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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 321 { 328NATURAL AFFINORS ON r-JETPROLONGATION OF THE TANGENT BUNDLEW.M.MikulskiAbstract. We deduce that for n � 2 and r � 1, every natural a�nor on JrT overn-manifolds is of the form �� for a real number �, where � is the identity a�nor onJrT .0. We �x two nonnegative integers n � 1 and r.The r-jet prolongation JrTM of the tangent bundle TM of an n-manifold Mis the space of all r-jets of vector �elds on M , i.e.JrTM = fjrxX j X is a vector �eld on M; x 2Mg :It is a vector bundle overM with respect to the source projection �r : JrTM !M ,jrxX ! x. Every embedding ' : M ! N of two n-manifolds induces a vectorbundle mapping JrT' : JrTM ! JrTN given by JrT'(jrxX) = jr'(x)(T' �X �'�1) :An a�nor on JrTM is a tensor �eld of type (1; 1) on JrTM . It can be inter-preted as a vector bundle homomorphismT (JrTM )! T (JrTM ) over the identitymap idJrTM : JrTM ! JrTM .A natural a�nor A on JrT over n-manifolds is a system of a�norsAM : T (JrTM )! T (JrTM )for every n-manifold M such that AN � T (JrT') = T (JrT') � AM for everyembedding ' :M ! N of two n-manifolds.For example, the family � of a�nors �M = idT (JrTM) : T (JrTM )! T (JrTM )for any n-manifoldM is a natural a�nor on JrT over n-manifolds. In this paperwe prove.1991 Mathematics Subject Classi�cation : 58A20, 53A55.Key words and phrases: natural a�nor, jet prolongations.Received July 15, 1997.



322 W.M.MIKULSKITheorem 0.1. If n � 2 and r � 1 are two �xed integers, then any natural a�noron JrT over n-manifolds is of the form �� = f��Mg, where � is the identity a�noron JrT and � is a real number.Classi�cations of natural a�nors on some other natural bundles are given in[1]|[5] e.t.c. For example, in [3] all natural a�nors on the Weil bundle of A-velocities are described. In particular, any natural a�nor on J0T = T over n-manifolds is of the form �� + �J , where � is the identity a�nor on T , J is thetangent structure on T and �; � are real numbers.Natural a�nors play a very impotrant role in the di�erential geometry. Forexample, they can be used to de�ne torsions of a connection, see [4].All manifolds and mappings in this paper are assumed to be smooth, i.e. in�n-itely differentiable.1. In the proof of Theorem 0.1 we shall use some facts proved in this item.Let n � 1 and r be two nonnegative integers. From now on we shall use thefollowing notations and observations.The set of all natural a�nors on JrT over n-manifolds will be denoted byA(n; r). It is a vector space over R. For any A;B 2 A(n; r) and any �; � 2 R thenatural a�nor �A + �B 2 A(n; r) is de�ned by (�A + �B)M = �AM + �BM ;where M is an n-manifold.The usual coordinates on Rn will be denoted by x1; :::; xn. The canonical vector�elds @@xi on Rn will be denoted by @i.For a vector �eld X on an n-manifoldM , the complete lift of X to JrTM willbe denoted by JrTX.Let us denote(1:1) Nr = f� = (�1; :::; �n) 2 (N [ f0g)n j j�j = �1 + :::+ �n � rg :Then the elements(1:2) JrT@ijjr0@1 ; jr0(x�@j) 2 (JrT )0Rn ~=Vjr0@1JrTRn � Tjr0@1JrTRnfor i; j = 1; :::; n and � 2Nr form a basis of the vector space Tjr0@1JrTRn.From the de�nition of the complete lift of vector �elds it follows thatJrT (x�+11@j)jjr0@1 = ddt jt=0(JrT't(jr0@1)) = ddt jt=0jr0(('t)�@1) == jr0( ddt jt=0('t)�@1) = �jr0([x�+11@j; @1]) = (�1 + 1)jr0(x�@j)for any � 2Nr and j = 1; :::; n, where 't is the 
ow of x�+11@j . Then(1:3) JrT (x�+11@j)jjr0@1 = (�1 + 1)jr0(x�@j)for any � 2Nr and j = 1; :::; n.Consequently, the elements JrT (x�@j)jjr0@1 for � 2 Nr+1 and j = 1; :::; n gen-erate Tjr0@1JrTRn.After these preparations we prove the following lemma.



NATURAL AFFINORS : : : 323Lemma 1.1. Let A 2 A(n; r) be such that(1:4) ARn(JrT ((x1)s@n)jjr0@1) = 0for s = 0; :::; r+ 1. If n � 2 and r � 0, then A = 0.Proof. By the Frobenius theorem jr0@1 2 JrTRn has dense orbit in JrTRn withrespect to the lifted embeddings. Then from the naturality of A with respect tocharts it follows the following implication.If ARn (v) = 0 for any v 2 Tjr0@1JrTRn, then A = 0.Since ARn (v) depends linearly on v and the elements JrT (x�@j)jjr0@1 for � 2Nr+1 and j = 1; :::; n generate Tjr0@1JrTRn, it remains to prove that(1:5) ARn(JrT (x�@j)jjr0@1) = 0for any � 2Nr+1 and j = 1; :::; n.We consider two cases.(I) Let � 2Nr+1 and j 2 f2; :::; ng. Then �1 � r+1, and consequently we have(1.4) for s = �1.By the Frobenius theorem there exists a di�eomorphism ' : Rn ! Rn of theform idR�  such that '�@n = @n + (x2)�2 :::(xn)�n@j on some neighbourhood of0. Then '�@1 = @1 and '�((x1)�1@n) = (x1)�1@n + x�@j on some neighbourhoodof 0. Now, using the invariancy of A and of the complete lifting of vector �eldswith respect to ' we obtainARn(JrT ((x1)�1@n + x�@j)jjr0@1) = TJrT'(ARn(JrT ((x1)�1@n)jjr0@1)) = 0because of (1.4) for s = �1. Then we have (1.5) because of (1.4) for s = �1 andthe R-linearity of the complete lifting of vector �elds.(II) Let � 2 Nr+1 and j = 1. For any � 2 Rnf0gwe have the linear isomorphism'� = (x1 + �xn; x2; :::; xn). Since n � 2, '� preserves @1 and sends x�@n into(x1 � �xn)�1(x2)�2 :::(xn)�n(@n + �@1). In (I) we have proved thatARn(JrT (x�@n)jjr0@1) = 0 :Now, using the naturality of A and of the complete lifting of vector �elds withrespect to '� we obtain (similarly as in (I) )ARn(JrT ((x1 � �xn)�1(x2)�2 :::(xn)�n(@n + �@1))jjr0@1) = 0for any � 2 Rnf0g. Both sides of the last equality are polynomials in � . Consideringthe coe�cients on � of the polynomials we obtainARn (JrT (x�@j)jjr0@1)�� �1ARn(JrT ((x1)�1�1(x2)�2 :::(xn�1)�n�1 (xn)�n+1@n)jjr0@1) = 0 :(If �1 = 0 the term �1::: does not occur.) In (I) we have proved that�1ARn(JrT ((x1)�1�1(x2)�2 :::(xn�1)�n�1 (xn)�n+1@n)jjr0@1) = 0 :Hence we have (1.5). �The next lemma shows that any natural a�nor sends vertical vectors into ver-tical ones.



324 W.M.MIKULSKILemma 1.2. Let A 2 A(n; r), where n � 1 and r � 0. If w 2 TJrTM is vertical,then so is AM (w).In particular, ARn(JrT ((x1)s@n)jjr0 (�@1)) is vertical for s � 1 and � 2 R.Proof. By the Frobenius theorem jr0@1 2 JrTRn has dense orbit with respectto lifted embeddings. Then by the naturality of A with respect to charts we canassume that w 2 Vjr0@1JrTRn. Let(1:6) ARn(w) = nXi=1 �iJrT@ijjr0@1 + vfor some real numbers �i 2 R and some vertical vector �eld v 2 Vjr0@1JrTRn. Itis su�cient to show that �i = 0 for i = 1; :::; n.Let i 2 f1; :::; ng. The mapping 'i = (x1; :::; xi+ (x1)r+1xi; :::; xn) is a di�eo-morphism near 0 2 Rn.Since jr+10 ('i) = id, then (by the order argument) 'i preserves jr0@1 and anyvertical vector from Vjr0@1JrTRn. In particular, 'i preserves w and v.On the other hand 'i maps @j into �i�ij(x1)r+1@i + @j + : : : , where �ij is theKronecker delta, �1 = r + 2 and �i = 1 for i = 2; :::; n and the doots denote thevector �eld having the (r + 1)-jet equal to 0.Now, using the naturality of A with respect to 'i, we get from (1.6)ARn(w) = ARn(w) + �i�iJrT ((x1)r+1@i)jjr0@1 :But, by (1.3) JrT ((x1)r+1@i)jjr0@1 = (r + 1)jr0((x1)r@i) 6= 0. Hence �i = 0. �Using Lemmas 1.1 and 1.2 we prove.Lemma 1.3. Let A 2 A(n; r) be such that(1:7) ARn(JrT@njjr0@1) = 0 :If n � 2 and r � 0, then A = 0.Proof. Owing to Lemma 1.1 and the assumption (1.7) it is su�cient to verifyformulas (1.4) for any s = 1; :::; r+ 1.Of course, we can assume that r � 1. We consider two cases.(I) s = r + 1. Let � 2 Nr+1 be such that j�j = r + 1. Then jr0(@n + x�@n) =jr0(@n). So, by the theorem of Zajtz [6] (see also [3]), there exists a di�eomor-phism ' : Rn ! Rn such that jr+10 ' = jr+10 id and '�@n = @n + x�@n on someneighbourhood of 0. Because of the jets argument, ' preserves jr0@1. Then us-ing the naturalty of A with respect to ' from the assumption (1.7) we obtainARn(JrT@njjr0@1 + JrTx�@njjr0@1) = 0. Then (we use (1.7) again)(1:8) ARn(JrTx�@njjr0@1) = 0



NATURAL AFFINORS : : : 325for any � 2Nr+1 with j�j = r + 1. In particular, ARn (JrT (x1)r+1@njjr0@1) = 0.(II) Assume that s 2 f1; :::; rg.The elements jr0(x�@i) for � 2 Nr and i = 1; :::; n form a basis of the vectorspace (JrT )0Rn. Then we have the basis jr0(x�@i) for � 2 Nr and i = 1; :::; n ofvector �elds on (JrT )0Rn.According to Lemma 1.2 we can write(1:9) ARn(JrT ((x1)s@n)jjr0 (�@1)) = nXi=1 X�2Nr fs;i� (� )jr0(x�@i)jjr0 (�@1)for some uniquely determined smooth maps fs;i� : R! R.The di�eomorphisms  t = (x1; tx2; :::; txn) for t 2 R n f0g preserve @1 andthey send x�@i into t�(�2+:::+�n)+1��1ix�@i. Then using the invariancy of A withrespect to the  t we obtain from (1.9)tfs;i� (� ) = t�(�2+:::+�n)+1��1ifs;i� (� ) :Consequently, fs;1� = 0 for any � 2 Nr , and fs;i� = 0 for any � 2 Nr with�2 + :::+ �n � 1 and i = 2; :::; n.The di�eomorphisms 't = (x1; tx2; :::; txn�1; xn) for t 2 R n f0g preserve @1and @n and they send @i into t@i for i = 2; :::; n� 1 . Then using the invariancy ofA with respect to the 't we obtain from (1.9)fs;i(k;0;:::;0)(� ) = tfs;i(k;0;:::;0)(� )for i = 2; :::; n�1, k = 0; :::; r, � 2 R and t 2 Rnf0g. Consequently fs;i(k;0;::::;0) = 0for any k = 0; :::; r and i = 2; :::; n� 1.Then(1:10) ARn (JrT ((x1)s@n)jjr0 (�@1)) = rXk=0gsk(� )jr0((x1)k@n)jjr0 (�@1)for some uniquely determined smooth maps gsk = fs;n(k;0;:::;0) : R! R.Since n � 2, the di�eomorphisms �t = (tx1; x2; :::; xn) for t 2 R n f0g preserve@n and they send @1 into t@1. Then using the invariancy of A with respect to the�t we obtain from (1.10) that t�sgsk(t� ) = t�kgsk(� ), i.e.gsk(� ) = tk�sgsk(t� )for any k = 0; :::; r, t 2 Rnf0g and � 2 R. Consequently gsk = 0 for k = s+1; :::; r.Then(1:11) ARn(JrT ((x1)s@n)jjr0@1) = sXk=0 askjr0((x1)k@n)jjr0@1



326 W.M.MIKULSKIfor some uniquely determined real numbers ask = gsk(1) 2 R.Since (s; 0; :::; 0; r+ 1� s) 2Nr+1, we get from (1.8)(1:12) ARn(JrT ((x1)s(xn)r+1�s@n)jjr0@1) = 0 :Since n � 2, there exists a di�eomorphism �s preserving 0 2 Rn, x1, @1 andsending @n into @n+(xn)r+1�s@n. Then using the invariancy of A with respect tothe �s we obtain from (1.11) thatARn (JrT ((x1)s(@n + (xn)r+1�s@n))jjr0@1) == sXk=0askjr0((x1)k(@n + (xn)r+1�s@n))jjr0@1 :Consequently (we use (1.11) again)(1:13) ARn (JrT ((x1)s(xn)r+1�s@n)jjr0@1) = sXk=0askjr0((x1)k(xn)r+1�s@n)jjr0@1 :Now, from (1.12) and (1.13) we getsXk=0 askjr0((x1)k(xn)r+1�s@n)jjr0@1 = 0 :Hence if k + r + 1� s � r, then ask = 0. Then (by (1.11))(1:14) ARn(JrT ((x1)s@n)jjr0@1) = bsjr0((x1)s@n)jjr0@1for some uniquely determined real number bs = ass 2 R.Now, applying the invariancy of A with respect to the �t = (tx1; x2; :::; xn)for t 2 R n f0g to both sides of (1.14), and next multiplying both sides of suchobtained formula by ts, and then taking the limit at t = 0 we obtain that(1:15) ARn(JrT ((x1)s@n)jjr00) = bsjr0((x1)s@n)jjr00 :The 
ow of (x1)s@n preserves both the zero vector �eld on Rn and 0 2 Rn.Then JrT ((x1)s@n)jjr00 = 0. Hence bsjr0((x1)s@n)jjr00 = 0 by (1.15). Consequentlybs = 0 as jr0((x1)s@n)jjr00 6= 0.The lemma is proved. �2. Proof of Theorem 0.1. Consider A 2 A(n; r). We can write(2:1) ARn (JrT@njjr0 (�@1)) = nXi=1 X�2Nr f i�(� )jr0(x�@i)jjr0 (�@1)++ nXi=1 f i(� )JrT@ijjr0 (�@1)



NATURAL AFFINORS : : : 327for some uniquely determined smooth maps f i�; f i : R! R.The di�eomorphisms  t = (x1; tx2; :::; txn) for t 2 R n f0g preserve @1 andthey send x�@i into t�(�2+:::+�n)+1��1ix�@i. Then using the invariancy of A withrespect to the  t we obtain from (2.1)tf i�(� ) = t�(�2+:::+�n)+1��1if i�(� ) and tf1(� ) = f1(� ):Consequently f1� = 0 for any � 2Nr , f i� = 0 for any � 2 Nr with �2+ :::+�n � 1and any i = 2; :::; n, and f1 = 0.The di�eomorphisms 't = (x1; tx2; :::; txn�1; xn) for t 2 R n f0g preserve @1and @n and they send @i into t@i for i = 2; :::; n� 1 . Then using the invariancy ofA with respect to the 't we obtain from (2.1)f i(k;0;:::;0)(� ) = tf i(k;0;:::;0)(� ) and f i(� ) = tf i(� )for i = 2; :::; n�1, k = 0; :::; r, � 2 R and t 2 Rnf0g. Consequently f i(k;0;::::;0) = 0for any k = 0; :::; r and any i = 2; :::; n� 1, and f i = 0 for any i = 2; :::; n� 1.Then we have(2:2) ARn(JrT@njjr0 (�@1)) = rXk=0gk(� )jr0((x1)k@n)jjr0 (�@1)++ g(� )JrT@njjr0 (�@1)for some uniquely determined smooth maps gk = fn(k;0;:::;0) : R! R and g = fn :R! R.Since n � 2, the di�eomorphisms �t = (tx1; x2; :::; xn) for t 2 R n f0g preserve@n and they send @1 into t@1. Then using the invariancy of A with respect to the�t we obtain from (2.2) that gk(t� ) = t�kgk(� )for any k = 0; :::; r, t 2 R n f0g and � 2 R. Consequently gk = 0 for k = 1; :::; r.Then we have(2:3) ARn(JrT@njjr0@1) = a0jr0(@n)jjr0@1 + aJrT@njjr0@1for some uniquely determined real numbers a0 = g0(1) and a = g(1).Since n � 2, there exists a di�eomorphism � preserving both 0 2 Rn and @1and sending @n into @n + xn@n. Then using the invariancy of A with respect to �we obtain from (2.3) thatARn (JrT (@n + xn@n)jjr0@1) = a0jr0(@n + xn@n)jjr0@1 + aJrT (@n + xn@n)jjr0@1 :Consequently (we use (2.3) again)(2:4) ARn (JrT (xn@n)jjr0@1) = a0jr0(xn@n)jjr0@1 + aJrT (xn@n)jjr0@1 :



328 W.M.MIKULSKISince the 
ow of xn@n preserves jr0@1, then JrT (xn@n)jjr0@1 = 0. Hencea0jr0(xn@n)jjr0@1 = 0 by (2.4). On the other hand, since r � 1, jr0(xn@n)jjr0@1 6= 0.Then a0 = 0.Then (by (2.3)) ARn(JrT@njjr0@1) = aJrT@njjr0@1for some uniquely determined real number a.Now, A � a�, where � is the identity a�nor on JrT , satis�es the assumptionof Lemma 1.3. Consequently (by Lemma 1.3) A � a� = 0, i.e. A = a� for somea 2 R.The proof of Theorem 0.1 is completed. �Acknowledgement. This paper is supported by the Grant of KBNno. 2P03A02410. References[1] Doupovec, M., Natural transformations between TTT �M and TT �TM , CzechoslovakMath.J. 43 (118) 1993, 599-613.[2] Gancarzewicz, J., Kol�a�r, I., Natural a�nors on the extended r-th order tangent bundles,Suppl. Rendiconti Circolo Mat. Palermo, 1993.[3] Kol�a�r, I., Michor, P.W., Slov�ak, J., Natural Operations in Di�erential Geometry, SpringerVerlag, Berlin, 1993.[4] Kol�a�r, I., Modugno, M., Torsion of connections on some natural bundles, Di�. Geom. andAppl. 2 (1992), 1-16.[5] Kurek, J., Natural a�nors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992),175-180.[6] Zajtz, A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988),169-178.Institute of MathematicsJagellonian UniversityReymonta 4Krak�ow, POLAND
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