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1 Introduction

Integral inequalities play an important role in the theory of differential, integral
and integrodifferential equations. One can hardly imagine these theories without
the well-known Gronwall inequality and its nonlinear version Bihari inequality [1].
However these inequalities are not directly applicable to integral equations with
weakly singular kernels of the form

x(t) = ξ(t) +

∫ t

0

K(t, s)f(s, x(s))ds, x ∈ X, (1.mdv)

where X is a Banach space, K(t, s) : X → X is a linear operator satisfying the
condition

||K(t, s)|| ≦
M

(t− s)α
||v||, v ∈ X, (2.mdv)
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for t > s ≧ 0, α > 0,M > 0 are constants, ξ, f are continuous maps. Such
equations appear e.g. in the geometric theory of parabolic differential equations.
Basics of this theory are described in the well-known book by D. Henry [4] (see
also the book by J. K. Hale [3]).

Many boundary value problems for parabolic PDEs can be written as a Cauchy
initial value problem

du

dt
+Au = f(t, u), u ∈ X,

u(0) = u0 ∈ X,

(3.mdv)

where X is an appropriate Banach space and A : X → X is a special linear
operator, so called sectorial operator (for the definition see [4, Definition 1.3.1]).
For any sectorial operatorA there is a real number c such that ifA1 = A+cI, where
I is the identity mapping, then Re σ(A1) > 0 (i.e. Re λ > 0 for any λ ∈ σ(A1)
— the spectrum of the operator A1). One can define a fractional power Aα

1 of A1

as the inverse of A−α
1 := 1

Γ (α)

∫

∞

0 tα−1e−A1tdt for α > 0. If Xα := D(Aα
1 ) — the

domain of Aα
1 and ||x||α := ||Aα

1 x||, x ∈ Xα, then (Xα, ||.||α) is a Banach space
(see [4]).

By [4, Theorem 1.3.4], if A is a sectorial operator then −A is the infinitesimal
generator of an analytic semigroup {e−tA}t≧0,

d
dt
e−tA = −Ae−tA for t > 0 and if

Re σ(A) > b > 0 then

||e−tAu||α := ||Aα
1 e

−tAu|| ≦
d

tα
e−bt||u||, t > 0 (4.mdv)

for any u ∈ Xα, where d > 0 is a constant.

Definition 1 (see [3] and [7]). Let A : X → X be a sectorial operator and
there is an α ∈ 〈0, 1) such that the map f : R×Xα → X, (t, u) 7→ f(t, u) is locally
Hölder in t and locally Lipschitz in u. A solution of (3.mdv) on the interval 〈0, T ) (0 <
T ≦ ∞) is a continuous function u : 〈0, T ) → Xα with u(0) = u0 ∈ Xα such that
the map f(., u(.)) : 〈0, T ) → X, t→ f(t, u(t)) is continuous, u(t) ∈ D(A), t ∈ 〈0, T )
and u satisfies (3.mdv) on (0, T ).

By M. Miklavčič [7] a solution u(t) of (3.mdv) in the sense of Definition 1 coincides
with those solutions of the integral equations

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)f(s, u(s))ds, 0 < t ≦ T, (5.mdv)

for which u : 〈0, T ) → Xα is continuous and f(., u(.)) : 〈0, T ) → X, t → f(t, u(t))
is continuous.

If Re σ(A) > b > 0 then from (4.mdv), (5.mdv) it follows that

||u(t)||α ≦
ce−bt

tα
||u0|| + de−bt

∫ t

0

ebt

(t− s)α
||f(s, u(s))||ds. (6.mdv)
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If
||f(v)|| ≦ Q||v||α, v ∈ Xα, (7.mdv)

a(t) = c
tα ||u0||, v(t) = ||u(t)||αe

bt and c = dQ, then (6.mdv) yields

v(t) ≦ a(t) + c

∫ t

0

(t− s)β−1v(s)ds, t ∈ I = 〈0, T ), (8.mdv)

where β = 1 − α, α > 0. By [4, Lemma 7.1.1]

v(t) ≦ Θ

∫ t

0

E
′

β(Θ(t − s))a(s)ds, t ∈ I, (9.mdv)

where Θ = (cΓ (β))
1
β , Rβ(z) =

∑

∞

n=0
znβ

Γ (nβ+1) , Γ is the gamma-function and finally

E
′

β(z) =
dEβ(z)

dz
.

The estimate (9.mdv) is obviously complicated and it is obtained in [4] by an itera-
tive argument not applicable to the case of nonlinear integral inequalities. In the
paper [6] the author developed a new method of a reduction of the inequality (8.mdv)
as well as some nonlinear singular inequalities to the classical Gronwall and Bihari
inequalities, respectively. Using this method we shall analyze an inequality of the
form

ψ(t) ≦ a(t) + b(t)

∫ t

0

(t− s)β−1sγ−1ψ(s)mds, t ∈ I = 〈0, T ), (10.mdv)

where 0 < T ≦ ∞ and m > 1 with the aim to prove a stability theorem for the
equation (3.mdv).

2 Stability theorem

First let us formulate a consequence of a result by G. Butler and T. Rogers pub-
lished in [2] (see also [5, Theorem 1.3.8]) as the following lemma.

Lemma 2. Let a(t), b(t),K(t), ψ(t) be nonnegative, continuous function on I =
〈0, T ) (0 < T ≦ ∞), ω : 〈0,∞) → R be a continuous, nonnegative and nonde-

creasing function, ω(0) = 0, ω(u) > 0 for u > 0 and let A(t) = max0≦s≦t a(s),

B(t) = max0≦s≦t b(s). Assume that

ψ(t) ≦ a(t) + b(t)

∫ t

0

K(s)ω(ψ(s))ds, t ∈ I. (11.mdv)

Then

ψ(t) ≦ Ω−1[Ω(A(t)) +B(t)

∫ t

0

K(s)ds], t ∈ 〈0, T1〉, (12.mdv)

where Ω(v) =
∫ v

v0

dσ
ω(σ) , v ≧ v0 > 0, Ω−1 is the inverse of Ω and T1 > 0 is such

that Ω(A(t)) +B(t)
∫ T

0 K(s)ds ∈ D(Ω−1) for all t ∈ 〈0, T1〉.
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Lemma 3. Let a(t), F (t), ψ(t), b(t) be continuous, nonnegative functions on I =

〈0, T ) (0 < T ≦ ∞), β > 0, γ > 0,m > 1 and ψ(t) satisfies the inequality (10.mdv).

Then the following assertions hold:

(1) If β > 1
2 , γ > 1 − 1

2p
for some p > 1 and ε > 0 then

ψ(t) ≦ eεtΦε(t), (13.mdv)

where Φε(t) = A1(t)
1
2q [1 − (m− 1)Ξ1(t, ε)]

1
2q(1−m) ,

Ξ1(t, ε) = A1(t)
m−1B1(t, ε)

∫ t

0 F (s)2qe2qmεsds,

A1(t) = 22q−1 max0≦s≦t a(s)
2q,

B1(t, ε) = 22q−1K(ε)qL(ε)
q
p max0≦s≦t b(s)

2q,K(ε) = Γ (2β−1)
(2ε)2β−1 ,

L(ε) = Γ ((2γ−2)p+1)

(pε)(2γ−2)p+1 ,
1
p

+ 1
q

= 1 and t ∈ I is such that Φε(t) is defined.

(2) Let β = 1
1+z

for some z ≧ 1, γ > 1− 1
kq

, where k > 0, q = z + 2 and let ε > 0.

Then

ψ(t) ≦ eεtΨε(t), (14.mdv)

where Ψε(t) = A2(t)
1

rq [1 − (m− 1)Ξ2(t, ε)]
1

rq(1−m ,

Ξ2(t, ε) = A2(t)
m−1B2(t, ε)

∫ t

0
F (s)rqemqrεsds,

A2(t) = 2rq−1 max0≦s≦t a(s)
rq,

B2(t, ε) = 2rq−1P (ε)max0≦s≦t b(s)
rq,

P (ε) = (M(ε)N(ε))rq,M(ε) = [ Γ (1−αp)
(pε)1−αp) ]

1
p ,

N(ε) = [ Γ (kq(γ−1)+1)
(kqε)kq(γ−1)+1 ]

1
kq , α = 1 − β, 1

p
+ 1

q
= 1, 1

k
+ 1

r
= 1, p, q, r, k > 1 and

t ∈ I is such that Ψε(t) is defined.

Proof. We shall repeat the same procedure as in the proof of [6, Theorem 4]
however instead of inserting et.e−t into the integral on the right-hand side of (10.mdv)
and then applying the Cauchy-Schwarz and Hölder inequality, respectively, we
shall insert eε.e−εt there. More precisely, under the assumption of the assertion
(1) we obtain from (10.mdv) that

ψ(t) ≦ a(t) + b(t)[

∫ t

0

(t− s)2β−2e2εsds]
1
2 [

∫ t

0

s2γ−2F (s)2e−2εsψ(s)2mds]
1
2 ≦

≦ a(t) + b(t)eεtK(ε)
1
2 [

∫ t

0

s2γ−2F (s)2e−2εsψ(s)2mds]
1
2 ,

where K(ε) = Γ (2β−1)
(2ε)2β−1 . Using the Hölder inequality with p, q > 1, 1

p
+ 1

q
= 1 we

obtain

ψ(t) ≦ a(t) + b(t)eεtK(ε)
1
2 [

∫ t

0

s(2γ−2)pe−εpsds]
1
2p [

∫ t

0

F (s)2qψ(s)2mqds]
1
2q
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and since

∫ t

0

s(2γ−2)pe−pεsds =
1

(pε)(2γ−2)p+1

∫ pεt

0

σ(2γ−2)pe−σdσ <

<
Γ ((2γ − 2)p+ 1)

(pε)(2γ−2)p+1
:= L(ε)

((2γ−2)p+1 > [2(1− 1
2p

)−2]p+1 > 0, i.e. Γ ((2p−2)p+1) is a positive number)
we have

ψ(t) ≦ a(t) + b(t)eεtK(ε)
1
2L(ε)

1
2p [

∫ t

0

F (s)2qψ(s)2mqds]
1
2q . (15.mdv)

Since (A1 + A2)
r ≦ 2r−1(Ar

1 + Ar
2) for any nonnegative real numbers A1, A2 and

any real number r > 1 (see [6, (2), (3)]) we obtain from (15.mdv) that

ψ(t)2q ≦ 22q−1[a(t)2q + b(t)2qe2qεtK(ε)qL(ε)
q
p

∫ t

0

F (s)2qe2qmεse−2qεsψ(s)2q)mds].

(16.mdv)
If

v(t) = e−2qεtu(t)2q, c(t) = 22q−1a(t)2q , d(t) = 22q−1b(t)2qK(ε)qL(ε)
q
p , (17.mdv)

then (16.mdv) yields

v(t) ≦ c(t) + d(t)

∫ t

0

F (s)2qe2qmεsv(s)mds.

Now we can apply Lemma 2, where ω(u) = um, Ω(v) =
∫ v

v0

dy
ω(y) =

∫ v

v0
y−mdy =

1
m−1 [v1−m − v1−m

0 ], Ω−1(z) = [(1−m)z+ v1−m
0 ]

1
1−m and we obtain the inequality

v(t) ≦ Ω−1[Ω(A1(t)) +B1(t, ε)

∫ t

0

F (s)2qe2qmεsds] =

= A1(t)[1 − (m− 1)Ξ1(t, ε)]
1

1−m ,

where Ξ1(t, ε), A1(t), B1(t, ε) are as in theorem. From this inequality and (17.mdv) the
inequality (13.mdv) follows.

The proof of the inequality (14.mdv) is similar (see the proof of [6, Theorem 4]).

Theorem 4. Let A : X → X be a sectorial operator, Re σ(A) > b > 0, f be as in

Definition 1 and let

||f(t, u)|| ≦ tκη(t)||u||mα , m > 1, κ ≧ 0 (18.mdv)

for all (t, u) ∈ R×Xα, where η : 〈0,∞) → R is a continuous, nonnegative function.

Then the following assertions hold:
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(1) Let 0 < α < min{ 1
2 ,

κ
m

+ 1
2pm

} for some p > 1 and b > 0 be the number from

the inequality (4.mdv). Let the function

t 7→ t2qα

∫ t

0

η(s)2qe2q[(1−m)b+mε]sds

is bounded on the interval 〈0,∞) for some 0 < ε < b, where 1
p

+ 1
q

= 1. Let

u(t) be a solution of the equation (3.mdv) satisfying u(0) = u0 ∈ Xα, where

(m− 1)22q−1(c||u0||)
2q(m−1)K(ε)qL(ε)

q
p (ctα)2q

∫ t

0

η2qe2q[(1−m)b+mε]sds < 1,

where

K(ε) =
Γ (2β − 1)

(2ε)2β−1
, L(ε) =

Γ ((2γ − 2)p+ 1)

(2γ − 2)p+ 1
, β = 1 − α.

Then u(t) exists on the interval 〈0,∞) and limt→∞ ||u(t)||α = 0.

(2) Let 1
2 ≦ α < min{1, κ

m
+ 1

kqm
} for some k > 1, where β = 1−α = 1

1+z
, z ≧ 1,

q = z + 2 and b > 0 is the number from the inequality (4.mdv). Assume that the

function

t 7→ trqα

∫ t

0

η(s)rqerq[(1−m)b+mε]sds

is bounded on the interval 〈0,∞) for some 0 < ε < b, where 1
k

+ 1
r

= 1. Let

u(t) be a solution of the equation (3.mdv) satisfying u(0) = u0, where

(m− 1)2rqm(c||u0||)
rq(m−1)P (ε)trqα

∫ t

0

η(s)rq[(1−m)b+mε]sds

{

< 1 for rq(m− 1) even,

6= 1 for rq(m− 1) odd,

where P (ε) is the number defined in Lemma 3. Then u(t) exists on the interval

〈0,∞) and limt→∞ ||u(t)||α = 0.

Proof. Under the assumptions of theorem there exists a solution of the equation
(3.mdv) on an interval I = 〈0, T )(0 < T ≦ ∞) satisfying the condition u(0) = u0. This
solution satisfies the equation (5.mdv) and for α > 0 the inequality (6.mdv) is satisfied. This
inequality and the condition (18.mdv) yield

||u(t)||α ≦
ce−bt

tα
||u0|| + ce−bt

∫ t

0

ebssκη(s)

(t− s)α
||u(s)||mα ds, t > 0

and if ψ(t) = ebttα||u(t)||α then

ψ(t) ≦ a(t) + b(t)

∫ t

0

(t− s)β−1sγ−1F (s)ψ(s)mds, (19.mdv)
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where a(t) = c||u0||, b(t) = ctα, β = 1 − α, κ = 1 + κ− αm,F (t) = e(1−m)btη(t).
Let us prove the assertion (1). From the assumption it follows that α < 1

2 ,
i.e. β = 1 − α > 1

2 and −αm > −κ − 1
2p

, i.e. γ = 1 + κ − αm > 1 − 1
2p
. Thus

the assumptions of Lemma 3 are satisfied. By the assertion (1) of this lemma we
obtain that ψ(t) ≦ eεtΦ(t, ε), where

Φ(t, ε) = A1(t)
1
2q [1 − (m− 1)Ξ1(t, ε)]

1
2q(1−m) ,

A1(t, ε) = 22q−1(c||u0||)
2q ,

Ξ1(t, ε) = 22q(m−1)(c||u0||)
2q(m−1)K(ε)qL(ε)

q
p .t2qα

∫ t

0

η(s)2qe2q[(1−m)b+mε]sds,

K(ε), L(ε) are defined in Lemma 3. Under the assumptions of theorem the function
Φ(t, ε) is bounded on the interval (0,∞). Since ψ(t) = ebttα||u(t)||α, 0 < ε < b, we
obtain that

||u(t)||α ≦
e−(b−ε)t

tα
Φ(t, ε).

Thus the solution u(t) of (3.mdv) exists on the interval 〈0,∞) and limt→∞ ||u(t)||α = 0.
From the assumption of the assertion (2) it follows that β = 1 − α ≦ 1

2 ,−αm >

−κ− 1
kq

, i.e. γ = 1 + κ− αm > 1 − 1
kq

and thus the assumptions of the assertion

(2) of Lemma 3 are satisfied. Applying this lemma in the same way as in the proof
of the assertion (1) one can prove the assertion (2).

Remark 5. M. Miklavčič in his paper [7] proved that if for some 0 < ω ≦ 1,
0 < α < 1, αωp > 1, γ > 1, C > 0, ||tωAe−At|| ≦ C, t ≧ 1,

||f(t, x)|| ≦ C[||Aαx||p + (1 + t)−γ ], t ≧ 0,

whenever ||Aαx|| + ||x|| is small enough, then for small initial data there exist
stable global solutions. Moreover, if the space X is reflexive (in this case X =
N(A) ⊕ R(A)), then there exists y ∈ N(A) such that limt→∞ ||x(t) − y||α = 0.
These results are obviously proved under different assumptions from those in our
theorem.
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