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Abstract. The paper presents overview of applications of A. M. Lyapu-
nov’s direct method to stability investigation of systems with argument
delay. Methods of building Lyapunov-Krasovskiy funcionals for linear sys-
tems with constant coefficients are considered. Lyapunov quadratic forms
are used to obtain applicable methods for stability investigation and es-
timation of solution convergence for linear stationary systems, as well as
non-linear control systems and systems with quadratic and rational right
hand sides.
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1 Introduction

The present paper is aimed at investigation of systems with deviating argument
of delay type. The investigation is carried out using the second Lyapunov method.
The following differential system with delay is considered

ẋ(t) = f(x(t), x(t − τ)), τ > 0 . (1)

Suppose that x(t) ≡ 0 is a solution of system (1), i.e. f(0, 0) ≡ 0.
As opposed to ODE’s, for which the Cauchy problem consists of finding a

solution passing through the given point, equations with delay have an initial
function. Thus, for (1) the Cauchy problem consists of finding a solution x(t) that
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satisfies the initial condition x(t) ≡ ϕ(t), −τ ≤ t ≤ 0, where ϕ(t) is a given
initial function. Therefore, initial perturbations of the function ϕ(t), −τ ≤ t ≤ 0
are required to be small according to the definition of stability.

Definition 1. The solution x(t) ≡ 0 of system (1) is called stable according to
Lyapunov if for an arbitrary ε > 0 there exists such δ(ε) > 0 that |x(t)| < ε when
t > 0 if ‖x(0)‖τ < δ(ε). Here ‖x(0)‖τ = max−τ≤s≤0 {|x(s)|}.

Definition 2. The solution x(t) ≡ 0 is called asymptotically stable if it is stable
and the following condition holds

lim
t→∞

|x(t)| = 0 .

Definition 3. The solution x(t) ≡ 0 is exponentially stable if there exist such
constants N > 0 and γ > 0 that for an arbitrary solution of the system the
following estimate holds

|x(t)| ≤ N‖x(0)‖τ exp{−γt}, t ≥ 0 .

System (1) cannot provide precise description of real objects. By using differen-
tial equations it is usually impossible to take into account all different factors that
influence the system. Therefore, it is appropriate to consider a perturbed system
in the form

ẋ(t) = f(x(t), x(t − τ)) + q(x(t), x(t − τ)) . (2)

The following definitions of stability account for the influence of perturbation.

Definition 4. The solution x(t) ≡ 0 of system (1) is called stable under constantly
acting perturbations when for an arbitrary ε > 0 there exist δ(ε) > 0 and η(ε) > 0
such that for an arbitrary solution xQ(t) of (2) the condition |xQ(t)| < ε when
t > 0 holds if ‖xQ(0)‖τ < δ(ε) and |q(xQ(t), xQ(t − τ))| < η(ε).

Differential equations with delay (1) have many things in common with cor-
responding equations without delay. Therefore, many results from the movement
stability theory for systems without delay were extended and adjusted to the equa-
tions in the form (1). One of the basic methods for investigation of system stability
is the second Lyapunov method. Its application to systems with delay has been
developed in two directions:

1. The first direction implies use of finite dimensional functions with an ad-
ditional condition for the derivative. This is a so called B. S. Razumikhin condi-
tion [1,4].

2. The second method is a Lyapunov-Krasovskiy functional method, which has
had more comprehensive theoretical ground [2,3,4].

Geometrical meaning of the Lyapunov function method involves finding the
system of closed surfaces that contain the origin and are converging to it. The
vector field of motion equations should be directed inside the areas limited by
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such surfaces. If a solution gets into such area limited by the surface, then it will
never leave it again. These surfaces form level surfaces of a Lyapunov function.

For systems without argument deviation the speed vector on level surfaces is
determined only by the present moment of time, i.e. by the point lying on the
given surface. The speed in equations with deviating argument depends on the
previous history as well; i.e. it depends on the point x(t − τ), which is usually
hard to find. Therefore, it is logical to require negative definiteness of Lyapunov
function derivative uniformly by the variable x(t − τ). However, this leads to
an excessively sufficient character of the theorems, which in turn makes them
inefficient for applications. Because of this, B. S. Razumikhin suggested to consider
a previous history x(t− τ) to lie inside the level surface v(x, t) = α in order to be
able to estimate the full derivative along system solutions. The standard technique
of proving Lyapunov theorems on stability made such assumption both natural and
logical. This led to an additional Razumikhin condition for the Lyapunov theorems,
which included estimation of the character of Lyapunov function derivative on the
curve that satisfies [1]

v(s, x(s)) < v(t, x(t)), s < t.

The second approach was introduced by N. N. Krasovskiy. He suggested to con-
sider sections x(t+s), −τ ≤ s ≤ 0 of the trajectory at each fixed time t > 0 instead
of functions with finite number of variables. Definitions of positive definiteness of
corresponding functionals and of their derivatives on system solutions were intro-
duced as well. Main Lyapunov theorems on stability (as well as asymptotic and
exponential stability) were stated in terms of functionals and their derivatives [2].

Both methods are thought to have certain advantages and disadvantages. How-
ever, both methods have capacity for existence and further development according
to opinions of many scientists.

2 Lyapunov-Krasovskiy Functional Method

Let us consider the basic idea of Lyapunov-Krasovskiy functional method. De-
note vector-function defined on the interval −τ ≤ s ≤ 0 for each fixed t > 0 by
x(t + s). The functional V [x(t), t] is determined on the vector-functions x(t + s),
−τ ≤ s ≤ 0. Using introduced functionals N. N. Krasovskiy obtained theorems on
stability and asymptotic stability of zero solution of system (1) with delay, which
was analogous to the well known Lyapunov theorems.

In the theorems on stability (asymptotic stability, unstability) stated in terms
of Lyapunov-Krasovskiy functional the following value (called right upper deriva-
tive number)

D̄+V = lim
∆t→+0

sup
1

∆t
{V [x(t + ∆t), t + ∆t] − V [x(t), t]}

played role of a function derivative dv/dt along solutions x(t) of a system with
delay.
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We should draw our attention to the two steps in development of the Lya-
punov-Krasovskiy functional method. The first step included development of a
theoretical ground for the method. The second step used theoretical results to
make theorems more applicable to construction of the functionals. Let us consider
these two stages in more details.

The first step was to formulate theorems on stability and asymptotic stability,
and invert them. All conditions of the theorems were formulated in terms of a
uniform norm

‖x(t)‖τ = sup
−τ≤s≤0

{|x(t + s)|}

for a zero solution of system (1) with delay, which was similar to the well known
Lyapunov’s theorem.

The main results are as follows

Theorem 5 (Stability by Lyapunov). Let differential equations of system (1)
be such that there exists a functional V [x(t), t] satisfying the following conditions:

1. a(‖x(t)‖τ ) ≤ V [x(t), t],
2. D̄+V [x(t), t] ≤ 0.

Here a(r) is a continuous non-decreasing function positive for all r > 0 and
a(0) = 0. Then the zero solution x(t) ≡ 0 of system (1) is stable according to
Lyapunov’s definition.

Theorem 6 (Asymptotic stability). Let differential equations of system (1) be
such that there exists a functional V [x(t), t] satisfying the following conditions:

1. a(‖x(t)‖τ ) ≤ V [x(t), t] ≤ b(‖x(t)‖τ ),
2. D̄+V [x(t), t] ≤ −c(‖x(t)‖τ ).

Here a(r), b(r), c(r) are continuous non-decreasing functions positive for all r > 0
and equal to zero at r = 0. Then the zero solution x(t) ≡ 0 of system (1) is
asymptotically stable.

It should be noted that the conditions of the above formulated theorems use
the uniform metric, which essentially limits the number of differential systems for
which functionals can be constructed in an explicit form. For example, for a linear
stationary system

ẋ(t) = Ax(t) + Bx(t − τ) (3)

with constant matrices A and B and a functional in a quadratic form

V [x(t)] = xT (t)Hx(t) +

∫ 0

−τ

xT (t + s)Gx(t + s)ds,

where H, G are constant positive definite matrices it is impossible to find functions
a(r) and c(r) that would satisfy theorem’s conditions.

Therefore, the second step formulated stability theorems in terms of such
norms, that are more convenient for constructing the functionals.
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Theorem 7 (Asymptotic stability). Let differential equations of system (1) be
such that there exists a functional V [x(t), t] satisfying the following conditions:

1. a(|x(t)|) ≤ V [x(t), t] ≤ b(‖x(t)‖τ ),
2. D̄+V [x(t), t] ≤ −c(|x(t)|).

Then the zero solution x(t) ≡ 0 of system (1) is asymptotically stable.

2.1 Quadratic Functionals in a General Form

Let us consider constructive methods for construction of Lyapunov-Krasovskiy
functionals for linear stationary systems with delay (3). It is obvious that the
natural form of a functional is a quadratic one, the same as for systems without
delay. Yu. M. Repin constructed quadratic functionals in the following general
form [5]

V [x(t)] = xT (t)Hx(t) +

∫ 0

−τ

xT (t + s)K(s)x(t)dt

+

∫ 0

−τ

xT (t + s)G(s)x(t + s)ds

+

∫ 0

−τ

∫ 0

−τ

xT (t + s1)M(s1, s2)x(t + s2)ds1ds2 . (4)

Here H is a constant quadratic n×n positive definite matrix; K(s), G(s), M(s1, s2)
are continuous matrices, and H and M(s1, s2) are symmetric matrices. Functionals
are chosen in such a way that

d

dt
V [x(t)] = W [x(t)],

where

W [x(t)] = xT (t)Qx(t) + xT (t − τ)Rx(t) + xT (t − τ)Sx(t − τ)

+

∫ 0

−τ

xT (t + s)D(s)x(t)ds +

∫ 0

−τ

xT (t + s)E(s)x(t + s)ds (5)

+

∫ 0

−τ

∫ 0

−τ

xT (t + s1)F (s1, s2)x(t + s2)ds1ds2

for given matrices Q, R, S, D(s), E(s), F (s1, s2). These matrices satisfy conditions
ensuring negative definiteness of W [x(s)] on system’s solutions.

By taking a derivative of the functional (4) we obtain a system of algebraic
equations that consists of ordinary matrix differential equations and partial differ-
ential equations

HA + AT H +
1

2
[K(0) + KT (0)] + G(0) = Q ,
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AT K(s) − d

ds
K(s) + M(s, 0) = D(s), − d

ds
G(s) = E(s),

∂M(s1, s2)

∂s1
+

∂M(s1, s2)

∂s2
= −F (s1, s2), (6)

2HB − K(−τ) = R, BT K(s) − M(−τ, s) = 0 .

In some cases solutions of system (3) can be found, however in a general case the
question of existence of a solution for such system cannot be addressed.

Simplified quadratic functional was proposed in the form [6]

V [x(t)] = xT (t)H(0)x(t) + 2xT (t)

∫ t

t−τ

H(s − t + τ)Bx(s)ds

+

∫ t

t−τ

∫ t

t−τ

xT (s1)B
T H(s2 − s1)Bx(s2)ds1ds2 .

Theorem 8. Let there exist a matrix function H(t), a solution of the matrix
differential equation

Ḧ(t) = AT Ḣ(t) − Ḣ(t)A + AT H(t)A − BT H(t)B, t ≥ 0,

and let it satisfy

1. Ḣ(t) = AT H(t) + BT H(t − τ), t ≥ 0,
2. H(t) = HT (−t), H(0) = HT (0),
3. AT H(0) + H(0)A + BT HT (τ) + H(τ)B = −C ,

where C is a positive definite matrix. If H(t) is such that the functional V [x(t)]
satisfies bilateral estimates

a(|x(t)|) ≤ V [x(t)] ≤ b1(|x(t)|) + b2(‖x(t)‖τ ),

then the system is asymptotically stable.

The important fact about this theorem is that the theorem can be reversed.

Theorem 9. Let a linear system with a delay be asymptotically stable. Then there
exists a quadratic functional V [x(t)]. Let a matrix function H(t) be a solution of
the ordinary differential equation

Ḧ(t) = AT Ḣ(t) − Ḣ(t)A + AT H(t)A − BT H(t)B, t ≥ 0,

and let it satisfy

1. Ḣ(t) = AT H(t) + BT H(t − τ), t ≥ 0,
2. H(t) = HT (−t), H(0) = HT (0),
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3. AT H(0) + H(0)A + BT HT (τ) + H(τ)B = −C ,

where C is a positive definite matrix. Then on solutions x(t) of the system the
functional V [x(t)] satisfies bilateral estimates

a(|x(t)|) ≤ V [x(t)] ≤ b1(|x(t)|) + b2(‖x(t)‖τ ),

and its full derivative satisfies

V̇ [x(t)] ≤ −λmin(C)|x(t)|2 .

If we consider a functional in the form

V [x(t)] = xT (t)Hx(t) +

∫ 0

−τ

xT (t + s)Gx(t + s)ds,

then for an asymptotic stability of system (3) it is sufficient that such positive
matrices H and G exist that the matrix

C[G, H ] =

[

−AT H − HA − G −HB
−BT H G

]

is also positive definite.
Let us transform the problem of finding matrices H and G into an optimiza-

tional problem [7,8]

(G0, H0) = arg inf
(G,H)∈L̄1

G
×L̄1

H

{ϕ0(G, H)},

where ϕ0(G, H) = −λmin[C(G, H)], λmin(•) is minimal eigenvalue of the matrix
C[G, H ]; L̄1

G, L̄1
H are sets of positive definite matrices G and H that lie within a

unit circle.
The Lagrange function is constructed in the form

L(G, H, u) =ϕ0(G, H) + u1ϕ1(G) + u2ϕ2(G) + u3ϕ3(H)

+ u4ϕ4(H), ui ≥ 0, i = 1, 4;

ϕ1(G) =λmax(G) − 1, ϕ2(G) = −λmin(G),

ϕ3(H) =λmax(H) − 1, ϕ4(H) = −λmin(H) .

Theorem 10. For a function ϕ0(G, H) to reach its minimal value, it is necessary
and sufficient for the point (G0, H0, u0), uT

0 = (u0
1, u

0
2, u

0
3, u

0
4) to be a saddle point

of the Lagrange function.

The following theorem provides constructive conditions for finding matrices G0

and H0 such that the Lyapunov-Krasovskiy functional from a given class resolves
a stability question.
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Theorem 11. The Lyapunov-Krasovskiy functional with matrices G0, H0 resolves
a problem of stability within a given class of functionals (i.e. it is the optimal
functional in a given class) if and only if the vector uT

0 = (u0
1, u

0
2, u

0
3, u

0
4) exists

such that

1. A gradient set R0
L of the Lagrange function L(G, H, u) on variables (G, H) at

the point G0, H0, u0 contains a pair of zero matrices, i.e. (θ, θ) ∈ R0
L.

2. Conditions of additional non-stiffness hold:

u0
1ϕ1(G0) = 0, u0

2ϕ2(G0) = 0, u0
3ϕ3(H0) = 0, u0

4ϕ4(H0) = 0 .

3 Lyapunov Function Method with Razumikhin Condition

Proofs of main Lyapunov’s theorems are based on estimate of a speed vector
direction at the moment x(t) on level surfaces v(x, t) = α of the Lyapunov function
v(x, t). In other words, the sign of v̇(x, t) is studied, where

dv(x(t), t)

dt
=

∂v(x(t), t)

∂t
+ gradT

x v(x(t), t)f(x(t), x(t − τ)) . (7)

For systems with argument deviation this expression is a functional that de-
pends on the previous history x(t − τ). On the basis of the stability definition
we can assume that points lie inside the area limited by level surfaces before
points of the previous history leave the level surfaces. In other words, the condi-
tion v(x(t − τ),t − τ) < v(x(t), t) holds.

B. S. Razumikhin proposed to find the estimate of functional (7) not for all
curves that correspond to solutions x(t) of the system, but only for those that
leave areas limited by level surfaces, i.e. v(x(s), s) < v(x(t), t), s < t.

Theorem 12. Let for system (1) a continuously differentiable function v(x, t)
exist and satisfy the conditions:

1. a(|x|) ≤ v(x, t),

2. dv(x(t))
dt ≤ 0 for curves x(t) that satisfy v(x(s), s) < v(x(t), t), s < t.

Here a(r) is a continuous non-decreasing function positive for all r > 0 and
a(0) = 0. Then the zero solution x(t) ≡ 0 of the system (1) is stable according to
Lyapunov.

Theorem 13. Let for the system (1) a continuously differentiable function v(x, t)
exist and satisfy the conditions:

1. a(|x|) ≤ v(x, t) ≤ b(|x|),
2. dv(x(t))

dt ≤ −c(|x(t)|) for curves x(t) that satisfy v(x(s), s) < v(x(t), t), s < t.

Here a(r), b(r), c(r) are continuous non-decreasing functions positive for all r > 0
and equal to zero at r = 0. Then the zero solution x(t) ≡ 0 of the system (1) is
asymptotically stable.
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3.1 Asymptotic Stability of Systems with One Delay

Suppose that the system without deviation (3)

ẋ(t) = (A + B)x(t) (8)

is asymptotically stable. Stability investigation is performed using Lyapunov func-
tion in the form v(x) = xT Hx, where H is a solution of the equation

(A + B)T H + H(A + B) = −C . (9)

Here C is an arbitrary positive definite matrix.
Denote ϕ(H) = λmax(H)/λmin(H), where λmax(•), λmin(•) are maximal and

minimal eigenvalues of the matrix H [9,10].

Theorem 14. Let the system (8) be asymptotically stable. If there exists a positive
definite matrix H, which is a solution of (9), and if the inequality

λmin(C) − 2|HB|(1 +
√

ϕ(H) ) > 0 (10)

is satisfied, then the system (3) is asymptotically stable for an arbitrary τ > 0.
Moreover, for an arbitrary solution x(t) of the system (3) the condition |x(t)| < ε,
t > 0 holds only if ‖x(0)‖τ < δ(ε), where δ(ε) = ε/

√

ϕ(H) .

Conditions of the Theorem 14 provide exponential decay of solutions of the system
(3).

Theorem 15. Let the system (8) be asymptotically stable. If a positive definite
matrix H, which is a solution of the equation (9), exists and if an inequality (10)
holds, then for solutions x(t) of the system (3) the following inequality holds

|x(t)| <
√

ϕ(H) ‖x(0)‖τ exp{−γt/2}, t > 0,

where

γ =

{

2

τ
ln−1

[

λmin(C) − 2|HB|
2|HB|

√

ϕ(H)

]

+
λmax(H)

λmin(C) − 2|HB|(1 +
√

ϕ(H) )

}−1

.

Let the system (8) be asymptotically stable, but there is no such H that satisfies
the inequality (10).

Theorem 16. Let the system (8) be asymptotically stable. If τ < τ0, where

τ0 =
λmin(C)

2(|A| + |B|)|HB|
√

ϕ(H)
, (11)

then the system (3) is also asymptotically stable. Also |x(t)| < ε, t > 0, only if
‖x(0)‖τ < δ(ε, τ), where

δ(ε, τ) = (1 + |B|τ)−1 exp{−|A|τ}ε/
√

ϕ(H) .
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Theorem 17. Let the system (8) be asymptotically stable. If τ < τ0, where τ0 is
defined in (11), then the following inequality holds

|x(t)| <

{

√

ϕ(H) (1 + |B|τ)‖x(0)‖τ exp{|A|τ}, 0 ≤ t ≤ τ,
√

ϕ(H) (1 + |B|τ)‖x(0)‖τ exp{|A|τ − γt/2}, t > τ ,

where

γ =
(

1 − τ

τ0

)

[

λmax(H)

λmin(C)
− (1 − τ/τ0)τ

ln(τ/τ0)

]−1

.

3.2 Estimation of Delay Influence on System Solution

A system in the form

ẋ(t) = Ax(t) + Bx(t − τ) + Q(x(t), x(t − τ)) (12)

is called “perturbed” to (3) [11].

Theorem 18. Let the system (8) be asymptotically stable and let there exist a
positive definite matrix H such that it is a solution of the equation (9) and the
inequality (10) holds. Then for an arbitrary solution xQ(t) of the system (12) the
following holds: |xQ(t)| < ε, t > 0, if ‖xQ(0)‖τ < δ(ε) and |Q(xQ(t), xQ(t −
τ))| < η(ε), where

δ(ε) = ε/
√

ϕ(H) , η(ε) =
λmin(C) − 2|HB|(1 +

√

ϕ(H) )

2|H |
√

ϕ(H)
ε .

Let there be no such matrix H that satisfies the inequality (10).

Theorem 19. Let the system (8) be asymptotically stable. Then if τ < τ0, where
τ0 is defined in (11), the following holds for a solution xQ(t) of the system (12):
|xQ(t)| < ε, t > 0, only if ‖xQ(0)‖ < δ(ε, τ), and |Q(xQ(t), xQ(t − τ)| < η(ε, τ),
where

δ(ε, τ) = (1 − ζ)(1 + |B|τ)−1 exp{−|A|τ}ε/
√

ϕ(H) ,

η(ε, τ) = min

{

ζ

τ
e−|A|τ ,

λmin(C)(1 − τ/τ0)

2(|HB|τ + |H |)

}

ε
√

ϕ(H)
,

where 0 < ζ < 1 is an arbitrary fixed constant.

Let us estimate the maximum deviation τ = τmax, such that the divergence
|x(t) − x0(t)| < ε, t > 0 holds. Denote x0(t) to be a solution (8), and

q = |B(A + B)||x0(0)| .
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Theorem 20. Let the system (8) be asymptotically stable, and let there exist H
— a solution of (9) — satisfying (10). Then for an arbitrary ε > 0, δ < ε/

√

ϕ(H)
the following is true: |x(t) − x0(t)| < ε, t > 0 only when ‖x(0)− x0(0)‖τ < δ, and
τ ≤ τmax, where

τmax =
λmin(C) − 2|HB|(1 +

√

ϕ(H) )

2|H |qϕ(H)
ε .

Let us introduce the following notations

M1 = 1 − δ
√

ϕ(H) /ε, M2 = |A| + |B|
√

ϕ(H) δ/ε,

N1 = ελmin(C)/ϕ(H)q, N2 = |H | + ελmin(C)/2ϕ(H)qτ0.

Theorem 21. Let the system (8) be asymptotically stable. Then for any ε > 0
and δ < ε/

√

ϕ(H) we have |x(t) − x0(t)| < ε, t > 0 only if ‖x(0) − x0(0)‖τ < δ
and τ ≤ τmax, where

τmax = min

{

2M1

[

√

M2
2 + 4M1ϕ(H)q/ε + M2

]−1

,

N1

[

√

N2
2 + 2N1|HB| + N2

]−1
}

.

3.3 Absolute Stability of “Direct” Control Systems with Delay

Consider the following system

{

ẋ(t) = Ax(t) + Bx(t − τ) + b0f(σ[t]) + b1f(σ[t − τ ]),

σ[t] = cT
0 x(t) + cT

1 x(t − τ) .
(13)

Function f(σ) satisfies the Lipshitz condition with a constant L and a sector (0, k);
i.e.

f(σ)(Kσ − f(σ)) > 0 . (14)

Lyapunov function is used in the form

v(x) = xT Hx + β

∫ σ(x)

0

f(ξ)dξ, σ(x) = cT x, c = c0 + c1 .

Matrix H is found from the equation (9). For the function v(x) the following
condition holds:

λmin(H̃)|x|2 ≤ v(x) ≤ λmin(H̃)|x|2,
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where

λmin(H̃) =

{

λmin(H), β ≥ 0,

λmin(H + βkccT /2), β < 0 ;

λmax(H̃) =

{

λmax(H + βkccT /2), β ≥ 0,

λmax(H), β < 0 .

Definition 22. The system (13) is absolutely stable if the solution x(t) ≡ 0 is
stable for an arbitrary function f(σ) that satisfies (14).

Denote

ϕ(H̃) = λmax(H̃)/λmin(H̃), p1 = 2(|HB| + L|Hb0||c1| + L|Hb1||c0|),

p2 = |βcT B| + |βcT b0|L|c1| + |βcT b1|L|c0|, b = b0 + b1,

q1 = 2L|Hb1||c1|, q2 = |βcT b1|L1|c1|, c = c0 + c1,

C̃1 =































−[(A + B)T H + H(A + B)]
... −[Hb + (β(A + B)T + E)c/2]

−(p1 + q1 + (p2 + q2)/2ξ2)
...

×(1 +
√

ϕ(H̃))E
...

· · · · · · · · ·

−[Hb + (β(A + B)T + E)c/2]T
... 1/k − βbT c − (p2 + q2)ξ

2

... ×(1 +
√

ϕ(H̃))/2































.

Theorem 23. Let matrix H and a parameter β be such that λmin(H̃) > 0, and let
there exist such ξ that C̃1 is positive definite. Then the system (13) is absolutely
stable for any τ > 0. In such case |x(t)| < ε, t > 0 only when ‖x(0)‖τ < δ(ε),

where δ(ε) = ε/
√

ϕ(H̃).

When conditions of the theorem hold, solutions of the system decay.

Theorem 24. Let matrix H and a parameter β be such that λmin(H̃) > 0 and
C̃1 exists and is positive definite. Then for solutions x(t) of the system (13) the
following holds

|x(t)| <

√

ϕ(H̃)‖x(0)‖2τ exp{−γt/2}, t > 0,
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where

γ = min

{

γ1λmin(C̃1)

γ1λmax(H̃) + λmin(C̃1)
, γ2

}

,

γ1 =
2

τ
ln

{[√

[(p1 + p2) + 2(q1 + q2)]2 + 4λmin(C̃1)(q1 + q2)/

√

ϕ(H̃)

− (p1 + p2)

]

/2(q1 + q2)

}

,

Introduce the following designations

M(0) = |A| + |B| |K|(|b0| + |b1|)(|c0| + |c1|),
N(0) = p1 + 2q1 +

√

(p1 + 2q1)2 + (p2 + 2q2)2,

C̃2 =









−[(A + B)T H + H(A + B)]
... −[Hb + (β(A + B)T + E)c/2]

· · · · · · · · ·
−[Hb + (β(A + B)T + E)c/2]T

... 1/k − βbT c









.

Theorem 25 ([13]). Let matrix H and a parameter β be such that λmax(H̃) > 0,
and let C̃2 be positive definite. Then, when τ < τ0, where

τ0 =
2λmax(C̃2)

M(0)N(0)
√

ϕ(H̃)
, (15)

the system (13) is absolutely stable. Moreover, |x(t)| < ε, t > 0 if ‖x(0)‖2τ <
δ(ε, τ), where

δ(ε, τ) = [(1 + R̄τ)eL̄τ ]−2ε/

√

ϕ(H̃)

Theorem 26. Let matrix H and a parameter β be such that λmin(H̃) > 0 and
C̃2 is positive definite. Then if τ < τ0, where τ0 is defined in (15), the following
inequality holds for solutions x(t) of the system (13)

|x(t)| <







√

ϕ(H̃)‖x(0)‖2τ (1 + Rτ)2 exp{2L̄τ}, 0 ≤ t ≤ 2τ,
√

ϕ(H̃)‖x(0)‖2τ (1 + Rτ)2 exp{2L̄τ − γt/2}, τ > 2τ,

where

γ =
γ1λmin(C̃2)(1 − τ/τ0)

γ1λmax(H̃) + λmin(C̃2)(1 − τ/τ0)
,
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and γ1 is a root of the equation

1 − [M(γ)N(γ)][M(0)N(0)]−1eγτ/2 = 0,

M(γ) = |A| + |B|eγτ/2 + K(|b0| + |b1|eγτ/2)(|c0| + |c1|eγτ/2),

N(γ) = (p1 + 2q1e
γτ/2) +

√

(p1 + 2q1eγτ/2)2 + (p2 + 2q2eγτ/2)2,

R̄ = |B| + K(|b0||c1| + |b1||c0| + |b1||c1|),
L̄ = |A| + K|b0||c0| .

3.4 Differential Systems with a Quadratic Right-Hand Side

Difference-differential equation with a quadratic right-hand side

ẋ(t) = Ax(t) + Bx(t − τ) + XT (t)D1x(t) + XT (t)D2x(t − τ)

+X(t − τ)D3x(t − τ) (16)

recently became very popular. Here X(t), Di, i = 1, 3 are rectangular n2 × n ma-
trices in the form

X(t) = {X1(t), X2(t), . . . , Xn(t)}
DT

j = {D1j, D2j , . . . , Dnj} .

Here Xk(t), where k = 1, n, are quadratic matrices that have a vector x(t) =
(x1(t), x2(t), . . . , xn(t))T in place of a k th column, and other elements are zero.
Dij are symmetric matrices that define quadratic ith rows.

Theorem 27. Let there exist such a matrix H that (10) holds. Then the solution
x(t) ≡ 0 of the system (3) is asymptotically stable at any τ > 0. The sphere UR

that lies in the area of asymptotic stability has the radius

R =
λmin(C) − 2|HB|(1 +

√

ϕ(H) )

2λmax(H)
∑3

i=1 |Di|(
√

ϕ(H) )i
.

For solutions x(t) from the sphere UR the following convergence estimate holds:

|x(t)| <
R

√

ϕ(H) ‖x(0)‖τ exp{−γt/2}
R − ‖x(0)‖τ [1 − exp{−γt/2}] , t > 0,

γ = [λmin(C) − 2|HB|(1 +
√

ϕ(H) )]/λmax(H) .

Theorem 28. Let the system (8) be asymptotically stable. Then for τ < τ0, where
τ0 is denoted in (11), solution x(t) ≡ 0 of the system (16) will also be asymptoti-
cally stable. For such solutions x(t) that satisfy the condition ‖x(τ)‖τ < R̄ζ, 0 <
ζ < 1 the following convergence estimate holds:

|x(t)| ≤







‖x(t)‖τ , 0 ≤ t ≤ τ,
R̄ζ

√
ϕ(H) ‖x(τ)‖τ exp{−γt/2}

R̄ζ−‖x(τ)‖τ [1−exp{−γt/2}]
, t > τ .
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Here

R̄ =
λmin(C)(1 − τ/τ0)

2
∑3

i=1

[

|HB||Di|(
√

ϕ(H) )3 + λmax(H)|Di|(
√

ϕ(H) )i
] ,

γ is a solution of a special equation.

3.5 Differential Systems with Rational Right-Hand Sides

Recently developed mathematical models of ordinary differential equations with
rational right-hand sides were found adequate for description of various models in
biology and medicine. The systems have the form [15,16]

ẋ(t) = [E + X(t)D1 + X(t − τ)D2]
−1[Ax(t) + Bx(t − τ)]. (17)

Theorem 29. Let there exist a symmetric positive definite matrix H that satisfies
(10). Then the solution x(t) ≡ 0 of the system (17) is asymptotically stable for an
arbitrary delay τ > 0. The asymptotic stability region contains the ball UR = {x :
|x| ≤ R}, where

R =
[λmin(C) − 2|HB|(1 +

√

ϕ(H) )]/
√

ϕ(H)

(|D1| + |D2|
√

ϕ(H) )[[λmin(C) − 2|HB|(1 +
√

ϕ(H) )] + 2|H |(|A| + |B|
√

ϕ(H) )]
.

Theorem 30. Let the system (8) be asymptotically stable. Then for all τ < τ0,
where

τ0 =
λmin(C)(1 − ζ)3

2(|A| + |B|)|H |
√

ϕ(H) [|B| + (|D2||A1| − |D1||B|)Rζ]
.

Then the solution x(t) ≡ 0 of the system (17) is asymptotically stable. The asymp-
totic stability region contains a ball with the radius

R = min

{

1

(|D1| + |D2|)
√

ϕ(H)
,

λmin(C)/
√

ϕ(H)

[2|HB| + λmin(C)]|D1 + D2|

}

.
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