € X. Then there exists
a & € J such that |z(€)| = |y(€)].

Corollary 1. Let 9 € Ag and o(x) = 0 for an x € X. Then there exists a £ € J
such that z(§) = 0.

Lemma 4. Let 9 € A and o(z) < o(y) for some z,y € X. Then there exists a
€ € J such that 2(£)] < y()].

Proof. Assume, on the contrary, that |z(t)| > |y(t)| for ¢ € J. Then o(z) > o(y),
a contradiction. O

For each ¢ € A, define (cf. property (iii) of the set A) g, : [0,00) = R by the
formula

(6) q,(c) = o(c).-
Lemma 5. For each ¢ € A, q, is a continuous increasing function mapping [0, o)

onto [0(0), c0).

Proof. By properties (i) and (iv) of the set A, g, is continuous and increasing on
[0, 00). From (iii) and Lemma 2 it follows that g, maps [0, c0) onto [0(0), 00).

O
For each x € X, define z, x_ € X by the formulas
z(t) for z(t) >0 0 for z(t) > 0
(M) ap ()= x_(t) =
0 for z(t) < 0, —z(t) for z(t) < 0.
Then z =z —2_.
For each ¢ : X — R, define ¢4, p_ : X = R by
i) =p(zy), @ (2)=p(z).
Lemma 6. Let o € A. Then g4 and g_ are continuous functionals.
Proof. Let {z,,} C X be a convergent sequence, lim,,_,~, z,, = . Then
nlgnéo(xn)+ =y, nlgrréo(xn), =z_.
As p is continuous, we have
lim o4(z,) = lim o((zn)+) = o(z+) = 0+ (),
n—oo n—oo
and similarly lim,,_,~ 0—(z,) = 0—(2). O

We now state the following important lemma:
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Lemma 7. Let w,y € Ay and r, k, I, K be positive constants, K > k. Set
0 = {@a,8): (#.0,8) € AC () x R, |lally < 7 + K(b— a),
lz'llo < K, |lz"llz, <1, |e| <7+ K(b—a), || <K}
LetT; :  — AC'(J) x R? (i =1,2,3,4) be given by

Iy (z,a,8) = (a-{—ﬁ(t—a), a+w(ry) —w(r), 8+

Dy(z,0,8) = (@4 B(t —a), a +w(zy) —w(r), B —7(z

v ~ . v v

and

Ti(e,0,8) = (a+B(t - a), @ —wle ) +w(r), - (@
Then
(8) D(I-T;,Q,0)#0 fori=1,23,4.

Here ”D” denotes the Leray-Schauder degree and I is the identity operator on
AC'(J) x R?.

Proof. We first see that (2 is an open bounded and symmetric with respect to
0 € Q subset of the Banach space AC'(J) x R? with the usual norm. Moreover,
w(r) > 0 and y(k) > 0 since y,w € Ag and r > 0, k > 0. Let (fori =1, 2, 3, 4)

H;:[0,1] x Q@ = AC'(J) x R?
be defined by

Hi(\z,08) = (a+B8(t-a)a+wlz)-w((l-Na) = \o(r),
B+(at) = (1= Nal) = My (k)),
Hy(\z,08) = (a+8t—a)a+wle)—w((l - Nao) = (),
8@ ) + (1= Nat) + (k) )
Hy(\z,a,8) = (a+ﬂ(t—a),a—w(x_)+w((1—/\)x+)+)\w(r),
B+9) = (1= Nal) = (k)
Hi(\z,a,8) = (a+ﬂ(t—a),a—w(x_)+w((1—/\)x+)+)\w(r),

8= y(@l) + (L= Nal) + M (k).

To prove (8) it is sufficient to show, by the homotopy theory and the Borsuk
theorem (see, e.g., [8], [11]), that (for i =1, 2, 3, 4)
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(a) H;(0,-,-,-) is an odd operator on ; that is,

Hl(07 —T, —Q, _ﬁ) = —Hi(O,.fE,Oé,ﬁ)

for (z,a,8) € Q,
(b) H; is a compact operator, and
(c) Hi(\z,a,8) # (z,, B) for (A, z,a, 8) € [0,1] x 0.
We prove, for instance, D(I —T';,Q,0) # 0 for i = 4. The case where i € {1, 2, 3}
treats similarly.
Fix (z,a,) € Q. Then

Hy4(0, -z, —a, —f3)
= (~a=B(t - a),—a — wizy) +w(z ), B - y(z}) + (L))

= —(a+B(t - a),0 +wlas) —wlz-), B +(}) = (L))
= —H4(0,z,q, )

since (—u)+ = u— and (—u)- = uy for any u € X. It follows that H4(0,-,-,-) is
an odd operator on ).
To prove that Hy is a compact operator, let {()\n,xn,an,ﬁn)} C [0,1] x Q be
a sequence. Then 0 < A\, < 1, ||lzpllo S 7+ K(b —a), ||z)ll0 < K, |20, <1,
lan| < 7+ K(b —a) and |8,] < K for n € N. By the Bolzano-Weierstrass
theorem and the Arzela-Ascoli theorem, there exist subsequences of {A\,}, {zn},
{an} and {B,}, which for simplicity of notation we will write {\,}, {zn}, {an}
and {f,} again, such that lim, . A, = Ag, lim, o0 @, = ag, lim, o0 B, = Bo
(in R) and lim,,_, a:gf) = a:(()l) for i = 0,1 (in X) for some Ag, apg, fo € R and
2o € Y. Clearly, lim (z\); = (z{)4, lim =) = @)~ (i = 0, 1) and
n—oo n—oo
therefore lim w((z,)-) = w((zo)-), lim w((1 = A,)(xn)+) = w((1 — Xo)(z0)+),
n— 00 n—00
!
0

Tim () ) = 7((@h)-), Tim A((1 = An)(h) 1) = 7(1~ do)(zh)+4). Then

lim Hy(An, Zn, 0, Bn) = Ha(Xo, %o, o, Bo)

n—o0

in AC"(J) x R?. Moreover, from the continuity of w and v we deduce that Hy is
a continuous operator. Hence H, is a compact operator.

It remains to prove that Hy()\, z,, 8) # (2, «, 3) for each (A, z,,3) € [0, 1] x
0. Assume, on the contrary, that

Hy(Xo, 7o, an, Bo) = (o, o, Po)
for a (Ao, xo, a0, Bo) € [0,1] x 0. Then

(9) zo(t) = ap + Po(t —a) forte J,

(10) w((zo)-) —w((1 = Ao)(w0)+) = Aow(r)
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and

(11) Y((x5)-) = 7((L = o) (20)+) = Aov(k).

The next part of the proof is divided into three steps by the sign of Sy.

Step 1. Let By = 0. Then zy = ag by (9), and (11) implies that A\g = 0
since y(k) > 0 and y((z()-) = v((1 — Xo)(z()+) = 0. If ap > 0, then (cf.
(10)) w(ap) = 0, and so ag = 0 by Corollary 1, which contradicts (xo, ao, Bo) =
(0,0,0) € 09. If ap < 0, then (cf. (10)) w(—ap) = 0, and consequently (cf. Corol-
lary 1) ap = 0. This again gives (o, ag, o) = (0, 0, 0) & 91, a contradiction.

Step 2. Let By > 0. Then (cf. (11))

=v((1 = Ao)Bo) = Aoy ().

(i) Assume \g = 0. Then v(8p) = 0, and consequently 3y = 0 by Corollary 1,
and so o = ap- By (10), w(ap) = 0 independent of the sign of ag. So
ap = 0 and then (zg, ag, Bo) = (0, 0, 0), a contradiction.

(ii) Assume A9 = 1. Then (k) = 0, a contradiction.

(iii) Assume X\o € (0,1). Since Agy(k) > 0, we have y((1 — Xo)fBo) < 0, a
contradiction.

Step 3. Let By < 0. Then (cf. (11))

Y(|Bol) = Aoy (k)
and therefore v(|Go|) < v(k). By Lemma 4 (with ¢ =, z = |fo|, y = k),

8ol < k.
(i) Assume z((t) < 0 on J. By (10),
w(—xz) = Aw(r) < w(r)

and therefore (cf. Lemma 4 with ¢ = w, x = —x9, y = 1) —z0(§) < r for
a e J. Hence ag > —fBo(€§ —a) —r and xo(t) > Bo(t — &) —r on J. So
[mo()] < |Bollt—E&l+r < k(b—a)+r < K(b—a)+r, |zg(t)] = [Bo| <k < K
for t € J, |ag| = |zo(a)] < K(b—a)+r, |Bo] < K, which contradicts
(o, 0, o) € 0N

(ii) Assume z((t) > 0 on J. By (10),

(12) —w((1 = Xo)zo) = Aow(r).

If Ag = 0, then w(zg) = 0, a contradiction. If \g = 1, then w(r) =
a contradiction. So Ag € (0,1), and consequently w((1 — Xo)zo) >
Aow(r) > 0 which contradicts (12).
(iii) Assume zo(¢) = 0 for an € € J. Then z0(t) = Bo(t — €) and therefore
[20(D)] < 1ol (b — a) < k(b — ) < K(b—a), |h(t)] = || < K for t € J,
lao| = |zo(a)| < K(b— a), |Bo| < K which contradicts (zg, g, 80) € 0.
Hence our lemma is proved. a

0,
0,

In this paper we assume that the operator F' satisfies the following assumption:
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(H) There exist a nonnegative function ¢ € L; (J) and a nondecreasing function
f:10,00) = (0,00) such that

[

[(Fz)(t)] < q(t)f(|2'(t)]) for ae.t € Jandeachz €Y.

and

Consider the functional differential equation
(13x) a"(t) = A(Fz)(t), A€[0,1]
depending on the parameter \.

Lemma 8. Let assumption (H) be satisfied and m € R, m > 0. Let u(t) be a
solution of (13)) on J with a A € [0,1] and |u'(v)| =m for av € J. Then

lu'llo < GTHG(m) + lldllzy)-
If, moreover, u(t) =0 for a T € J, then
[ullo < (b—a)G™HG(m) + llgllr.)-

Here G : [0, 00) — [0, 00) is defined by (5) and G~ means the inverse function to
G.

Proof. From the inequalities (for a.e. t € J)

" (®)] = A(Fu)(®)] < q(t)f(lu'(£)])

and the assumption |u'(v)| = m we obtain
|u! (¢ |<m+‘/ )ds| fort e J.

By Lemma 1 (with w = u’ and k = m),
W' ()] < GTHG(m) + llgllz,) fort € J.
If u(t) =0 for a 7 € J, then

u®)] < | [ 10l ds| < 0~ )G Glm) + lals,)

fort € J. O

Corollary 2. Let assumption (H) be satisfied, £, ¢ € J and let u(t) be a solution
of (13y) on J with a A € [0,1] such that

(14) W' () > G (llallz,)
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and

(15) (o)l > (b= a)GH(G(lu'(§)]) + llallz,)-
Then |u(t)] > 0, |u'(t)] > 0 on J.

Proof. Assume u'(v) = 0 for a v € J. Then, by Lemma 8 (with m = 0),
llv'|lo < G71(Jlg||,) which contradicts (14).
Assume u(d) = 0 for a 6 € J. By Lemma 8 (with m = |u/(&)]), |Jullo <
(b—a)G7H(G(|u'(&)]) + |lgl|lz,) which contradicts (15). O
3. EXISTENCE RESULTS

Our existence results are given in two theorems. BVP (1)—(3) with w, v € Ap is
considered in Theorem 1. For any w, v € A, a multiplicity result for BVP (1)—(3)
is obtained in Theorem 2. Recall that G : [0,00) — [0, 00) is defined by (5) and
g : [0,00) = R by (6). Let ¢, : [0(0),00) — [0,00) be the inverse function to g,
(see Lemma 5).

Theorem 1. Let assumption (H) be satisfied and w, v € Ag. Let

B> q,(G (lallz,)) and A > q,((b- )G (G(a5"(B)) + llallz.)).

Then any solution of BVP (1)—(3) and its derivative do not vanish on J, and there
exist at least four different solutions 1, 2, T3, x4 satisfying (4) for t € J.

Proof. Fix A, B € R,
B> 0,0 (). 4> a0 ((b- G (Ga; (B) +ligls,))-
Set k = ¢;'(B), r = q;'(A). Then

(16) k>G lallz,), > (b—a)GTHG(KE) + llallz,)-

Let u(t) be a solution of BVP (1)—(3). Then w(u) = A, v(u') = B, and
consequently (cf. Lemma 3) |u(p)| = r, |u'(§)| = k for some o, & € J. Thus (cf.

(16))
lu(@) > (b= a)GHG (W' () + llallz,), W' ()] > G (llallz,),

and so |u(t)| > 0, |u'(t)] > 0 for ¢ € J by Corollary 2 (with A = 1). Hence any
solution of BVP (1)—(3) and its derivative do not vanish on J.

We now show that there exists a solution z;(t) of BVP (1)—(3) satisfying the
inequalities

(17) z1(t) >0, z(t) >0 forteJ

Set,
K=G""Gk)+|lglle,)+1 (> k+1)
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and

0 = {@aB): (0,8 € AC () x R?, |lally < 7+ K(b - a),

l&"lo < K [le" |z, < FE)lgllz, +1, |of <7+ K(b—a), 6] < K}
Then € is an open bounded subset of AC"(.J) x R?. Let the operator
Vi :[0,1] x Q = AC'(J) x R?
be given by the formula
Vil\,z,a,8) = (a+ﬂ(t—a +)\ff Fz)(r) dr ds,

a+w(z+)—A,ﬂ+7( +)—B).

Of course, V1(0,z,a,83) = 'y (z, a,ﬂ) for (x @ ﬁ) € Q, where T'; is defined in
Lemma 7 (with r = ¢;*(A), k = ¢;'(B) an FE)gllz, + 1)

Consider the operator equation
(18x) Vil z, 0, 8) = (z,0,8), A€0,1],

depending on the parameter \. We now show that (18;) has a solution. As
D(I —T1,9,0) # 0 by Lemma 7, it is sufficient to verify that (cf., e.g., [8])

(a) Vi(A\,z,a, B) is a compact operator
and

(b) Vi 2,0, 8) # (2,a, ) for each (A, 2, B) € [0,1] x 2.
From the continuity F, w,y and Lemma 6 we deduce that V; is a continuous
operator. Let {(An, Zn,an,Bn)} C [0,1] x Q be a sequence. We can now proceed
analogously to the proof of Lemma 7. Without restriction of generality we may
assume that the sequences {\,}, {a,} and {B,} are convergent in R and {z,}
is convergent in Y, say lim, ,.o A, = Ao, lim, ooy = ap, lim,o0 B = Bo
and lim,,—, o , = . Then lim,,_,o, F'z,, = Fz in Li(J) and lim,, o w((zy)+) =
w(zy), limy oo v((2),)1) = 7(xl+) Hence {Vi(An, Zn,@n, Br)} is convergent and

lim Vi (Ap, T, an, Bn) = (ao-i-ﬁo(t—a +)\0ff (Fz)(7) dr ds,

n—oo a a
ap +w(zy) — A, fo+ () — B).

So V1 is a compact operator.
To prove property (b) of V; we assume, on the contrary, that

(19) Vi(Xo, o, 0, Bo) = (2o, a0, Bo)
for a (Mo, o, 2o, Bo) € [0, 1] x 0. Then

(20) zo(t) = ag + Polt — a) + Ao / / (Fao)(r)drds forte
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(21) w((wo)+) = w(r) (= A)
and
(22) v((z5)+) = v(k) (= B).

By (20), zo(t) is a solution of (13y,) and z¢(§) = (z0)+(§) =7, 2((1) = (2()+(1) =
k for some &, 7 € J by (21), (22) and Lemma 3. Hence, (cf. (16))

zo(r) > G (lldllz,), 20(€) > (b—a)G™ (G (5(7)) + llallLy),

and consequently xo(t) > 0, z{(t) > 0 for ¢ € J by Corollary 2 (with A = X).
Moreover,

<k+)\g‘/Fx0 ds‘<k+‘/ ) ds| forte ..

Lemma 1 shows that
zh(t) < G HG(k) + lglln,) < K for t € J.

From the last inequality we deduce that
xo(t) <r+ ‘/:Uf)(s)ds‘ <r+K(-a)

for t € J. Moreover,

b b

12611z, = Ao / |(F'zo) (#)] dt < /Q(t)f(wb(t))dt < FE)lllz, < FE)Ngllz, + 1.

a a
Since ag = zg(a), Bo = x((a), we have
O<ap<r+K(b-a), 0<p <K.

Thus (o, ag, Bo) & 9N, a contradiction.
We have proved that the operator equation (18;) has a solution, say (z1, a1, 51)-
Then z; is a solution of (1) satisfying boundary conditions

w((w1)4) =4, 2((@h)4) = B.

Since (z1)4(§) = r and (z})+(r) = k for some &, 7 € J by Lemma 3, Corollary 2
shows that z1(¢t) > 0 and 2/ (¢) > 0 on J; hence w(z;) = A, y(z}) = B.
If the operators

V(A z,0,0) = (a+ﬁ(t—a+>\ffo )dr ds,

a a

at+w(zy)— A, B—v(") +B),
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Vs(\,z,a,8) = (a+ﬂ(t—a)+)\ftf(F:U)(T)des,

a-w( )+ 4, B+(}) - B),

Vil\, z,a,8) = (a+ﬂ(t—a)+)\ftf(F:U)(T)des,
a—w(z )+ 4, By ) +B)

are considered on the set [0,1] x Q instead of Vi (\,z,a, 3), one can prove the
existence of solutions x»(t), z3(t) and z4(t) of BVP (1)-(3) satisfying on J the
inequalities

zo(t) >0, z5(t) <0; w3(t) <0, z5(t) > 0; z4(t) <0, 24(¢) <O0. O

Theorem 2. Let assumption (H) be satisfied and w, v € A. Let

B> (@ (lallz.)) and 4> g, (- )G (Glay" (B) + lallz.)).
Then the conclusion of Theorem 1 holds.

Proof. Fix B > ¢,(G(lgllz,)) and A > 4. ((b— )G~ (G5 (B) + lalz))
and set w(z) = w(z) — w(0), ¥(z) = v(z) — v(0) for z € X. Then @, 5 € Ayp.
Consider equation (1) subject to the boundary conditions

(23) o(r) = A-w(0), (=) =B-70).

Obviously,
B —~(0) > ¢5(G™ (llallz,)),

A=w(0) > g5 (0 - )G (Glaz (B = 1(0)) + alz))-

Applying Theorem 1 to BVP (1), (23), any solution of BVP (1), (23) and its
derivative do not vanish on J and there exist at least four solutions z; (i =
1, 2, 3, 4) satisfying inequalities (4). Since z(t) is a solution of BVP (1)—(3) if and
only if that is a solution of BVP (1), (23), our theorem is proved. O

Example 2. Consider the functional differential equation

(24) 2"(t) = (Fiz)(t) + (Fax)(t)g(2' (1)),

where Fy, F; : Y — L;(J) are continuous, |g(v)| < |v| for v € R, [(Fiz)(t)] <
aq(t), |(Faz)(t)| < Bq(t) for each z € Y and a.e. t € J, where a, § are positive
constants, ¢ € L1(J) and ||g||z, = b — a. Then (24) satisfies assumption (H) with
f(u) = a+Bu, u € [0,00). Clearly, G(u) = 5 In(1+ Buy G (u) = 3(eP* —1) for
u € [0,00). Consider, for instance, the boundary conditions

(25) lzllo = A, llz'llo = B
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b
(26) / |z(t)|dt = A, min{|z'(¢)]:t€ J} =B
or
b
(27) ()] = A, / T+ (@) dt = B,

where £ € J. Set

wi(z) = n(x) = ||zflo, wa(x) = /Iw(t)ldt, wa(x) = [z (&)];

a

Yo(z) = min{|z(t)| : t € T}, 3(x / ST @) dt

a

for z € X. Then w;, v, € Afori =1, 2, 3 and qu, (¢) = qu, (€) = ¢4, (¢) = ¢y, (c) =
€y Quy(c) = (b—a)c, gy (c) = (b—a)V1+ ¢ for ¢ € [0,00). Of course, boundary
conditions (25) or (26) or (27) we can write in the form w,(z) = 4, 71 (z') = B
or we(z) = A, y(z') = B or ws(x) = A, v3(¢') = B. By Theorem 2 (with
Fr=Fuz+g(x)Fr,w=uw; and vy =1, i =1, 2, 3), any solution of BVP (24),
(G) (j = 25, 26, 27) and its derivative do not vanish on J, and there exist at least
four solutions z1, 2, x3, x4 satisfying (4) provided

B> §(ef00 — 1), 4> etz ((14 88)ei0-0) 1)

for BVP (24), (25),

B>%(eﬁ<bw>_1), A> olboal ((1+BB)eﬁ<b a>_1)
for BVP (24), (26),

and

b—a\/1+
((1+

(1)
\/(_7_1),3% a) _ 1)

for BVP (24), (27).

el —/—~
R
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