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Abstract. The paper presents a review of some recent results on unique-
ness of invariant measures for stochastic differential equations in infinite-
dimensional state spaces, with particular attention paid to stochastic par-
tial differential equations. Related results on asymptotic behaviour of solu-
tions like ergodic theorems and convergence of probability laws of solutions
in strong and weak topologies are also reviewed.
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1 Introduction

The aim of the present paper is to review some recent results on uniqueness of
invariant measures (that is, strictly stationary solutions) for nonlinear stochastic
evolution equations (or, more generally, for stochastic differential equations in
infinite-dimensional state spaces). Related asymptotic and ergodic properties of
solutions like convergence of their probability laws to the invariant measure and
ergodic theorems are also discussed.

The paper is divided into three parts: In Section 2, some existing results on
strong and weak asymptotic stability of the invariant measure and its ergodic
properties are recalled. By the strong asymptotic stability we mean convergence
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of probability laws of all solutions to the invariant measure in the norm defined
by total variation of measures while the weak asymptotic stability means an anal-
ogous convergence in the weak (narrow) topology of the space of measures. It is
obvious that both strong and weak asymptotic stability imply uniqueness of the
invariant measure. Sections 3 and 4 contain more precise descriptions of some
methods of proofs used in the papers listed in Section 2 for the respective cases
of strong and weak asymptotic stabilities. In order to illustrate those methods,
some typical statements and results are given. Note that the problem of existence
of the invariant measure is not treated in the present paper; see for instance the
monograph [20] by G. Da Prato and J. Zabczyk and the references therein.

It should be pointed out that the statements contained in Sections 3 and 4 are
not always formulated in full generality. The authors’ intention was to discuss some
basic mathematical tools available and to avoid technical complications as much
as possible. Some generalizations, improvements and applications of the presented
results are referred to subsequently.

2 Review of existing results

A standard possibility to show uniqueness as well as the strong asymptotic stability
(or the strong mixing property) of an invariant measure for a finite-dimensional
nondegenerate stochastic differential equation is to utilize the usual correspondence
between SDE’s and PDE’s; under suitable conditions (including, in particular,
a sufficient nondegeneracy of the diffusion matrix of the SDE) the transitional
densities coincide with the fundamental solution to a linear parabolic PDE (the
Kolmogorov equation), which yields the strong Feller property (SFP) and the
(topological) irreducibility (I) of the Markov process defined by the stochastic
equation. Then the classical results of the ergodic theory of Markov processes, as
developed by J. L. Doob, G. Maruyama and H. Tanaka, R. Z. Khas’minskĭı and
others (see e.g. [21], [48], [37], [22]) and later extended to more general state spaces
(see the references in Section 3 and, in particular, Theorem 4), can be applied to
obtain uniqueness of the invariant measure (provided it exists) as well as the the
strong asymptotical stability.

For infinite-dimensional state spaces such mathematical tools are not easily
available; the Lebesgue measure does not exist and equivalence of measures is in a
sense a “rare” event (see, for instance, the discussion following Proposition 2 and
the example at the beginning of Section 4). On the other hand, in the linear case
when the transition probabilities are Gaussian measures it is possible to verify by
direct computation (cf. Proposition 1) that in some important examples (typically,
stochastic parabolic or parabolic-like equations) the strong asymptotic stability
takes place.

There are several methods which have been used to prove similar results for
nonlinear infinite-dimensional stochastic systems. At first, let us mention the ap-
proach based on verification of the strong Feller property and irreducibility of the
induced Markov process which has been used in numerous papers that have ap-
peared in recent years. We describe this method in detail in Section 3 while here we
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restrict ourselves to some bibliographical remarks. In early papers by B. Maslowski
and R. Manthey ([50], [44]) the SFP has been proven via finite-dimensional ap-
proximations for semilinear systems under rather restrictive assumptions. Also, a
controllability method to prove (I) was developed there. Those results were further
extended by B. Maslowski in [52], in particular, certain smoothing properties of
mild solutions to the infinite-dimensional backward Kolmogorov equation proven
by G. Da Prato and J. Zabczyk ([15], see also [18]) were utilized to get the SFP
for reaction-diffusion equations with additive noise. Alternatively, under differ-
ent set of assumptions, the problem of equivalence of transition probabilities has
been solved by means of a Girsanov type theorem in [51] and [52], cf. also [27]
for an analogous but more difficult argument applied to the stochastic quanti-
zation equation. Let us mention that infinite-dimensional Kolmogorov equations
have been treated very recently by many authors, their link to invariant measures
of fairly general SPDE’s was investigated in depth by A. Chojnowska-Michalik,
B. Goldys and D. Ga̧tarek, see [8], [28].

Another way of proving the SFP has emerged in the paper [11] by G. Da Prato,
K. D. Elworthy and J. Zabczyk where a formula for directional derivatives of a
Markov transition semigroup involving the L2-derivative of the solution with re-
spect to initial condition has been derived (cf. Proposition 9). This approach has
been later extended by S. Peszat and J. Zabczyk [60] to be applicable to stochastic
parabolic equations with multiplicative noise term, cf. also the already cited paper
[28]. It also turned out to be useful in asymptotic analysis of various important
particular systems studied in physics and chemistry, like stochastic Burgers and
Navier-Stokes equations or stochastic Cahn-Hilliard equation (cf. [12], [10], [24] or
[23]).

Tools from the Malliavin calculus were employed to establish the regularity of
the transition semigroup (in particular the SFP) by M. Fuhrman in [26] (cf. also
[14]).

Let us briefly mention some other methods of proving the strong asymptotic
stability of invariant measures. S. Jacquot and G. Royer [36] used a general theory
of Markov operators to prove geometric ergodicity (i.e. strong exponential stability
of an invariant measure) for a particular but important stochastic parabolic equa-
tion. C. Mueller in [59] used an approach based on coupling techniques to prove
strong asymptotic stability of the invariant measure for a nonlinear heat equation
with multiplicative noise, defined on a circle (uniqueness of the invariant measure
for this case had been proven earlier by R. Sowers in [62] by establishing suitable
asymptotic stability of paths).

Very little seems to be known in the case of nonautonomous SPDE’s, where the
standard methods of ergodic theory are no longer available. A lower bound mea-
sure method developed in context of statistical analysis of deterministic dynamical
systems has been used by B. Maslowski and I. Simão in [57] to investigate the limit
behaviour (in variational norm) of Markov evolution operators corresponding to
nonautonomous stochastic infinite-dimensional systems (cf. also a methodologi-
cally related paper [34]). Simulated annealing for stochastic evolution equations
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has been studied by S. Jacquot, see e.g. [35] where references to previous papers
of the author can be found.

Results on the strong asymptotic stability, when available, usually provide us
with a fairly complete description of the qualitative behaviour of solutions to the
considered SPDE’s. On the other hand, many stochastic equations with reasonable
long-time behaviour can be never treated using the tools described above. So we
shall discuss now methods for investigating the weak asymptotic stability that
apply to different classes of SPDE’s, including those with a degenerate noise.

As is known from the finite-dimensional case, uniqueness of an invariant mea-
sure may be obtained as a consequence of pathwise stability of the process, which,
in turn, is often investigated by means of well developed Lyapunov techniques (see
e.g. [38]). The Lyapunov functions methods were extended to semilinear SPDE’s
by A. Ichikawa in [32] (see also [31] for slight modifications), who found suffi-
cient conditions for uniqueness, and further strengthened in [49] to yield stability
as well. Later, these methods proved themselves applicable to nonhomogeneous
boundary value problems for stochastic parabolic equations ([53], [54]). G. Leha
and G. Ritter developed a rather general Lyapunov approach for establishing exis-
tence, uniqueness and attractiveness of invariant measures for Markov processes in
topological spaces, that covers also some classes of stochastic infinite-dimensional
differential equations (see [42], [43]). A recent paper [4] on uniqueness of an invari-
ant measure for a stochastic parabolic variational inequality is virtually based on
the same technique. We discuss the Lyapunov method in some detail in Section 4.

A special attention must be paid to the dissipativity method (sometimes also
called “the remote start method”) since most of recent results on invariant mea-
sures for SPDE’s (both abstract theorems and results about important particular
equations) seem to have been obtained using this procedure. The method was
developed by G. Da Prato and J. Zabczyk in [16], [17], [19] for equations with
additive noise and by them together with D. Ga̧tarek in [13] for the multiplicative
noise case; see the monographs [18], Chapter 11.5, [20] for a systematic account.
(We list here only papers dealing with uniqueness and weak asymptotic stability,
not the copious articles concerning applications of the dissipativity method to ex-
istence of invariant measures.) More factual description of the method is provided
in Section 4.

Finally, we are going to list briefly other papers containing related results.
R. Marcus in the early papers [45], [46], [47] considered stochastic parabolic equa-
tions with an additive noise under rather restrictive hypotheses and sketched a
proof of the weak asymptotic stability of an invariant measure (using a proce-
dure that can be viewed as a variant of the remote start trick). In particular,
he investigated the case of the drift term having a potential, when the invariant
measure may be given explicitly, see also [40] and [25] for uniqueness results in
this direction. (These results are now partly covered by those based on the equiv-
alence of transition kernels.) I. D. Chueshov and T. V. Girya proved existence and
weak asymptotic stability of an invariant measure as a consequence of their re-
sults on inertial manifolds for parabolic SPDE’s driven by additive noise ([9], [30]).
Uniqueness and stability theorems on invariant measures for semilinear stochas-
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tic parabolic equations, proved in the framework of the variational approach to
SPDE’s, can be found in [33] and [29], see also the book [65], §XII.7 and the
references therein.

An analytic approach to invariant measures for infinite-dimensional stochastic
systems, using logarithmic Sobolev inequalities (see the surveys [64] or [67] for
references) or Dirichlet forms techniques (see [6], [5], [1], [7]), has found many
applications to lattice systems (cf. e.g. [2], [3]). Applications to stochastic partial
differential equations are up to now less frequent, see, however, the papers [58] and
[39] in which ergodic properties of invariant measures for SPDE’s are dealt with
by means of Dirichlet forms.

3 Strong asymptotic stability

In the present section, some basic results on uniqueness, ergodicity and strong
asymptotic stability of an invariant measure for stochastic evolution equations are
listed and basic methods of their proofs are explained. By the strong asymptotic
stability we understand convergence of probability laws of all solutions to a given
stochastic evolution equation to the corresponding invariant measure in norm de-
fined by the total variation of measures. In what follows, we denote by |||̺||| the
total variation of a signed measure ̺ and by N (m,U) the Gaussian measure with
mean m and covariance operator U .

We start with the linear equation in which case the problem of strong asymp-
totic stability is in a sense much simpler than for the nonlinear equation. How-
ever, some “typical” difficulties (as well as differences between finite- and infinite-
dimensional stochastic equations) can be seen already in that case.

Consider a linear stochastic equation of the form

dZt = AZt dt+ dWt, (1)

in a real separable Hilbert space H = (H, 〈·, ·〉, ‖·‖) where A : Dom(A) ⊆ H −→ H
is an infinitesimal generator of a strongly continuous semigroup (eAt, t ≥ 0) on
H , Wt is a Wiener process on H defined on a probability space (Ω,F ,P ) with
an incremental covariance operator Q ∈ L (H). The operator Q is not necessarily
nuclear (which means that Wt may be just cylindrical, not reallyH-valued, Wiener
process). In the sequel we shall assume

∫ T

0

∥∥eAtQ1/2
∥∥2

HS
dt <∞ (2)

for some T > 0, where ‖ · ‖HS stands for the Hilbert-Schmidt norm of an operator
on H . It is well known that under the condition (2) the equation (1) has for any
initial datum Z0 = x ∈ H a unique mild solution defined as a continuous H-valued
process satisfying the variation of constants formula

Zt = eAtx+

∫ t

0

eA(t−r) dWr , t ≥ 0, (3)
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whose transition probabilities Pt(x, ·) are Gaussian measures N (eAtx,Qt) for
t ≥ 0, x ∈ H , where

Qt =

∫ t

0

eArQeA∗r dr

is a nuclear operator (cf. [18] for basic results on the semigroup theory of stochastic
evolution equations). An invariant measure µ∗ for the Markov process induced by
the equation (1) exists if and only if

sup
t≥0

TrQt <∞ (4)

in which case µ∗ =N (0, Q∞), where Q∞ = limt→∞Qt. In general, it can happen
that µ∗ is not the only invariant measure; the problem of uniqueness and char-
acterization of all invariant measures has been treated in [66] (see also [18] and
the references therein). As far as the strong asymptotic stability is concerned we
expose the following result the proof of which can be found in [49] (for simplicity,
we consider only the case Q > 0):

Proposition 1. Assume (2) and let K be a linear subspace of H such that

eAtx ∈ Im
(
Q

1/2
t

)
, t > t0(x) ≥ 0 (5)

and

‖Q
−1/2
t eAtx‖ −→ 0, t→ ∞, (6)

for x ∈ K. Then

|||Pt(x, ·) − Pt(y, ·)||| −→ 0, t→ ∞ (7)

for each x, y ∈ K. If, moreover, (4) holds true and µ∗(K) = 1 then

|||Pt(x, ·) − µ∗||| −→ ∞, t→ ∞ (8)

for any x ∈ K. In particular, µ∗ is the only invariant probability measure concen-
trated on K.

In particular examples, the condition (5) can be usually verified for t0 = 0 (or
for some t0 independent of x) and for K = H . In this case the assumptions of
Proposition 1 can be simplified as follows:

Proposition 2. Assume (2) and (4) and let

Im
(
eAt

)
⊆ Im

(
Q

1/2
t

)
(9)

be satisfied for t > 0. Then (8) holds true and, in particular, µ∗ is the only invari-
ant probability measure for the problem (1).
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Note that Proposition 1 has been proven in [49] by direct computation using the
Cameron-Martin formula for density of a Gaussian measure while Proposition 2 is
a corollary of a more general statement given below (Theorem 4). The assumption
(9) is an if and only if condition on the Gaussian transition probabilities Pt(x, ·)
to be equivalent (i.e., mutually absolutely continuous) for t > 0, as can be seen
easily by the Hájek-Feldman theorem. In some cases, (9) can be shown to be a
necessary condition for the strong asymptotic stability (8) (see the example at
the beginning of Section 4) and since it is rather restrictive (for example, the
semigroup eAt satisfying (9) is necessarily Hilbert-Schmidt) it can be expected
that the cases when the strong asymptotic stability takes place in the infinite-
dimensional space H are rather “rare”. However, it turns out that parabolic and
parabolic-like stochastic equations with enough nondegenerate diffusion term are
natural field for applications of Propositions 1 and 2 as may be seen from the
simple example below.

Example 3. Assume that A is self-adjoint, negative, and has compact resolvent
and denote by {ej}j≥1 the orthonormal basis of H such that

Aej = −αjej , (10)

where 0 < αj −→ ∞, j ∈ N. Assume that A, Q are such that for some 0 < λj ≤
λ0 <∞, we have

Qej = λjej , j ∈ N. (11)

Then it is easy to check that the conditions (2) and (4) are satisfied if

∞∑

i=1

λi

αi
<∞, (12)

which is sufficient for the mild solution Zt of the equation (1) and the corresponding
invariant measure µ∗ to exist. The condition (9) verifying the strong asymptotic
stability is now equivalent to the requirement that the sequence

{
αi

λi
exp(−2αit)

}

i∈N

(13)

is bounded for each t > 0.
In particular, the process Zt in the present example can represent a solution

to a linear stochastic parabolic equation like, for instance, the equation

∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ) + η(t, ξ), (t, ξ) ∈ R+ × (0, 1), (14)

with an initial condition u(0, ξ) = x(ξ), ξ ∈ (0, 1), and the Dirichlet boundary
conditions u(t, 0) = u(t, 1) = 0, t ∈ R+, where η is a space-dependent noise, white

in time. This can be achieved by the particular choice H = L2(0, 1), and A = ∂2

∂ξ2
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with Dom(A) = H1
0 (0, 1) ∩ H2(0, 1). Now (13) can be viewed as a condition on

the noise term (the covariance operator Q) for the strong asymptotic stability to
hold. For example, if η represents a noise white in both space and time then we
can take for Q the identity I and (13) is satisfied.

Our next aim is to describe a method based on the general ergodic theory of
Markov processes that allows to prove the strong asymptotic stability (and, also,
ergodic theorems) for nonlinear stochastic evolution equations. We shall utilize an
abstract result stated in Theorem 4 below which was obtained independently by
Stettner [63] and Seidler [61].

Theorem 4. Let
(
(Xt)t≥0, (P x)x∈H

)
be a Markov process in a Polish space H

with a transition probability function Pt(x, ·), t ≥ 0, x ∈ H, having an invariant
probability measure µ∗. Assume that all the measures Pt(x, ·), t > 0, x ∈ H, are
equivalent. Then

(i) for each bounded Borel function φ : H −→ R and every x ∈ H we have

lim
T→∞

1

T

∫ T

0

φ(Xt) dt =

∫

H

φdµ∗
P x-a.s. (15)

(ii) for every x ∈ H we have

|||Pt(x, ·) − µ∗||| −→ 0, t→ ∞. (16)

In particular, both (i) and (ii) imply that the invariant measure µ∗ is unique.

The assertion (15) is known as the pointwise ergodic theorem (or the strong
law of large numbers). As mentioned above, the condition (9) is an if and only
if condition for the equivalence of transition probability functions for the linear
equation (1). The simplest nonlinear case into which Theorem 4 can be applied
is the one allowing reduction of the nonlinear problem to a linear one by means
of a Girsanov type theorem. We shall present a simple result of this type now.
Consider a stochastic semilinear equation

dXt = AXt dt+ f(Xt) dt+ dWt, (17)

in the Hilbert space H , where A and W have the same meaning as in the equation
(1) and f : H −→ Im

(
Q1/2

)
satisfies

‖Q−1/2
(
f(x) − f(y)

)
‖ ≤ K‖x− y‖ (18)

for a K <∞ and all x, y ∈ H .

Theorem 5. Assume (2), (9) and (18). Then Pt(x, ·) and P̃t(x, ·) are equivalent
measures for every t > 0, x ∈ H, where P and P̃ denote the transition probability
functions for the solutions of the equations (17) and (1), respectively. If, more-
over, there exists an invariant measure µ∗ for the equation (17) then the strong
asymptotic stability (16) holds true.
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Theorem 5 can be proven as a corollary of Theorem 4; note that (9) yields
the equivalence of measures P̃t(x, ·) for t > 0, x ∈ H , and the equivalence
Pt(x, ·) ∼ P̃t(x, ·) follows from the Girsanov theorem. The condition (18) appears
here because the Girsanov factor has the form

exp

{∫ T

0

〈
Q− 1

2 f(Zt), dWt

〉
−

1

2

∫ T

0

∥∥Q− 1

2 f(Zt)
∥∥2

dt

}
(19)

for T > 0 (cf. [18]). Theorem 5 can be generalized to cover also nonlinear terms
which are not Lipschitz continuous or even only densely defined inH (cf. [52], [18]).
The main disadvantage of this approach is that the inclusion Im(f) ⊆ Im

(
Q1/2

)
is

required which makes the abstract results easily applicable only if Q is boundedly
invertible, that is, just for a cylindrical Wiener process W (typically it can repre-
sent a space-time white noise; see however [56] for examples of stochastic parabolic
equations in which a nonlinear term of the form Q1/2f occurs in a natural way in
the drift part of the equation).

For equations of the form (17) where the covariance Q is “too degenerate”
for the Girsanov theorem to be applied, it is sometimes possible to verify the
equivalence of transition probability functions by means of Lemma 6 below which
holds true even if the state space H is an arbitrary Polish space. Recall that
a Markov process is called strongly Feller if its transition probability function
Pt(x, Γ ) is continuous in the variable x for each fixed t > 0 and every Borel set Γ
in H . Furthermore, the Markov process is called irreducible if Pt(x, U) > 0 holds
for each t > 0, x ∈ H and U 6= ∅, U open in H .

Lemma 6. Assume that a Markov process is strongly Feller and irreducible. Then
the measures Pt(x, ·) are equivalent for t > 0, x ∈ H.

Note that both the strong Feller property and irreducibility are of independent
interest (for example, to investigate recurrence of the process, cf. [55] and [61]).

In the rest of the section we shall illustrate some methods which allow to verify
irreducibility or the strong Feller property for stochastic evolution equations. At
first we describe a method based on an argument of approximate controllability for
a deterministic evolution equation, which yields the irreducibility property for the
corresponding stochastic evolution equation. We again shall illustrate the method
in the simple case (17) where A and W are as above and f : H −→ H is assumed
to be Lipschitz continuous. Note that the mild solution to the equation (17) with
initial condition X0 = x ∈ H (which exists and is unique in this case) can be
written Xt = u(t, x; Z̃), t ≥ 0, where Z̃ solves the linear equation (1) with initial
condition Z̃0 = 0 and u(t, x;φ) is the solution of the integral equation

u(t, x;φ) = eAtx+

∫ t

0

eA(t−r)f(u(r, x;φ)) dr + φ(t), t ∈ [0, T ], (20)

with φ ∈ C0([0, T ];H) := {g ∈ C ([0, T ];H); g(0) = 0}. The method consists in
finding a suitable space X of trajectories such that the paths of the Gaussian
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process Z̃ belong a.s. to X , Z̃ induces a full Gaussian measure (that is, a measure
whose closed support is the whole space) in X , and u(·, x;φn) → u(·, x;φ) inC ([0, T ];H) as φn → φ in X . The irreducibility of the transition probability
function Pt(x, ·) for the equation (17) follows easily. If the nonlinear term f is
(globally) Lipschitz continuous on H it is natural to take X = C0([0, T ];H) and
it only remains to find conditions under which the measure induced by Z̃ in X
is full. Since the closed support of a Gaussian measure is just the closure of its
reproducing kernel we have a following result:

Theorem 7. Define a mapping K : L2(0, T ;H) −→ C0([0, T ];H) byK ψ(t) :=

∫ t

0

eA(t−r)Q1/2ψ(r) dr, t ∈ [0, T ].

If f is Lipschitz continuous and Im(K ) is dense in C0([0, T ];H) then the transition
probability function Pt(x, ·) corresponding to the equation (17) is irreducible.

Theorem 7 is a particular case of a result proven in [52] for the case of non-
Lipschitz and densely defined nonlinear terms f , which is applicable to stochastic
reaction-diffusion equations. More sophisticated versions of this method have been
applied, for example, to stochastic Burgers equation [12], stochastic Cahn-Hilliard
equation [10] and stochastic Navier-Stokes equation [24], [23].

Now we focus our attention on the strong Feller property of solutions to stochas-
tic evolution equations. The usual procedure of verification of the strong Feller
property in the finite-dimensional case utilizes the smoothing properties of the
Kolmogorov equation. A similar theory for Kolmogorov backward equation in in-
finite dimensions is being developed in recent years ([18], [8], and others). The
main tool to prove both existence and uniqueness of solutions and the required
smoothing properties is the concept of mild solutions to the backward Kolmogorov
equation, which we shall recall now. Basically, we follow the paper [8]. Assume (2),
(4) and let µ = N (0, Q∞) be the invariant measure for the linear equation (1)
and Tt its Markov transition semigroup considered on the space L2(H,µ), i.e.,
Ttφ(x) = Exφ(Zt), t ≥ 0, x ∈ H , φ ∈ L2(H,µ). Further, denote by Pt the Markov
transition semigroup defined by the nonlinear equation (17). Analogously to the
finite-dimensional case it can be expected that, under suitable conditions, the
semigroup Pt corresponds to solutions of the mild backward Kolmogorov equation

u(t, ·) = Ttφ+

∫ t

0

Tt−s〈f,Du(s, ·)〉ds, t > 0, (21)

where D denotes the Fréchet derivative. A precise statement is formulated now
(Cb(H) and C 1

b (H) denote the space of bounded continuous functions on H and
its subspace of functions having bounded and continuous Fréchet derivative on H ,
respectively).
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Theorem 8. Let f be bounded and continuous, assume (2), (4), (9) and

∫ T

0

∥∥Q−1/2
t eAt

∥∥L (H)
dt <∞ (22)

for some T > 0. Then for every bounded Borel function φ on H there exists a
unique solution u to (21) and u(t, ·) ∈ C 1

b (H), t > 0. Moreover, u(t, x) = Ptφ(x) ≡
Exφ(Xt), t > 0, x ∈ H, provided φ ∈ Cb(H). In particular, we have

|||Pt(x, ·) − Pt(y, ·)||| ≤ γ(t)‖x− y‖, t > 0, x, y ∈ H, (23)

where γ(t) := sup{‖DPtφ(z)‖; z ∈ H, φ ∈ Cb(H), |φ| ≤ 1} <∞, hence the strong
Feller property holds true.

For the proof see [8] or (in certain earlier version) [18], [15]. The assumption
of boundedness of f is not always essential for the strong Feller property and can
be weakened by suitable truncation procedures (see [52], [28]) so that stochastic
parabolic equations with polynomial-type nonlinearities could be included. The
important assumption is (22) which is further strengthening of (9) and means
certain “nondegeneracy of the noise” which, of course, is needed (even in finite-
dimensional state space) for the strong Feller property to hold. It can be shown
([15]) that if the covariance Q is boundedly invertible then (22) is satisfied.

Theorem 8 is applicable only to equations with additive noise (if the diffusion
term is a constant operator). Now we shall mention another method of establishing
the strong Feller property, which is useful also in the case of multiplicative noise.
The method was developed in [11] and is based on the so-called Elworthy formula
which we present in the simple case of equation (17) where Q is assumed to be
boundedly invertible and f is Lipschitz continuous and Gateaux differentiable on
H with the Gateaux derivative continuous as a mapping from H into the spaceL (H) endowed with the strong operator topology.

Proposition 9. Under the above hypotheses, we have that Ptφ ∈ C 1(H) for each
t > 0, φ bounded Borel, and

〈DPtφ(x), h〉 =
1

t
Ex

(
φ(Xt)

∫ t

0

〈Q−1/2Xh
s , dWs〉

)
(24)

holds for x, h ∈ H, where Xh
t denotes the directional derivative in the L2-sense of

the solution Xt to (17) in the direction h ∈ H.

For the proof see [11]. The usefulness of the formula (24) lies with the fact that
it allows to estimate the value of ‖DPtφ(x)‖ for a fixed t > 0, independently of
φ ∈ Cb(H), |φ| ≤ 1 and the strong Feller property follows in the same way as in
(23).

In fact, the method is applicable to more general cases as well as to some
special equations which are rather difficult to handle (usually it is possible to use
suitable approximations of the equation, which can be typically finite-dimensional
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approximations or approximations by smooth nonlinearities). Thus, in [60] the
strong Feller property has been proven for stochastic semilinear equations with
multiplicative noise (with boundedly invertible diffusion coefficients). In [12] and
[10] the stochastic Burgers and Cahn-Hilliard, respectively, equations are treated.
The 2-dimensional stochastic Navier-Stokes equation is dealt with in [24] and [23].
In all those cases the limit and ergodic properties of solutions listed in Theorem 4
are proved in respective state spaces.

4 Weak asymptotic stability

However efficient are the methods of investigating the long time behaviour of
Markov processes based on the strong Feller property, they are relevant for a rather
limited class of equations that are, roughly speaking, subject to a sufficiently non-
degenerated noise. But such a nondegeneracy is necessary neither for the existence,
nor for uniqueness and attractiveness of invariant measures. To indicate what may
happen, let us consider a simple linear equation

dZ = AZ dt+ dW (25)

in a separable Hilbert space H , where W is a Wiener process in H with a covari-
ance operator Q and A : Dom(A) −→ H is a self-adjoint operator. Assume that
the hypotheses (10)–(12) of Example 3 are satisfied. Denote by P = Pt(x, ·) the
transition function of the Markov process defined by (25). As above we set

Qt =

∫ t

0

eArQeAr dr, 0 ≤ t ≤ ∞.

If (9) holds, that is

Im
(
eAt

)
⊆ Im

(
Q

1/2
t

)
for each t > t0 (26)

for a t0 ≥ 0, then the kernels Pt(x, ·) are strong Feller and the theory discussed in
Section 3 applies, so let us assume that (26) is violated. (Note that this is possible
only in the “degenerate” case when Q is noninvertible, cf. [18], Remark B.9.) Then
we can always find an x0 ∈ H satisfying

eAtx0 /∈ Im
(
Q

1/2
t

)
for every t > 0. (27)

The semigroup (eAt) is exponentially stable, so there exists a unique invariant
measure µ∗ for (25), namely µ∗ = N (0, Q∞), see e.g. [18], Theorem 11.11(ii). At
the same time, Pt(x0, ·) = N (eAtx0, Qt), hence the measures Pt(x0, ·) and µ∗ are
mutually singular according to (27) and the Hájek-Feldman theorem (cf. e.g. [41],
Theorems II.3.1 and II.3.4). This implies |||Pt(x0, ·) − µ∗||| = 2 and the measures
Pt(x0, ·) cannot converge to the invariant measure in the total variation norm.
Moreover, we see that nor the weaker assertion

lim
t→∞

Pt(x0, B) = µ∗(B) for any B ⊆ H Borel (28)
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holds true. Indeed, we know that there are Borel sets An, n ≥ 1, such that
µ∗(An) = 0, Pn(x0, An) = 1, so setting B =

⋃
n≥1An we obtain a counterex-

ample to (28).
On the other hand we have

Pt(y, ·)
w∗

−−−−→
t→∞

µ∗ for any y ∈ H

by [49], Proposition 3.1, or [18], Theorem 11.11(i), therefore the invariant measure
is globally asymptotically stable with respect to the narrow convergence. Here-

after, we denote by
w∗

−−→ the narrow (or weak) convergence of finite (signed) Borel
measures on H , that is,

µα
w∗

−−→ µ if and only if

∫

H

f dµα −→

∫

H

f dµ ∀f ∈ Cb(H).

In finite-dimensional spaces, Lyapunov functions techniques are the basic tool
for investigating stability properties of solutions to SDE’s. A. Ichikawa [32] em-
ployed such an argument to establish uniqueness of an invariant measure for
stochastic evolution equations, and later the procedure was extended to yield at-
tractiveness as well, see the discussion in Section 2 above. The proofs based on
Lyapunov functions have usually a lucid structure and lead, in a straightforward
manner, to sufficient conditions for stability in terms of the coefficients of the
equation. The known sufficient conditions, however, may be often too restrictive
to cover interesting models. Furthermore, Itô’s formula is not directly applicable
to mild solutions of stochastic partial differential equations, nontrivial approxi-
mations are needed, and the class of admissible Lyapunov functions may be too
narrow for useful applications, in particular if the Wiener process is cylindrical.
Hence we content ourselves with stating a single typical result.

Let us consider a stochastic evolution equation

dXt =
{
AXt + f(Xt)

}
dt+ σ(Xt) dWt (29)

in a separable Hilbert space H , where A : Dom(A) −→ H is an infinitesimal
generator of a C0-semigroup on H , W is a Wiener process in another (real, sepa-
rable) Hilbert space U , with the covariance operator Q nuclear, and the mappings
f : H −→ H , σ : H −→ L (U,H) are globally Lipschitz continuous. Denote byC 2(H) the set of all real valued functions on H having continuous the first and
second Fréchet derivatives.

Theorem 10 ([49], Corollary 2.3). Let there exist a function V ∈ C 2(H) sat-
isfying:

i) V (0) = 0 and
inf

‖y‖≥r
V (y) > 0 for any r > 0;

ii) for some k <∞, p > 0 and any y ∈ H we have

V (y) + ‖DV (y)‖ + ‖D2V (y)‖ ≤ k
(
1 + ‖y‖p

)
;
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iii) there exists a > 0 such that

〈
DV (x− y), Ax−Ay + f(x) − f(y)

〉

+
1

2
Tr

{(
σ(x) − σ(y)

)∗
D2V (x− y)

(
σ(x) − σ(y)

)
Q

}
≤ −aV (x− y)

for all x, y ∈ Dom(A).
Then (

Pt(x, ·) − Pt(y, ·)
) w∗

−−−−→
t→∞

0

for any x, y ∈ H.

In particular, if there exists an invariant measure for (29) then it is globally
asymptotically stable for the narrow convergence and, a fortiori, unique.

According to Corollary 2.8 in [49], the hypotheses of Theorem 10 are fulfilled
with the natural choice V = ‖ · ‖p (for a suitable p > 0), provided

〈Ax, x〉 ≤ β‖x‖2 for a β ∈ R and every x ∈ Dom(A),
∥∥Q1/2

(
σ(x) − σ(y)

)∗
(x− y)

∥∥ ≥ α‖x− y‖2 for an α ≥ 0,

and

β + Lip(f) +
1

2
Lip(σ)2 TrQ < α2,

Lip(Υ ) denoting the Lipschitz constant of a mapping Υ .

As we have explained in Section 2, most of the recent results on the weak
stability have been obtained by the “dissipativity method” of G. Da Prato and
J. Zabczyk. To show the core of the method, we sketch here a proof of one of their
results concerning a stochastic partial differential equation

dX =
(
AX + f(X)

)
dt+ σ dW (30)

with an additive noise in a separable Hilbert space H . We assume that W is
a standard cylindrical Wiener process in a Hilbert space U , σ ∈ L (U,H), and
A : Dom(A) −→ H is a closed linear operator. To state the other hypotheses, we
need a few additional definitions. If E is a Banach space, we denote by ∂‖x‖E

the subdifferential of the norm ‖ · ‖E at the point x ∈ E. We say that a mapping
γ : Dom(γ) ⊆ E −→ E is dissipative, provided for any x, y ∈ Dom(γ) there exists
z∗ ∈ ∂‖x− y‖E such that

z∗
(
γ(x) − γ(y)

)
≤ 0.

A dissipative mapping γ is called m-dissipative, if Im(λI − γ) = E for a λ > 0.
Let G ⊆ E be a subspace, a part γG of the mapping γ on G is defined by

Dom(γG) = {x ∈ Dom(γ) ∩G; γ(x) ∈ G}, γG = γ on Dom(γG).
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For completeness, we list here assumptions under which there exists a unique
(generalized) mild solution of the equation (30) for any initial condition X(0) =
x ∈ H , and (30) defines a Feller Markov process in H . We suppose:

1) There exists η ∈ R such that the mappings A − ηI and f − ηI are m-
dissipative on H.
2) There exists a reflexive Banach space K densely and continuously imbed-
ded in H, and (A− ηI)K , (f − ηI)K are m-dissipative on K.
3) Dom(f) ⊇ K and f maps bounded set in K into bounded sets in H.
4) The process

WA(t) =

∫ t

0

eA(t−r)σ dW (r), t ≥ 0,

is Dom(fK)-valued, with paths continuous in H, and

sup
t∈[0,T ]

{
‖WA(t)‖K + ‖f(WA(t))‖K

}
<∞ almost surely

for every T > 0.
Let us note that the introduction of an auxiliary spaceK is inevitable as interesting
nonlinearities f are not defined (or do not behave well) on the basic state space
H (compare Example 12 below).

Now we are prepared to state a theorem on existence and stability of an in-
variant measure (see Theorem 2.3 in [19], cf. also [20], Theorem 6.3.3).

Theorem 11. Let there exist ω1, ω2 ∈ R such that ω ≡ ω1 + ω2 > 0 and the
mappings A+ ω1I, f + ω2I are dissipative on H. Suppose that

sup
t≥0

E
{
‖WA(t)‖H + ‖f(WA(t))‖H

}
<∞.

Then there exists a unique invariant measure µ for (30) and for any y ∈ H we
have

Pt(y, ·)
w∗

−−−→
t→∞

µ.

Moreover, there exists a constant L <∞ such that

∣∣∣∣
∫

H

g dPt(y, ·) −

∫

H

g dµ

∣∣∣∣ ≤ L
(
1 + ‖y‖

)
e−ωt/2Lip(g) (31)

for any y ∈ H, t > 0 and any bounded Lipschitz function g : H −→ R.

The procedure used in the proof, that is known as the “remote start method”,
yields in the present case existence and uniqueness of the invariant measure at the
same time. We shall consider the equation (30) on the whole real line R, that is,
we shall work with solutions to

dXt =
(
AXt + f(Xt)

)
dt+ σ dW̃t, (32)
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where

W̃ (t) =

{
W (t), t ≥ 0,

Y (−t), t < 0,

Y being a standard cylindrical Wiener process independent of W . Denote by
X(t; s, y), t ≥ s, the unique solution of (32) with the initial datum X(s; s, y) = y.
First, we derive an a priori estimate

E‖X(t; s, y)‖ ≤ c+ ‖y‖ (33)

valid for all s < 0, t ≥ s, y ∈ H . Setting

Ψ(t) = X(t; s, y) −

∫ t

s

eA(t−r)σ dW̃ (r)

we see that Ψ pathwise solves the equation

dΨ

dt
= AΨ + f

(
Ψ +

∫ t

s

eA(t−r)σ dW̃ (r)

)
, Ψ(s) = y.

Using the dissipativity hypothesis of Theorem 11 one easily finds that

d−

dt
‖Ψ(t)‖ ≤ −ω‖Ψ(t)‖ +

∥∥∥∥f
(∫ t

s

eA(t−r)σ dW̃ (r)

)∥∥∥∥,

which yields the desired estimate (33).
Analogously, for v < s < 0 one arrives at an estimate

E‖X(t; s, y)−X(t; v, y)‖ ≤ e−ω(t−s)
(
2‖y‖ + c

)
, t ≥ s, (34)

and it follows that the net {X(0; s, y), s ≤ 0} is Cauchy in L1(Ω;H) as s→ −∞.
Let p ∈ L1(Ω;H) be its limit, then the law µ of p is an invariant measure for
(30): The L1-convergence obviously implies the narrow convergence, therefore (P ∗

t

denoting the adjoint Markov semigroup)

P ∗
t δy = Pt(y, ·) = Law(X(t; 0, y)) = Law(X(0;−t, y))

w∗

−−−−→
t→+∞

Law(p) = µ,

and, since the Markov process solving (30) is Feller, we obtain

P ∗
s µ = P ∗

s

(
lim

t→∞
P ∗

t δy

)
= lim

t→∞
P ∗

t+sδy = µ

for any s ≥ 0. The estimate (31) on the speed of convergence now follows from
(34) in a straightforward way.

A similar theorem holds for equations with multiplicative noise, that is, for
equations of the form (29), where W is now assumed to be a standard cylindrical
Wiener process, see [13], Theorem 1, and [20], Theorem 6.3.2. We shall not cite
the result precisely, let us only note that in this case the dissipativity assumption
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includes also the Yosida approximations An = nA(nI − A)−1 of the operator A
and reads as follows:

〈
An(x− y) + f(x) − f(y), x− y

〉
+ ‖σ(x) − σ(y)‖2

HS ≤ −̟‖x− y‖2

for a ̟ > 0 and any x, y ∈ H and n ∈ N.
We finish this section with an example which is very particular case of the

example discussed in [19], Section 4, and in [20], §11.4, this example being based
on Theorem 11.

Example 12. Let us consider a stochastic parabolic equation

dX(t, ξ) =
{
(∆− α)X(t, ξ) + f(X(t, ξ))

}
dt+ dW (t, ξ), ξ ∈ R, t ≥ 0, (35)

where α > 0 andW is a standard cylindrical Wiener process in L2(R). Assume that
f : R −→ R, f = f0 + f1, f0 being (globally) Lipschitz continuous, ξ 7→ f1(ξ) + bξ
is a continuous decreasing function for a b ∈ R, and

|f1(ξ)| ≤ c(1 + |ξ|p)

for some p ≥ 1, c < ∞ and every ξ ∈ R. (For example, if f1 is an odd degree
polynomial with a negative leading coefficient,

f1(ξ) = −ξ2k+1 +
2k∑

j=0

ajξ
j ,

then the assumptions are satisfied.) Under the above hypotheses, there exists a
unique (generalized) mild solution of (35) in the weighted space L2(R; e−κ|ξ| dξ),
for any κ > 0. Moreover, suppose that f1 is decreasing and

α− Lip(f0) > 0.

Then there exists κ0 > 0 such that for any κ ∈ ]0,κ0[ the Markov process de-
fined by (35) in the space L2(R; e−κ|ξ| dξ) has a unique invariant measure, and an
estimate of the type (31) holds for any ω ∈ ]0, 2(α− Lip(f0))[.

References
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