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NEW EXAMPLES OF COMPACT COSYMPLECTIC
SOLVMANIFOLDS

J.C. MARRERO anD E. PADRON

ABSTRACT. In this paper we present new examples of (2n + 1)-dimensional
compact cosymplectic manifolds which are not topologically equivalent to the
canonical examples, i.e., to the product of the (2m + 1)-dimensional real torus
and the r-dimensional complex projective space, with m,r > 0 and m+r = n.
These new examples are compact solvmanifolds and they are constructed as
suspensions with fibre the 2n-dimensional real torus. In the particular case
n = 1, using the examples obtained, we conclude that a 3-dimensional compact
flat orientable Riemannian manifold with non-zero first Betti number admits
a cosymplectic structure. Furthermore, if the first Betti number is equal to 1
then such a manifold is not topologically equivalent to the global product of a
compact Kihler manifold with the circle S!.

1. INTRODUCTION

It is well-known that the odd-dimensional counterpart of Kahler manifolds are
cosymplectic manifolds. Let us recall that an almost contact metric structure
(¢,&,m,9) on a manifold M is cosymplectic if it is integrable and the 1-form 7
and the fundamental 2-form of the structure are closed (see [1]).

The canonical example of compact cosymplectic manifold is given by the prod-
uct of a compact Kahler manifold with the circle S (see [2]). Thus, the natural
examples of (2n + 1)-dimensional compact cosymplectic manifolds are the products
of the (2m + 1)-dimensional real torus T?"*! and the r-dimensional complex pro-
Jective space CP", with m,r > 0 and m 4+ r = n. In fact, a compact cosymplectic
manifold has topological properties similar to the product of a compact Kahler
manifold with the circle St (see [2] and [3] ). In particular, in [5], the authors prove
that a (2n + 1)-dimensional compact cosymplectic manifold with positive constant
@-sectional curvature is diffeomorphic to the product manifold CP™ x S*.

However, in [3] the authors give an example of 3-dimensional compact cosymplec-
tic manifold which is not topologically equivalent to a global product of a compact
Kahler manifold with the circle St. This fact yields a good motivation for studying
the cosymplectic manifolds.
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The purpose of this paper is to show some examples of (2n+1)-dimensional com-
pact cosymplectic manifolds which are not topologically equivalent to the natural
examples T?m+L x CP” with m,r > 0 and m + r = n. These new examples are
constructed as suspensions with fibre a compact Kahler manifold of representations
defined by Hermitian isometries and, moreover, we have:

(1) All the examples are compact solvmanifolds, that is, they are compact
homogeneous spaces of the form T\G, where G is a connected simply con-
nected solvable non-nilpotent Lie group and T is a discrete cocompact sub-
group.

(2) Using the examples obtained we conclude that a 3-dimensional compact flat
orientable Riemannian manifold with non-zero first Betti number admits a
cosymplectic structure. Furthermore, if the first Betti number is equal to 1
then such a manifold i1s not topologically equivalent to the global product
of a compact Kahler manifold with S*. In fact, the example given in [3] is a
3-dimensional compact flat cosymplectic manifold with first Betti number
equal to 1.

All the manifolds considered in this paper are assumed to be connected and of
class (™.

2. SUSPENSIONS WITH FIBRE A COMPACT KAHLER MANIFOLD OF
REPRESENTATIONS DEFINED BY HERMITIAN ISOMETRIES

Let (¢,&,1,9) be an almost contact metric structure on M. Then we have

e =—-I+7®¢, nE) =1, 9(pX, oY) = g(X,Y) = n(X)n(Y),

for X, Y € X(M), I being the identity transformation and X(M) the Lie algebra of
vector fields on M.
The fundamental 2-form ® of M is defined by

(X, Y) = g(X, pY),

for X, Y € X(M). The almost contact metric structure (p,£,n,¢) is said to be
[1]: integrable if N, = 0, N,, being the Nijenhuis tensor of ¢; cosymplectic if it is
integrable and dn =0, d® = 0.

Now, let N be a 2n-dimensional compact Kahler manifold with Hermitian struc-
ture (J, h). Consider an Hermitian isometry f : N — N, i.e., f is a diffecomorphism
and

(2.1) feed=Jdefe  [*h=h
We define the action A of Z on the product manifold N x IR by
(2.2) Aln, (x,2)) = (f"(2), 2 — n),

for all n € Z and (z,z) € N x IR. This action is free and properly discontinuous.
Thus, the orbit space (N x IR)/A of the Z-actionis a (2n+ 1)-dimensional compact
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manifold and the canonical projection p’ : N x JR — M is a covering map. Moreover,
we can define a fibration 7 of M on S' = R/Z by 7([(z, 2)]) = [2], for all (z,2) €
N x IR. Tt is clear that the fibers of 7 are diffeomorphic to N.

Denote by ¢ : Z — Dif f(N) the representation of Z on the group of the diffeo-
morphisms of N, Diff(N), given by o(k) = f*, for all £ € Z. Then the manifold
M is called the suspension with fibre N of the repesentation ¢ (see [4]).

Next, we shall obtain a cosymplectic structure on M (see [3]).
We consider on N x IR the cosymplectic structure (¢, £,n, g) given by

(23) QB = Jo(prl)*a é: %a

where pri : N x IR — N and pry : N X IR — IR are the canonical projections onto
the first and second factor, respectively and ¢ is the usual coordinate on IR.

n=pry(dt), g=pri(h)+pri(dt?),

Since f is an Hermitian isometry, using (2.1), (2.2) and (2.3), we deduce that the
cosymplectic structure (@, €,7, g) is invariant under the action A of Z on N x IR.
Therefore, it induces a cosymplectic structure (¢,£,1,¢) on M (see [3]).

Remark 2.1.

(1) If the Hermitian isometry f is the identity then M = N x St and (¢, ¢, 7, g)
1s the usual cosymplectic structure on M.

(2) If the Riemannian manifold (N, k) is flat then it is clear that the Rieman-
nian manifold (M, g) is also flat.

3. THE EXAMPLES

In this Section, using the construction of Section 2, we shall obtain some exam-
ples of (2n+ 1)-dimensional compact cosymplectic solvmanifolds. For this purpose,
we shall consider two Kahler structures on the 2n-dimensional real torus T?".

CASE A: Let (J, h) be the natural Kahler structure on the 2n-dimensional real
torus T?" given by

n

JX; = -Y;, JY; = Xi, h=7 (a;®a;+5; @ 8),
j=1
for all i € {1,...,n}, where {Xy,..., X,,,Y1,...,Y,} is the canonical global basis
of vector fields on T?" and {ay,...,an, B1,..., s} is its dual basis of 1-forms.

Case Al: We consider the diffeomorphism fl : R™ — IR?™ defined by
fl(xla"'axnayla"'ayn) = (yla"'ayna_xla"'a_xn)a

for all (z1,...,%n,Y1,...,Yn) € IR¥™. Tt is easy to prove that ﬁ induces an Hermi-
tian isometry fy : (T?" J, k) — (T?" J, h).
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Suppose that M;(n) is the suspension with fibre T?" of the representation g :
Z — Dif f(T?") given by g1(k) = (f1)*, for all k € Z. A direct computation shows
that the fundamental group of My(n), m1(My(n)), is the semidirect product

(3.1) T (Mi(n)) = Z* xy, Z

bl

where ¥ : Z — Aut(Z*") is the homomorphism of Z on the automorphism group
of Z?" Aut(Z*"), defined by ¢4 (k) = ((f1)|Z2n)_k for all k € Z.

From (3.1), we deduce that the commutator subgroup [m(Mi(n)), 71 (M1 (n))]
of m(Mi(n)) is

[m1(My(n)), m1(Mi(n))] =

= {(pla .oy Pny 41, .. 'aquao) S ZZH-I—l / (pl + qi,..-.yPn + QTL) € (QZ)H}
This implies that the first integral homology group Hi(M1(n),Z) is Z & Za &
n)

Next, we shall describe the manifold Mj(n) as a compact solvmanifold.

For this purpose, we consider the vector field Eon IR?" defined by

s =37 0 0

i=1

The vector field C is an infinitesimal automorphism of the usual Kahler structure
(J h) of IR?", i.e., 2 J =0 and £~h = 0, £ being the Lie derivative operator on

R?". In fact, if 1/) : R x R™ — RZ” is the flow of C, we have that

(3.3) W(z, (21, Ty Y1y Yn)) =
_ 3T n . 3T 3T n . 3T
= | zycos 2z Y1 sin 2z s ..., Ty COS 2z Yn SID 2z ,
Y1 COS 2z x1sin 2z s, Yn COS 2z Z, sin 2z .

Thus, the diffeomorphism
G(1) : R* — R*™

given by (D)1, en, b1y Un) = 01, (21, .o 20, Y1, - - -, Yn)) 18 Just the map
fl_l. Furthermore, if on IR?® we consider the structure of additive Lie group then,
for all z € IR, the diffeomorphism ¥(z) : R*" — IR?" is an automorphism of

IR?". Consequently, the map {/; induces a Lie group homomorphism of I into the
automorphism group of IR?", Aut(IR*"), which we also denote by .



COMPACT COSYMPLECTIC SOLVMANIFOLDS 341

Now, let IR*" X{ZTR be the semidirect product defined by the homomorphism

{/; : IR — Aut(IR?"™). From (3.3), we deduce that a basis for the left invariant vector
fields on IR?" X7 IR is given by

X; = cos 3—7Tz 0 — sin 3—7Tz i Y; = sin 3—7Tz i—|—cos 3—7Tz 0
v 2 Ox; 2 Ay;’ T 2 Ox; 2 i’

0
7= —
9z’
for all i € {1,...,n}. Then, for all i € {1,...,n},
3 3

and the other brackets being zero. Using (3.4), we conclude that R*" X{[R s a

(2n + 1)-dimensional simply connected solvable non-nilpotent Lie group.

On the other hand, since {/;(k’)wzn = ¢ (k) for all k € Z, we obtain that the
fundamental group m (M (n)) of Mi(n) is a discrete subgroup of R*" X{[R'

Finally, it is easy to prove that the compact solvmanifold m (M7 (n))\ (R*" X{[R)
is diffeomorphic to the suspension M (n).

Case A2: Now, we consider the diffeomorphism jé : R™ — IR?™ defined by
fZ(xla ey Ty Y1, - ayn) == (_xla ceey =&y, — Y1, - 'a_yn)a

for all (x1,...,2n,Y1,...,Yn) € IR?™. Then, the diffeomorphim fz induces an Her-
mitian isometry fa:(T?? J k) — (T?", J, h).

We denote by Ms(n) the suspension with fibre T?" of the representation gs :
Z — Diff(T?") given by gs(k) = (f2)*, for all k& € Z. The fundamental group of
Ms(n), m1(M2(n)), is the semidirect product

(3.5) T (Ma(n)) = Z* xy, Z,

where ¥y : Z — Aut(Z*") is the homomorphism defined by (k) = ((};)lz2n)_k
for all k € Z.

From (3.5), we deduce that the commutator subgroup of 1 (Ma(n)) is
[m1(M2(n)), w1 (M2(n))] = (22)*" x {0}

and the first integral homology group Hi(M2(n),Z) is 7. © Za® 2n) DZo.

Using the vector field 25 (see (3.2)) and the fact that fy = (f1)?, by a similar
device to used for the manifold M;(n), we obtain that Ma(n) is also a compact
solvmanifold.
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CASE B: Let {Xy,..., X,,Y1,...,Y,} be the canonical global basis of vector
fields on T?* and {a1,...,an,B1,...,B,} its dual basis of 1-forms. Denote by o/
and 3/ the 1-forms on T?" given by

/

™ . T
a; = ;4 cos gﬁi, fi = —sin gﬁi,

forall i € {1,...,n}. If {X1,..., X}, Y], ..., Y} is the dual basis of vector fields
of the basis of 1-forms {af,...,a%,3,,..., 3.} then we consider on T?" the Kahler
structure (J', h') defined by

Ixi=-v Y =X W=) (0fod+ 5 08).

j=1

Case B1: The diffecomorphism f{ : R™ — IR?™ defined by

f{(xla"'axnayla"'ayn):(_yla"'a_ynaxl+y1a"'axn+yn)a

forall (z1,...,%n, Y1, ..., yn) EIR™ induces an Hermitian isometry fi:(T?" J' h'}—
(TZn’ J/,h/).

Denote by M (n) the suspension with fibre T?" of the representation ¢} : Z —
Dif f(T?") given by ¢ (k)= (f])*, for all k € Z. We have that the fundamental
group of M{(n), m1(M{(n)), is the semidirect product

(3.6) m (M (n)) = Z*" xy1 L,
where 9] : Z — Aut(Z?") is the homomorphism defined by (k) = ((}Z)lz2n)_k
for all k € Z.

From (3.6), we deduce that the commutator subgroup of 7 (M{(n)) is

[ (M7 (n)), m (M7 (n))] = Z*" x {0}.

This implies that the first integral homology group Hi(M{(n),Z) is Z.

Next, we shall describe the manifold M{(n) as a compact solvmanifold.

Let (j’,/;’) be the induced Kihler structure on IR?™ by the Kihler structure
(J',h') of T?" = [R*/Z?". Then, the vector field ¢’ on IR*" given by

O NSO S SN SR NN
(37) (=2 goinglGu+3mg, (Fuitgwa,)

i=1

in an infinitesimal automorphism of the structure (j’, l:’) In fact, if 1/;’ : Rx R™ —
IR?" is the flow of {’ we have that
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(3.8) {/;/(z,(xl,...,xn,yl,...,yn)):
=(x10(z+ 1)+ 110(2),...,200(z + 1) + yn0(2),

—210(2) — bz = 1),...,—xpb(z) —ynb(z — 1)),
4
where ¢ : IR — IR is the map defined by 0(z) = gsingsin(gz), for all z € R.

Thus, the diffeomorphism B

Y1) R — R*
given by {/;’(1)(1‘1, e Ey YLy e Yn) = 1;’(1, (T1, . Ty Y1,y -+, Yn)) 18 just the
map (ﬁ)_l. Moreover, for all z € IR, the diffeomorphism {/;’(z) : R — R™
is an automorphism of IR?". Consequently, the map 1;’ induces a Lie group ho-

momorphism of IR into the automorphism group of R?", Aut(IR*"), which we also
denote by /.

Now, let IR?" X3 IR be the semidirect product defined by the homomorphism

{/;’ : IR — Aut(IR*"). From (3.8), we deduce that a basis for the left invariant vector
fields is given by

0 0 0 0 0
X =04 1) — 0(z)—, Y/ =0 9z -1 7 ==
{20+ g = 0e)g 0 Y =05~ 06~ 15 L
for all i € {1,...,n}. Then, for all i € {1,...,n},
2 T w2 4
3.9) [X!, 7] = Zsin~(2y/ — X! V!, 7 = Zsin Z(Zy! — X!
(3.9) XL 7] = Tsin TGV - 2XD, 2] = Sein TGV - 1)),

and the other brackets being zero. Using (3.9), we conclude that R*" X3 Risa

(2n + 1)-dimensional simply connected solvable non-nilpotent Lie group.

On the other hand, since J’(k)wzn = ) (k) for all k € Z, we obtain that the

fundamental group w1 (M (n)) of M{(n) is a discrete subgroup of IR*" X7 R.
Finally, it is easy to prove that the compact solvmanifold 71 (M (n))\ (R*" X R)

is diffeomorphic to the suspension M (n).

Case B2: We consider the diffeomorphism jZ : IR — IR?™ defined by

Foler, o xn ¥ty Un) = (—21 — Y1y ooy — 8 — Yn, B1,y ..o, Tn),

for all (x1, .., %n,¥y1,...,yn)EMR?. Then, the diffecomorphism jZ induces an Hermi-
tian isometry f:(T?, J', k') — (T J' h').

We denote by Mj(n) the suspension with fibre T?" of the representation g} :
Z — Diff(T?") given by o4 (k) = (f4)*, for all k& € Z. The fundamental group of
M (n), m(M4(n)), is the semidirect product

(3.10) m (My(n)) = 2" xy1 Z,



344 J.C. MARRERO, E. PADRON

where ¢4 : Z — Aut(Z?") is the homomorphism defined by (k) = ((}2)|22n)_k
for all k € Z.

From (3.10), we deduce that the commutator subgroup of w1 (M4(n)) is

[m1 (M5 (n)), m1(My(n))] =
={(p1,- - P 1y - 00, 0) EZP"T (D1 — g1, .. 0 — a0) € (BZ)"}.

Thus, the first integral homology group Hi(Mj(n),7Z) is 7. @ Zs® 7, P©Zs3.

Similarly to the case B1, since f4 = (f])?, if we consider the vector field 25’ (see
(3.7)) on IR?", we obtain that Mj(n) is also a compact solvmanifold.

From (3.1), (3.5), (3.6) and (3.10), we deduce that the fundamental group of the
manifolds M;(n), M!(n) (i = 1,2) is not abelian. Therefore, using Remark 2.1 and
the results obtained in this Section, we conclude that

Theorem 3.1. The manifolds My(n), Ma(n), M{(n) and Mj(n) are (2n + 1)-di-
mensional compact flat cosymplectic solvmanifolds which are not topologically equiv-
alent to the compact cosymplectic manifolds T?>™*t x CP”, with m,r > 0 and
m+—+r=mn.

Moreover, in the particular case n = 1, we have

Theorem 3.2. Let M be a 3-dimensional compact flat orientable Riemannian
manifold and by (M) its first Betti number.

1) If by (M) # 0 then M admits a cosymplectic structure.
i) If by(M) = 1 then M is not topologically equivalent to the global product
of a compact Kdhler manifold with S'.

Proof. Two 3-dimensional compact flat orientable Riemannian manifolds are dif-
feomorphic if their first integral homology groups are isomorphic (see [6]). More-
over, if M 1s a 3-dimensional compact flat orientable Riemannian manifold and
b1 (M) # 0 then the first integral homology group of M is Z & Zo, Z.&® Zo ® Za, 7,
Z@dZgor ZHZ®Z (see [6]). Consequently, M is either diffeomorphic to My (1),
or to Ms(1), or to M{(1), or to M4(1), or to the 3-dimensional real torus T3. This
implies that M admits a cosymplectic structure (see Theorem 3.1), which proves

Now, if b1(M) = 1 then M is either diffeomorphic to My(1), or to M2(1), or
to M{(1), or to M4(1). Thus, if M is homeomorphic to the global product of a
2-dimensional compact Kahler manifold N with S' then the first Betti number of
N is zero. Hence N would be diffeomorphic to the 2-dimensional unit sphere S?

which yields a contradiction with the fact that the fundamental group of M is not
abelian (see (3.1), (3.5), (3.6) and (3.10)). O
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Remark 3.1.

(1) If M is a compact cosymplectic manifold and b, (M) is the p** Betti number
of M, 0 < p < dimM, then b,(M) # 0 (see [2] and [3]). In particular,
by (M) # 0.

(2) In [3], the authors obtain an example of 3-dimensional compact cosymplec-
tic manifold which is not topologically equivalent to the global product of a
compact Kahler manifold with S'. Such a manifold is just the 3-dimensional
compact flat cosymplectic solvmanifold M (1).
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