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Abstract. Dynamical systems with several equilibria occur in various
fields of science and engineering: electrical machines, chemical reactions,
economics, biology, neural networks. As pointed out by many researchers,
good results on qualitative behaviour of such systems may be obtained if
a Liapunov function is available. Fortunately for almost all systems cited
above the Liapunov function is associated in a natural way as an energy
of a certain kind and it is at least nonincreasing along systems solutions.
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1 Introduction

Dynamical systems with several equilibria occur in various fields of science and
engineering: electrical machines, chemical reactions, economics, biology, neural net-
works. These systems are models of either natural or man-made physical systems.
In both cases stability properties are required for various reasons but in fact stabil-
ity means always some “good behaviour” with respect to short-term disturbances.
In man-made systems technological operation is connected with stability of the
“operating points” i.e. of some constant solutions of the dynamical model.
Technological operation is closely connected with oriented changes from one
operating point to another i.e. with transients. With respect to the new operating
point (constant solution) the old operating point is a perturbed initial condidtion
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generating a transient motion (dynamics trajectory) that should end in the new
operating point. This is clearly a stability-like property.

Stability is a property of a single solution (equilibrum) and a local one. Linear
systems and systems with an almost linear behaviour have a single equilibrum that
is globally asymptotically stable.

For systems with several equilibria the usual local concepts of stability are
not sufficient for an adequate description. The so-called “global phase portrait”
may contain both stable and nonstable equilibria. Of course each of them may
be characterized separately since stability is a local concept. Nevertheless global
concepts are also required for a better system description.

We consider here a single example: the case of the neural networks. The neural
networks are interconnections of simple computing elements whose computational
capability is increased by interconnection (emergent collective capacities). This
is due to the nonlinear characteristics leading to the existence of several stable
equilibria. The network achieves its computing goal if no self-sustained oscillations
are present and it always achieves some steady-state (equilibrium) among a finite
(while large) number of such states.

This behaviour is met in other systems also. For instance chemical systems or
biological communities display several equilibria, according to the external condi-
tions (environment). The models in macroeconomics need several equilibria since
in practice this is indeed the case and economic policies (good or bad) are nothing
else but “manoeuvres” that take economic systems from one stable equilibrium
to another - in the same way as mechanical manoeuvres take engineering systems
from one operating point to another.

2 Basic concepts and tools

The basic concepts in the field of the systems with several equilibria come from the
papers of Kalman [7] from 1957 and Moser [10] from 1967. Especially the second
paper relies on the following remark:

Consider the system

b= —f(z),z e RY, 1)
where f(z) = grad G(z) and G : R™ — R has the following properties:

i) lim|g—oG(x) = 00 and

ii) the number of the critical points is finite.
In this case any solution of (1) approaches asymptotically one of the equilibrum
points (which is also a critical point of G — where the gradient i.e. f vanishes). It
is only natural to call this behaviour gradient-like but there are other properties
that are also important while weaker. With respect to this we shall need some
basic notions. Our object will be here the system of ordinary differential equations

i = f(z,1). (2)
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Definition 1. a) Any constant solution of (2) is called equilibrium. The set of
equilibria £ is called stationary set.
b) A solution of (2) is called convergent if it approaches asymptotically some
equilibrium:
limi—oox(t) =c€ €&
A solution is called quasi-convergent if it approaches asymptotically the sta-
tionary set:
limi—ood(z(t),€) =0

Definition 2. System (2) is called monostable if every bounded solution is con-
vergent; it is called quasi-monostable if every bounded solution is quasi-convergent.

Definition 3. System (2) is called gradient-like if every solution is convergent; it
is called quasi-gradient-like if every solution is quasi-convergent.

Since there exist also other terms for these notions some comments are nec-
essary. The notion of convergence still defines a solution property and was intro-
duced by Hirsch [5,6]. Monostability has been introduced by Kalman [7] in 1957;
sometimes it is called strict mutability (Popov [11]) while quasi-mono-stability is
called by the same author mutability and by other dichotomy (Gelig, Leonov, and
Yakubovich [3]). In fact for monostable (quasi-monostable) systems some kind of
dichotomy occurs: their solutions are either unbounded or tend to an equilibrium
(or to the stationary set); in any case self-sustained periodic or almost periodic os-
cillations are excluded. The quasi-gradient-like property is called sometimes global
asymptotics.

It is obvious that while convergence is associated to solutions, monostability
and gradient-like property are associated to systems. At this point we add some
properties related to the stationary set (Gelig, Leonov and Yakubovith [3])

Definition 4. The stationary set £ is uniformly stable if for any € > 0 there exists
d(e) such that for any to if d(x(to),E) < ¢ then d(z(t),E) < e for all t > t.

The stationary set &£ is uniformly globally stable if it is uniformly Liapunov
stable and the system is quasi-gradient-like (has global asymptotics).

The stationary set is pointwise globally stable if it is uniformly Liapunov stable
and the system is gradient-like.

For autonomus (time-invariant systems) the following Liapunov-type results
are available (Gelig, Leonov and Yakubovitch [3]; Leonov, Reitmann and Smirno-
va [9]).

Lemma 5. Consider the nonlinear system

= f(x) 3)

and assume existence of a continuous function V : R™ — R that is nonincreasing
along any solution of (3). If, additionaly, a bounded on R™ solution x(t) for which
there exists some T > 0 such that V(x(7)) = V(x(0)) is an equilibrium then the
system is quasi-monostable.
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Lemma 6. If the assumptions of Lemma 5 hold and, additionaly, V(x) — oo for
|x| — oo then system (3) is quasi-gradient-like.

Lemma 7. If the assumptions of Lemma 6 hold and the set £ is discrete (i.e. it
consists of isolated equilibria only) then system (3) is gradient-like.

3 Applications from chemical kinetics

3.1. We shall consider first a model from the book of Frank-Kamenetskii [2], stud-
ied in the diffusion context by Kruzkov and Peregudov [8]; here the diffusion phe-
nomenon will be left aside. The model reads like (3) but under the following
assumptions:

i) f: QHR",Q—{JTGR” t>0,i=1,n};

i) f(0)=

iii) 8IJ>O Ver, i,j=1,m;
)

i fi@) =0.

Then the following properties of the system are valid (Halanay and Rasvan [4]):

iv

a) @ is an invariant set of the system;

b) all solutions in @ are bounded;

c) Yor1zi(t) — yi(t)] < DT |2t (r) — yi(7)| for all t > 7, z(t) and y(t) being two
solutions of (3) from Q;

d) the function V(z) = >_7 | f*(x)| is nonincreasing along the solution of (3) i.e.
it is a Liapunov function; moreover this Liapunov function cannot be constant
if it is not identically zero.

We may state now

Theorem 8. For every M > 0 there exist equilibria & such that Y1at=M and
the system is gradient-like on the sets > | x' = M.

Outline of proof: Let x(t) be a solution with > 7 2*(0) = M. From iv) we
deduce that Y 7 2°(0) = M, the solution is bounded and the w-limit set is not
empty. On the w-limit set V' (x(t)) is constant hence it is identically zero; from
here we obtain that the w-limit set consists only of equilibria. Since all solutions
are bounded the system is quasi-gradient-like. Using ¢) we obtain that the system
is even gradient-like.

3.2. Consider now the case of a closed chemical system subject to mass-action
law and constant temperature—the formal kynetics system ([4]):

¢ =201 (B — aig)(wf (¢) —wj (), i=T,m "
wj(C) = k’;r H;n(ci)aij’ w; (C) = k:; HT(Ci)BU7
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where the nonnegative integers «;, f;; (stoichiometric coefficients) satisfy the fol-
lowing assumption (V5)(3¢ : a;;+0;; # 0), that is each substance has to participate
at least to one reaction either as reactant or as product. Using this assumption
we can prove positivity of the concentrations: if the above assumption holds then
¢;(0) > 0, i = 1,m implies that for any i = 1,m either c;(t) > 0 or ¢;(t) =0 on
the entire existence interval of the solution. Any point ¢ with ¢; > 0,7 = 1,m is
called admissible; the set of the admissible points is called admissible set. Another
property of the system is existence of a set of conservation laws that define an
invariant hyperplane. By writing (4) as follows

¢ = Gu(e), (5)
where rank G = r we may obtain by reordering (5) the partition

o= G11’LU7'(C) + Glg’wm_T(C), (6)
é’rn—’!' — Ggle(C) + G22,wm—7'(c)7

where det G171 # 0. Then the following linear invariant manifold is obtained
[:(C) =" - GglGl_llcr = Cmir(O) — GglGl_llcr(O) (7)

called “substance balance hyperplane” that is in fact a linear system of conserva-
tion laws.

The equilibrium set of (4) may be quite rich but among the equilibria are of
interest the detailed-balance equilibria defined by

wi(e)=wj(c), j=Tn (8)
and mainly those belonging to the admissible set @ = {c € R™, ¢, > 0, k=1, m}
called admissible detailed balance equilibria.

The following result of Zeldovi¢ is valid

Proposition 9. If (4) has an admissible detailed balance equilibrium and in the
linear manifold L(c) = q there exists an admissible point then in this manifold
there exists a unique detailed balance point.

If (4) is such that an admissible detailed balance equilibrium exists then the
following Liapunov function may be associated to it:

m

Vo= cxlin(cr/éx) — 1) (9)

1

and the following is true (Halanay & Rasvan [4])

Theorem 10. If an admissible detailed balance equilibrium exists, the following
properties of the solutions with ¢;(0) >0, i = 1,m are valid:

1. The solutions are bounded.
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2. There are no periodic nonconstant solutions with nonnegative components.

3. Any equilibrium point with nonnegative components is a detailed balance point.

4. The w-limit set of any solution is composed of equilibrium points only; if such
a set contains an admissible detailed balance point it coincides with it being a
singleton.

5. An admissible detailed balance point is stable in the sense of Liapunov and it
is an attractor in the invariant hyperplane that contains it.

6. A solution such that limy_..oc(t) exists and has all its components positive is
Liapunov stable.

Some comments are necessary. The first four properties show that, with respect
to those solutions that are physically significant, the system is quasi-gradient-like
but if among the equilibria of a given w-limit set there is one admissible detailed
balance point, the w-limit set coincides with it; this singleton is stable in the sense
of Liapunov and even asymptotically stable when the solutions are reduced to the
invariant hyperplane containing this point.

The remarkable property of this system would be existence of an admissible
point in the w-limit set of any solution. In this case the w-limit set would reduce
to it and the attraction domain would coincide with the entire hyperplane. The
system would be gradient-like with respect to admissible set (). Unfortunately this
is still an open question. We may nevertheless mention that some recent results
for the case of two substances exist (Simon & Farkas [12]).

4 Applications from biology

A. Consider first the model of Volterra type for n species that compete for some
resource:

dN; " .
o :Nz‘(é‘i*;%j]\[j)a i=1,n (10)

This model has been studied intensely (e.g. Volterra[14]; Svirezev [13]) for the
case ofthe so-called dissipative community: £; > 0 and there exist «; > 0 such that
the quadratic form Y} >} a;yijz:@; is positive definite. Here we shall consider
the general case because of its similarity to mass action chemical kinetics.

We assume, as in the case of the chemical kinetics, existence of an equilibrium
N, i =1,n with all N; > 0. Associate to (10) the following function:

" [N; N;
LN:ZNi(T—l—InA> (11)
1

N; N;

which is of the same type as (9); with the new variables z; = In(N;/N;) we obtain:
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dII}i n G
I :&*Z’YUN]'@ 7 (12)
J=1
Ly =Y Ni(e" —1-u) (13)
1

and it may be easily seen that (12) can be written as:

n

da?i oL
=T D Mg (@ T) (14)
1 K3

j=

i.e. the system is quasi-gradient-like. We have L(x1, 2z, ,x,) > 0 and also

d n.n oL OL
2 .. = — iJ .. ..
S (), wal0) ZZ’Y 9, 0z,

and if the matrix (;;) is nonnegative definite then L is decreasing (nonincreasing
along the solutions of (14). Obviously L is bounded for bounded x; (see the pre-
vious section) hence the system is quasi-monostable. Moreover the critical point
of Lie x1 =22 =--- =z, =0 is globally assymptotically stable. We have also
L(z) — oo for x| — oo hence according to Lemma 6 the system is quasi-gradient
like. Moreover the equilibria of (14) are given by

oL
Z%’ja—xi =0

and the structure of L shows that they are isolated. We obtained the following

Theorem 11. If system (10) has an equilibrium with al components positive and
the matriz «y;; s positive definte then it is gradient-like.

B. An example taken from a different field of biological sciences is the model of
evolutionary selection of macromolecular species of Eigen and Schuster (taken from
the paper of Cohen and Grossberg [1]):

i = i(ma? ' — qukxﬁ) (15)
k=1

Remark that if p = 1 a special case of (10) is obtained. In fact, as shown is the
cited paper, many of the biological models may be obtained from a general neural
network model that will be shown next. For this reason we do not insist here on
Eigen-Schuster model.
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5 Continous-time neural networks

The neural networks are structures that possess “emergent computational capa-
bilities” that is they are interconnected simple computational elements to which
interconnections confer increased computational power.

The general model considered here (Cohen and Grossberg [1]) reads

& = a;(x;)] ch i =1,n, (16)
where ¢;; = ¢j;. The following Liapunov function is associated
1 n n
0 =3P b= [T an)
11

that is much alike to the Liapunov function of the absolute stability problem.
It can be seen that (16) may be given the form

&= —A(x)gradV (x), (18)
where the items of A(z) are
a;(z;)

Also the derivative of V along the solutions of V(z) reads

2

W)=~ ailw)d(z) [bxxi) 5 cz-jdmj)} <0

1

provided a;(A) > 0 and d;(\) are nondecreasing. If additionally d;(-) are strictly
increasing the set, where W (x) = 0 consists only of equilibria. It follows that the
system is quasi-gradient-like (Lemma 6).

Usually the property required for neural networks is gradient-like behavoiur.
This property requires always specific studies since in the general case of (16) the
equilibrium set may contain countably many equilibria.

6 Concluding remarks

We have presented here some models occuring in various fields of science and engi-
neering; nevertheless they have some common features. First of all they belong to
the class of so called competitive differential systems [5]. They all have many equi-
libria and require those qualitative concepts that were introduced for such systems
(mutability, dichotomy, gradient behaviour). In obtaining the required properties
the milestone is to show that the w-limit sets of the solutions are composed of
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isolated equilibria only. Usually this goal is achieved using specific methods of
differential topology that take into account the structure of differential equations
that are competitive [5].

Existence of a suitable Liapunov function may simplify the task of showing
that the w-limit sets are composed of equilibria only; this was supposed to be the
mainstream of the present paper and it illustrates that it is desirable to associate a
Liapunov function, in a natural way, to any dynamical model. Of course, “guessing”
a Liapunov function remains an art and a challenge.
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