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Abstract. Dirichlet, Neumann and Robin problem for the Laplace equa-
tion is investigated on the open set with holes and nonsmooth boundary.
The solutions are looked for in the form of a double layer potential and a
single layer potential. The measure, the potential of which is a solution of
the boundary-value problem, is constructed.
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Suppose that G ⊂ Rm (m ≥ 2) is an open set with a non-void compact bound-
ary ∂G such that ∂G = ∂(cl G), where cl G is the closure of G. Fix a nonnegative
element λ of C′(∂G) (the Banach space of all finite signed Borel measures sup-
ported in ∂G with the total variation as a norm) and suppose that the single layer
potential Uλ is bounded and continuous on ∂G. (In R2 it means that λ = 0. If
G ⊂ Rm, (m > 2), ∂G is locally Lipschitz, λ = fH, where H is the surface measure
on ∂G and f is a nonnegative bounded measurable function, then Uλ is bounded
and continuous.) Here

Uν(x) =

∫

Rm

hx(y) dν(y),
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where ν ∈ C′(∂G),

hx(y) = (m− 2)−1A−1|x− y|2−m for m > 2,

A−1 log |x− y|−1 for m = 2,

A is the area of the unit sphere in Rm.
If G has a smooth boundary,u ∈ C1(cl G) is a harmonic function on G and

∂u

∂n
+ fu = g on ∂G,

where f, g ∈ C(∂G) (the space of all bounded continuous functions on ∂G equipped
with the maximum norm) and n is the exterior unit normal of G then for φ ∈ D
(the space of all compactly supported infinitely differentiable functions in Rm)

∫

∂G

φg dHm−1 =

∫

G

∇ φ · ∇ u dHm +

∫

∂G

φfu dHm−1. (1.med)

Here Hk is the k-dimensional Hausdorff measure normalized such that Hk is the
Lebesgue measure in Rk. If we denote by H the restriction of Hm−1 on ∂G and
by NGu the distribution

〈φ,NGu〉 =

∫

G

∇φ · ∇u dHm (2.med)

then (1.med) has the form
NGu+ fuH = gH. (3.med)

HereNGu is a characterization in the sense of distributions of the normal derivative
of u.

The formula (3.med) motivates the following definition of the solution of the Robin
problem for the Laplace equation

∆u = 0 in G,

NGu+ uλ = µ,
(4.med)

where µ ∈ C′(∂G) .
We introduce in Rm the fine topology, i.e. the weakest topology in which all

superharmonic functions in Rm are continuous. This topology is stronger than the
ordinary topology.

If u is a harmonic function on G such that
∫

H

|∇u| dHm <∞ (5.med)
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for all bounded open subsets H of G we define the weak normal derivative NGu
of u as a distribution

〈ϕ,NGu〉 =

∫

G

∇ϕ · ∇u dHm

for ϕ ∈ D.

Let µ ∈ C′(∂G).Now we formulate the Robin problem for the Laplace equation
(4.med) as follows: Find a function u ∈ L1(λ) on cl G,the closure of G, harmonic on
G and fine continuous in λ-a. a. points of ∂G for which ∇u is integrable over all
bounded open subsets of G and NGu+ uλ = µ.

The single layer potential Uν, where ν ∈ C′(∂G), has all these properties and if
we look for a solution of the Robin problem in the form of the single layer potential
we obtain the equation

NGUν + (Uν)λ = µ.

It was shown by J. Král for λ = 0 (see [10]) and independently by Yu. D.
Burago, V. G. Maz’ya (see [2]) and by I. Netuka ([20]) for a general λ that NGUν+
(Uν)λ ∈ C′(∂G) for each ν ∈ C′(∂G) if and only if V G <∞,where

V G = sup
x∈∂G

vG(x),

vG(x) = sup{

∫

G

∇ φ · ∇ hx dHm;φ ∈ D, |φ| ≤ 1, spt φ ⊂ Rm − {x}}.

There are more geometrical characterizations of vG(x) which ensure V G < ∞ for
G convex or for G with ∂G ⊂ ∪k

i=1Li,where Li are (m− 1)-dimensional Ljapunov
surfaces (i.e. of class C1+α). Denote

∂eG = {x ∈ Rm; d̄G(x) > 0, d̄Rm−G(x) > 0}

the essential boundary of G, where

d̄M (x) = lim sup
r→0+

Hm(M ∩ U(x; r))

Hm(U(x; r))

is the upper density of M at x, U(x; r) is the open ball with the centre x and the
radius r. Then

vG(x) =
1

A

∫

∂U(0;1)

n(θ, x) dHm−1(θ),

where n(θ, x) is the number of all points of ∂eG∩{x+ tθ; t > 0} (see [7]). It means
that vG(x) is the total angle under which G is visible from the point x. This
expression is a modification of the similar expression in [9]. Let us recall another
characterization of vG(x) using a notion of an interior normal in Federer’s sense.

If z ∈ Rm and θ is a unit vector such that the symmetric difference of G and
the half-space {x ∈ Rm; (x − z) · θ > 0} has m-dimensional density zero at z
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then nG(z) = θ is termed the interior normal of G at z in Federer’s sense. (The
symmetric difference of B and C is equal to (B − C) ∪ (C − B).) If there is no
interior normal of G at z in this sense, we denote by nG(z) the zero vector in Rm.
The set {y ∈ Rm; |nG(y)| > 0} is called the reduced boundary of G and will be

denoted by ∂̂G. Clearly ∂̂G ⊂ ∂eG.
If Hm−1(∂eG), the perimeter of G, is finite, then Hm−1(∂eG− ∂̂G) = 0 and

vG(x) =

∫

b∂G

|nG(y) · ∇hx(y)| dHm−1(y)

for each x ∈ Rm.
If G has a piecewise-C1+α boundary, then V G < ∞. But there is a domain G

with C1 boundary and V G = ∞ (see [18]). On the other hand there is a domain G
with V G < ∞ and Hm(∂G) > 0. So open sets with a locally Lipschitz boundary
and open sets with V G <∞ are incomparable.

Suppose now that V G <∞.Then the operator

τ : ν 7→ NG(Uν) + (Uν)λ

is a bounded linear operator on C′(∂G) and

τν(M) =

∫

∂G∩M

Uν dλ+

∫

∂G∩M

dG(x) dν(x)−

∫

∂G

∫

∂G∩M

nG(y) · ∇hx(y) dHm−1(y) dν(x).

The Robin problem NG(Uν) + (Uν)λ = µ leads to the equation

τν = µ.

Denote by H the restriction of Hm−1 on ∂̂G. Then H(∂G) < ∞. If λ = fH,
ν = hH ∈ C′(∂G), then

τ(hH) = (Th)H,

where

Th(x) =
1

2
h(x) −

∫

∂G

nG(x) · ∇hy(x)h(y) dH(y) + f(x)U(hH)(x).

Theorem 1. Let the Fredholm radius of
(
τ − (1/2)I

)
be greater than 2, µ ∈

C′(∂G). Then there is a harmonic function u on G, which is a solution of the
Robin problem

NGu+ uλ = µ, (6.med)
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if and only if µ ∈ C′

0(∂G) (the space of such ν ∈ C′(∂G) that ν(∂H) = 0 for each
bounded component H of cl G for which λ(∂H) = 0). If µ ∈ C′

0(∂G) then there is
a unique ν ∈ C′

0(∂G) such that

τν = µ (7.med)

and for such ν the single layer potential Uν is a solution of (6.med). If

β >
1

2
(V G + 1 + sup

x∈∂G

Uλ(x)), (8.med)

then

ν =

∞∑

n=0

(
βI − τ

β

)n
µ

β
(9.med)

and there are q ∈ (0, 1), C ∈< 1,∞) such that

∥∥∥∥

(
τ − βI

β

)n

µ

∥∥∥∥ ≤ Cqn‖µ‖

for µ ∈ C′

0(∂G) and a natural number n. If λ = 0 then

ν = µ+

∞∑

n=0

(2τ − I)n(2τ)µ (10.med)

and there are q ∈ (0, 1), C ∈< 1,∞) such that

‖(2τ − I)n(2τ)µ‖ ≤ Cqn‖µ‖

for µ ∈ C′

0(∂G) and a natural number n.

Remark 2. The condition that the Fredholm radius of
(
τ − (1/2)I

)
is greater than

2 does not depend on λ. In [15] it was shown that this condition has a local
character. It is well-known that this condition is fulfilled for sets with a smooth
boundary (of class C1+α) (see [10]) and for convex sets (see [23]). J. Radon ([27])
proved this condition for open sets with “piecewise-smooth” boundary without
cusps in the plane. R. S. Angell, R. E. Kleinman, J. Král and W. L. Wendland
proved that rectangular domains (i.e. formed from rectangular parallelepipeds)
in R3 have this property (see [1], [12]). A. Rathsfeld showed in [28], [29] that
polyhedral cones in R3 have this property. (By a polyhedral cone in R3 we mean
an open set Ω whose boundary is locally a hypersurface (i.e. every point of ∂Ω
has a neighbourhood in ∂Ω which is homeomorphic to R2) and ∂Ω is formed by
a finite number of plane angles. By a polyhedral open set with bounded boundary
in R3 we mean an open set Ω whose boundary is locally a hypersurface and ∂Ω is
formed by a finite number of polygons.) N. V. Grachev and V. G. Maz’ya obtained
independently analogical result for polyhedral open sets with bounded boundary
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in R3 (see [6]). (Remark that there is a polyhedral open set in R3 which has not a
locally Lipschitz boundary, for example G = {[x1, x2, x3]; |x1| < 3, |x2| < 3,−3 <
x3 < 0} ∪ {[3t, ty2, ty3]; 0 < t < 1, 1 < |y2| < 2, 0 ≤ y3 < 1}. (The boundary of
this set is not a graph of a function in a neighbourhood of the point [0, 0, 0].)) The
condition that the Fredholm radius of

(
τ − (1/2)I

)
is greater than 2 is fullfiled

for G ⊂ R3 with “piecewise-smooth” boundary, i.e. such that for each x ∈ ∂G
there are r(x) > 0, a domain Dx which is polyhedral or smooth or convex or a
complement of a convex domain and a diffeomorphism ψx : U(x; r(x)) → R3 of
class C1+α,α > 0, such that ψx(G ∩ U(x; r(x))) = Dx ∩ ψx(U(x; r(x))) (see [15]).
N. V. Grachev and V. G. Maz’ya proved this condition for several types of sets
with “piecewise-smooth” boundary in general Euclidean space (see [3,4,5]).

Remark 3. Let the Fredholm radius of
(
τ − (1/2)I

)
be greater than 2. Then it

holds Hm−1(∂G) < ∞ and H is the restriction of Hm−1 on ∂G. If λ = fH, µ =
gH ∈ C′(∂G), then ν = hH, where h ∈ L1(H). If

β >
1

2
(V G + 1 + sup

x∈∂G

Uλ(x)),

then

h =

∞∑

n=0

(
βI − T

β

)n
g

β

and there are q ∈ (0, 1), C ∈< 1,∞) such that
∥∥∥∥

(
T − βI

β

)n

g

∥∥∥∥ ≤ Cqn‖g‖

for a natural number n and g ∈ L1(H) such that gH ∈ C′

0(∂G) . If f = 0, then

h = g +

∞∑

n=0

(2T − I)n(2T )g

and there are q ∈ (0, 1), C ∈< 1,∞) such that

‖(2T − I)n(2T )g‖ ≤ Cqn‖g‖

for a natural number n and g ∈ L1(H) such that gH ∈ C′

0(∂G).

Now, let us concentrate on the Dirichlet problem for the Laplace equation

∆u = 0 in G,

u = g on ∂G,
(11.med)

where g ∈ C(∂G) is a continuous function on the boundary of G. Looking for a
solution in the form of the double layer potential

Wf(x) =

∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y) (12.med)
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is a classical method. It was shown by J. Král and independently by Yu. D. Burago
and V. G. Maz’ya that it is possible to define the double layer potential (12.med) on G
as a continuously extendable function on cl G for each density f ∈ C(∂G) if and
only only if V G < ∞. (This condition we obtained for the Robin problem, too.)
Under this condition nG(y) in the expession (12.med) is the interior normal of G at y
in Federer’s sense. If we look for the solution of the Dirichlet problem (11.med) in the
form of the double layer potential (12.med) with a continuous density on the boundary
of G we obtain the integral operator

Df(x) = (1 − dG(x))f(x) +

∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y).

on C(∂G). The adjoint operator ofD is the operator corresponding to the Neumann
problem for the Laplace operator on the complementary domain to G. Noting that
the Fredholm radius of (D − 1

2I) is equal to the Fredholm radius of
(
τ − (1/2)I

)

we obtain as a consequence of the theorem for the Neumann problem the following
result:

Theorem 4. Let V G <∞, the Fredholm radius of (D− 1
2I) be greater than 2. If

the set Rm −G is unbounded and connected and g ∈ C(∂G), then the double layer
potential

Wf(x) =

∫

∂G

f(y)nG(y) · ∇hx(y) dHm−1(y)

is a solution of the Dirichlet problem for the Laplace equation with the boundary
condition g, where

f = g +

∞∑

j=0

(2D − I)j2Dg.

The condition that the set Rm − G is unbounded and connected is necessary
for expressing the solution of the Dirichlet problem for the Laplace equation in
the form of the double layer potential for each boundary condition. If we want to
calculate the solution for an open set with holes we must modify a double layer
potential. Suppose now that the dimension of the space Rm is greater than 2. If
we look for a solution of the Dirichlet problem in the form of the sum of the single
layer potential and the double layer potential with the same density we obtain
the integral operator on the space of all continuous functions in ∂G the adjoint
operator of which is the operator corresponding to some Robin problem for the
Laplace equation on the complementary domain and we obtain the following result
as a consequence of the theorem on the Robin problem.

Theorem 5. Let m > 2, V G < ∞, the Fredholm radius of (D − 1
2I) be greater

than 2. If g ∈ C(∂G) then Wf + U(fH) is a solution of the Dirichlet problem for
the Laplace equation with the boundary condition g, where

f =

∞∑

n=0

(
βI − V

β

)n
g

β
,
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V g = Dg + U(gH),

β >
1

2
(V G + 1 + sup

x∈∂G

UH(x)).

References

1. R. S. Angell, R. E. Kleinman, J. Král, Layer potentials on boundaries with corners
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27. J. Radon, Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad.

Wiss. Wien, 128, 1919, 1123–1167.
28. A. Rathsfeld, The invertibility of the double layer potential in the space of continu-

ous functions defined on a polyhedron. The panel method, Applicable Analysis, 45,
(1992), 1–4, 135–177.

29. A. Rathsfeld, The invertibility of the double layer potential in the space of continuous
functions defined on a polyhedron. The panel method. Erratum, Applicable Analysis,
56 (1995), 109–115.


		webmaster@dml.cz
	2012-05-10T12:31:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




