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NATURAL AFFINORS ON r-JET
PROLONGATION OF THE TANGENT BUNDLE

W. M. MIKULSKI

ABSTRACT. We deduce that for n > 2 and r > 1, every natural affinor on J"T over
n-manifolds is of the form Ad for a real number A\, where § is the identity affinor on

JT.

0. We fix two nonnegative integers n > 1 and r.

The r-jet prolongation J"T'M of the tangent bundle T'M of an n-manifold M
1s the space of all r-jets of vector fields on M, i.e.

J'TM = {j7X | X is a vector field on M, x € M} .

It 1s a vector bundle over M with respect to the source projection " : J"TM — M,
JjnX — x. Every embedding ¢ : M — N of two n-manifolds induces a vector
bundle mapping J"T'¢ : J*'TM — J"TN given by J " Tp(j5X) = j:)(x)(Tgo oXo
)

An affinor on J"TM is a tensor field of type (1,1) on J"TM. It can be inter-
preted as a vector bundle homomorphism T(J"TM) — T(J"T M) over the identity
map idyrppr 2 JTTM — JTTM.

A natural affinor A on J"T over n-manifolds is a system of affinors

Ay : T(J'TM) — T(J'TM)

for every n-manifold M such that Ay o T(J"Tyw) = T(J'T¢) o Ay for every
embedding ¢ : M — N of two n-manifolds.

For example, the family d of affinors dar = idp(yrrary : T(J"TM) — T(J"TM)
for any n-manifold M is a natural affinor on J"T over n-manifolds. In this paper
we prove.
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Theorem 0.1. Ifn > 2 and r > 1 are two fixed integers, then any natural affinor
on J"T over n-manifolds is of the form A\§ = {Adpr}, where § is the identity affinor
on J"1" and X is a real number.

Classifications of natural affinors on some other natural bundles are given in
[1]—[5] e.t.c. For example, in [3] all natural affinors on the Weil bundle of A-
velocities are described. In particular, any natural affinor on J°T = T over n-
manifolds is of the form Ad + pJ, where ¢ is the identity affinor on T', J is the
tangent structure on 7" and A, u are real numbers.

Natural affinors play a very impotrant role in the differential geometry. For
example, they can be used to define torsions of a connection, see [4].

All manifolds and mappings in this paper are assumed to be smooth, i.e. infin-
itely differentiable.

1. In the proof of Theorem 0.1 we shall use some facts proved in this item.

Let n > 1 and r be two nonnegative integers. From now on we shall use the
following notations and observations.

The set of all natural affinors on J"T over n-manifolds will be denoted by
A(n,r). Tt is a vector space over R. For any A, B € A(n,r) and any «, 8 € R the
natural affinor a4 + 8B € A(n,r) is defined by («A + 8B)y = aAym + 5Bu
where M is an n-manifold.

The usual coordinates on R” will be denoted by !, ..., ™. The canonical vector
fields % on R™ will be denoted by 0J;.

For a vector field X on an n-manifold M, the complete lift of X to J"T'M will
be denoted by J"TX.

Let us denote

(1.1) N, ={a=(a1,...,a,) € ( NU{O})" | |o| =1+ ...+ ap <7} .

Then the elements

(1.2) S T5)rs, Jo(x%0;) € (JTT)oR"=Vjrs, JTIR™ C Tjro, J'TR"

for ¢,j=1,...,n and o € N, form a basis of the vector space Tjrs, J"TR".
From the definition of the complete lift of vector fields it follows that

(' Touf500) = 2 jr((padn) =

JT(x%T118;) jra, = =—
(x ])ljoal dt e=o0

d
dt |[t=0

i d i (a3 i (a3
= 05 (0] = =50, 81) = (e + 115 °0))
for any o € N, and j = 1,...,n, where ¢, is the flow of 2*+119;. Then
(1.3) (@ 18;) o, = (1 4+ 1)75 (2% 0;)

for any « € N, and j =1, ...,n.
Consequently, the elements J"1'(x%0;)|;ro, for & € Nyqy and j = 1,...,n gen-
erate Tjrp, J"TR™.

After these preparations we prove the following lemma.



NATURAL AFFINORS ... 323

Lemma 1.1. Let A € A(n,r) be such that

(1.4) Arn (J"T((2')*0n)jjra,) = 0
fors=0,..,r+1.Ifn>2 and r > 0, then A = 0.

Proof. By the Frobenius theorem jj0; € J"TR” has dense orbit in J"TR" with

respect to the lifted embeddings. Then from the naturality of A with respect to
charts 1t follows the following implication.

If Ag=(v) =0 for any v € Tjrs, J"TR", then A = 0.

Since Ar~(v) depends linearly on v and the elements J"T'(2%9;);r5, for o €
N,41 and j =1,...,n generate Tjro, J"TR™, it remains to prove that
(15) Are (7T (70} j300) = 0
forany « € Nyqq and j =1, ..., n.

We consider two cases.

(T) Let « € Nyyq and j € {2,...,n}. Then oy < r+1, and consequently we have
(1.4) for s = o'

By the Frobenius theorem there exists a diffecomorphism ¢ : R” — R” of the
form idg x 1 such that .8, = 9, + (x?)*2...(z")*=9; on some neighbourhood of
0. Then .9 = &1 and ¢, ((z!)*10,) = (2')*1d,, + *9; on some neighbourhood
of 0. Now, using the invariancy of A and of the complete lifting of vector fields
with respect to ¢ we obtain

Apn (ST ((2)* 0n + 290;) j50,) = TJ" Tip(Ape (J"T((2)* 0n) jz0,)) = 0
because of (1.4) for s = a'. Then we have (1.5) because of (1.4) for s = a! and
the R-linearity of the complete lifting of vector fields.

(IT) Let « € N, 41 and j = 1. For any 7 € R\{0} we have the linear isomorphism
or = (x! + 72", 2% .. 2"). Since n > 2, ¢, preserves J; and sends z%9, into
(! — ra™)o1(2?)22. (2™)*" (O, + 701). In (1) we have proved that

ARn(JTT(l‘aﬁn)ugal) =0.
Now, using the naturality of A and of the complete lifting of vector fields with
respect to ¢, we obtain (similarly as in (I) )

ARn(JTT((xl _ Tx”)al(xz)‘“,..(x”)o‘"(@n + T@l))ugal) =0

for any 7 € R\{0}. Both sides of the last equality are polynomialsin 7. Considering
the coefficients on 7 of the polynomials we obtain

Agn (ST (2% 0;)1j70,)—
— alARn(JTT((xl)O‘l_l(xz)%...(x"_l)o‘"—l(J:")O‘"'I'l@n)mal) =0.
(If a; = 0 the term «;... does not occur.) In (I) we have proved that
alARn(JTT((xl)O‘l_l(xZ)O‘Q...(x"_l)O‘"—l(J:")O‘"'I'l@n)mal) =0.
Hence we have (1.5). O

The next lemma shows that any natural affinor sends vertical vectors into ver-
tical ones.
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Lemma 1.2, Let A € A(n,r), where n > 1 and r > 0. If w € TJ"TM is vertical,
then so is Apr(w).
In particular, ARn(JTT((xl)sﬁn)UE(Tal)) is vertical for s > 1 and 7 € R.

Proof. By the Frobenius theorem jjd; € J"TR”™ has dense orbit with respect
to lifted embeddings. Then by the naturality of A with respect to charts we can
assume that w € Vjra, J'TR™. Let

(1.6) Apn(w) =Y 0 T 500, + v

i=1

for some real numbers «; € R and some vertical vector field v € Vira, JTTR™. It
is sufficient to show that a; =0 forz=1,...,n.

Let i € {1,...,n}. The mapping ¢; = (=!,...,2° + (z!)" 2! ... 2") is a diffeo-
morphism near 0 € R”.

Since jit(¢;) = id, then (by the order argument) @; preserves j5d; and any
vertical vector from Vjrp, J"TR™. In particular, ¢; preserves w and v.

On the other hand ¢; maps 9; into p;é;;(x')"719; + 9; + ..., where §;; is the
Kronecker delta, py = r+ 2 and p; = 1 for ¢ = 2,...,n and the doots denote the
vector field having the (r + 1)-jet equal to 0.

Now, using the naturality of A with respect to ¢;, we get from (1.6)

ARrn (w) = ARr» (w) + OzipiJTT((l‘l)r-l_l@i)ugal .
But, by (1.3) J"T((2")" ;) )jra, = (r+ 1)j5((x")"9;) # 0. Hence o; = 0. O

Using Lemmas 1.1 and 1.2 we prove.

Lemma 1.3. Let A € A(n,r) be such that
(1.7) A (J"TOn)jra,) =0 .

Ifn>2andr >0, then A=0.

Proof. Owing to Lemma 1.1 and the assumption (1.7) it is sufficient to verify
formulas (1.4) for any s = 1,...,r+ 1.

Of course, we can assume that r > 1. We consider two cases.

(TI) s = r+ 1. Let « € Ny41 be such that || = 4+ 1. Then j5(0, + 2%9y,) =
J5(9n). So, by the theorem of Zajtz [6] (see also [3]), there exists a diffeomor-
phism ¢ : R® — R” such that jj* e = jitid and .0, = 0, + 0, on some
neighbourhood of 0. Because of the jets argument, ¢ preserves j;d;. Then us-
ing the naturalty of A with respect to ¢ from the assumption (1.7) we obtain
ARn(JTT3n|j531 + JTTx“3n|j531) = 0. Then (we use (1.7) again)

(1.8) Apn (S T2%0nj55,) = 0
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for any a € N,41 with |a| = r + 1. In particular, ARn(JTT(xl)T‘I'l@nUEal) = 0.

(IT) Assume that s € {1,...,r}.

The elements jj(¢*9;) for & € N, and i = 1,...,n form a basis of the vector
space (J"T)oR". Then we have the basis j{(¢%8;) for « € N, and i = 1,...,n of
vector fields on (J"T)gR".

According to Lemma 1.2 we can write

(1.9) Are (ST (@) On)ljpron) = D D S (0)ds (%0 j5000)

i=1 aeN,

for some uniquely determined smooth maps f3' : R — R.

The diffeomorphisms v; = (2!, tx? ... ;tz") for t € R\ {0} preserve d; and
they send 2%0; into ¢t~ (@2t Fan)+l=d1igag Then using the invariancy of A with
respect to the ¢ we obtain from (1.9)

tf;’i(T) — t—(Oé2+~~~+Oén)+1—51if;,i(7.) )

Consequently, f&! = 0 for any a € N,, and f3' = 0 for any a € N, with
as+...+a, >land i=2,..,n.

The diffeomorphisms ¢; = (x!,t2? ... tz" "1 2") for t € R\ {0} preserve 0;
and 0, and they send 0; into td; for i = 2,...,n— 1 . Then using the invariancy of
A with respect to the ¢ we obtain from (1.9)

f(s;;foy,,,yo)(T) = tf(sél,o,...,o)(T)

fori=2..,n—1,k=0,...r,7€ Rand t € R\ {0}. Consequently f(sk’io )= 0
for any k=0,...,7rand ¢t =2,....n— 1.
Then

r

(1.10) Apn (J7T((2')*0n) jsirony) = D gh (T35 ((21)F00) iz (ron)

for some uniquely determined smooth maps g; = f(sk’no O R - R.

Since n > 2, the diffeomorphisms p; = (tz!, 2% ..., 2") for t € R\ {0} preserve
O, and they send J; into t0;. Then using the invariancy of A with respect to the
i we obtain from (1.10) that t=%g (t7) =t *gi(7), i.e.

gi(m) =" gL (t7)

forany k=0,...,7,t € R\ {0} and 7 € R. Consequently g; = 0 for k =s+1,...,7.
Then

5

(1.11) Arn (ST (") 0n)jz0,) = D ardo () 0n)j50,

k=0
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for some uniquely determined real numbers aj, = g5 (1) € R.
Since (5,0,...,0,r+ 1 — ) € Nyy1, we get from (1.8)
(1.12) Are (J7T (1) (&™) 1700 ) jg0,) = 0 -

Since n > 2, there exists a diffeomorphism v, preserving 0 € R”?, !, §; and
sending 9, into 9, + (2")"t1723,. Then using the invariancy of A with respect to
the v, we obtain from (1.11) that

A (J7T((x7)" (0n + (l‘”)”l_s@n))ugal) =

= Z%Jo (O + (") 0 00)) jroy -

Consequently (we use (1.11) again)
(113)  Are (J"T((x")* (") ™72 00) 50,) = D ardo (@) (") ™+ 7200) 0,

Now, from (1.12) and (1.13) we get

5

> akdn (@) (@) ) e, = 0 -

k=0

Hence if k + 7+ 1 —s < r, then aj = 0. Then (by (1.11))
(1.14) Are (J"T((21)"0n) jz0,) = 035 ((21)" On)1jga,

for some uniquely determined real number b° = af € R.

Now, applying the invariancy of A with respect to the p; = (tz! 2% ... 2")
for ¢ € R\ {0} to both sides of (1.14), and next multiplying both sides of such
obtained formula by ¢°, and then taking the limit at ¢ = 0 we obtain that

(1.15) Arn (J"T((2")*0n)1j50) = b6 ((2)° 0n) o

The flow of (z')*8, preserves both the zero vector field on R™ and 0 € R".
Then JTT((xl)sﬁn)UEo = 0. Hence b*55((z1)%0, )jjzo0 = 0 by (1.15). Consequently
b* =0 as j5((2')*n)jr0 # 0.

The lemma is proved. a

2. Proof of Theorem 0.1. Consider A € A(n,r). We can write

A (J"TOnjr(r0,)) Z Z Fa ()i (2%00) 5 (ron)+

i=1 aeN,

+Zf JT@ i35 (T01)

(2.1)
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for some uniquely determined smooth maps f%, f* : R — R.

The diffeomorphisms v; = (2!, tx? ... ;tz") for t € R\ {0} preserve d; and
they send 2%0; into ¢t~ (@2t Fan)+l=d1igag Then using the invariancy of A with
respect to the ¢; we obtain from (2.1)

tfl(r) =t ot de) T =0 gl 7y and £ (1) = f1(7).

Consequently f1 = 0 for any a € N, fi, = 0 for any o € N, with as+... 4, > 1
and any ¢ = 2,...,n,and f1 =0.

The diffeomorphisms ¢; = (x!,t2? ... tz" "1 2") for t € R\ {0} preserve 0;
and 0, and they send 0; into td; for i = 2,...,n— 1 . Then using the invariancy of
A with respect to the ¢ we obtain from (2.1)

f(ik 0 0)(7') = tf(ik,o,...,o)(T) and fi(T) = tfi(T)

fori=2..,n—1,k=0,...r,7€ Rand t € R\ {0}. Consequently f(lk 0.0 = 0
for any k=0,...,rand any i =2,...,n—1,and f' =0 for any i = 2,...,n— L.
Then we have

Arn (" TOnjp o) = Y 96 (7)35 (@) 0n) g (o) +
(2.2) k=0
+ 9(7)J " TOnjg(ron)

for some uniquely determined smooth maps gx = f(rz,o,...,o) :R— Rand g=f":
R—-R.

Since n > 2, the diffeomorphisms p; = (tz!, 2% ..., 2") for t € R\ {0} preserve
O, and they send J; into t0;. Then using the invariancy of A with respect to the
He we obtain from (2.2) that

gr(tT) = t_kgk(r)

for any k =0,...,r,t € R\ {0} and 7 € R. Consequently g =0 for k =1,...,r.
Then we have

(23) AR"(JTTﬁnUE(’)l) = aojg (8n)|j531 + aJTTﬁnUE(’)l

for some uniquely determined real numbers ag = go(1) and a = ¢(1).

Since n > 2, there exists a diffeomorphism v preserving both 0 € R” and 0,
and sending 3J,, into d,, + ™ ,. Then using the invariancy of A with respect to v
we obtain from (2.3) that

A (J"T(0n + 2" 00 ) jra,) = a0jo (On + 2" 0n)jjra, + aJ " T(0n + 2"0n))jra, -
Consequently (we use (2.3) again)

(24) ARn(JTT(l‘nﬁn)UEal) = aojg ($n6n)|j531 —|— aJTT(l‘nﬁn)UEal .
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Since the flow of z"0, preserves jgdi, then J"T(2"0,);r5, = 0. Hence
aojy(x"0n)|jra, = 0 by (2.4). On the other hand, since r > 1, jg(z"9,)jra, # 0.
Then aq = 0.

Then (by (2.3))

ARn(JTTﬁnugal) = aJTTﬁnng(’)l

for some uniquely determined real number a.

Now, A — ad, where § is the identity affinor on J"T', satisfies the assumption
of Lemma 1.3. Consequently (by Lemma 1.3) A —ad = 0, i.e. A = ad for some
a € R.

The proof of Theorem 0.1 is completed. |
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