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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 337 { 345NEW EXAMPLES OF COMPACT COSYMPLECTICSOLVMANIFOLDSJ.C. MARRERO and E. PADRONAbstract. In this paper we present new examples of (2n + 1)-dimensionalcompact cosymplectic manifolds which are not topologically equivalent to thecanonical examples, i.e., to the product of the (2m+1)-dimensional real torusand the r-dimensional complex projective space, withm; r � 0 andm+r = n:These new examples are compact solvmanifolds and they are constructed assuspensions with �bre the 2n-dimensional real torus. In the particular casen = 1; using the examples obtained, we conclude that a 3-dimensional compact
at orientable Riemannian manifold with non-zero �rst Betti number admitsa cosymplectic structure. Furthermore, if the �rst Betti number is equal to 1then such a manifold is not topologically equivalent to the global product of acompact K�ahler manifold with the circle S1:1. IntroductionIt is well-known that the odd-dimensional counterpart of K�ahler manifolds arecosymplectic manifolds. Let us recall that an almost contact metric structure('; �; �; g) on a manifold M is cosymplectic if it is integrable and the 1-form �and the fundamental 2-form of the structure are closed (see [1]).The canonical example of compact cosymplectic manifold is given by the prod-uct of a compact K�ahler manifold with the circle S1 (see [2]). Thus, the naturalexamples of (2n+1)-dimensional compact cosymplectic manifolds are the productsof the (2m + 1)-dimensional real torus T2m+1 and the r-dimensional complex pro-jective space CP r ; with m; r � 0 and m + r = n: In fact, a compact cosymplecticmanifold has topological properties similar to the product of a compact K�ahlermanifold with the circle S1 (see [2] and [3] ). In particular, in [5], the authors provethat a (2n+ 1)-dimensional compact cosymplectic manifold with positive constant'-sectional curvature is di�eomorphic to the product manifold CPn � S1:However, in [3] the authors give an example of 3-dimensional compact cosymplec-tic manifold which is not topologically equivalent to a global product of a compactK�ahler manifold with the circle S1. This fact yields a good motivation for studyingthe cosymplectic manifolds.1991 Mathematics Subject Classi�cation: Primary 53C15, 53C55; Secondary 22E25.Key words and phrases: cosymplecticmanifolds, solvmanifolds, K�ahler manifolds, suspensions,
at Riemannian manifolds.Received November 13, 1996.



338 J.C. MARRERO, E. PADRONThe purpose of this paper is to show some examples of (2n+1)-dimensional com-pact cosymplectic manifolds which are not topologically equivalent to the naturalexamples T2m+1 � CP r ; with m; r � 0 and m + r = n: These new examples areconstructed as suspensions with �bre a compact K�ahler manifold of representationsde�ned by Hermitian isometries and, moreover, we have:(1) All the examples are compact solvmanifolds, that is, they are compacthomogeneous spaces of the form �nG; where G is a connected simply con-nected solvable non-nilpotent Lie group and � is a discrete cocompact sub-group.(2) Using the examples obtained we conclude that a 3-dimensional compact 
atorientable Riemannian manifold with non-zero �rst Betti number admits acosymplectic structure. Furthermore, if the �rst Betti number is equal to 1then such a manifold is not topologically equivalent to the global productof a compact K�ahler manifold with S1: In fact, the example given in [3] is a3-dimensional compact 
at cosymplectic manifold with �rst Betti numberequal to 1:All the manifolds considered in this paper are assumed to be connected and ofclass C1:2. Suspensions with fibre a compact K�ahler manifold ofrepresentations defined by Hermitian isometriesLet ('; �; �; g) be an almost contact metric structure on M: Then we have'2 = �I + � 
 �; �(�) = 1; g('X;'Y ) = g(X;Y ) � �(X)�(Y );for X;Y 2 X(M ); I being the identity transformation and X(M ) the Lie algebra ofvector �elds on M .The fundamental 2-form � of M is de�ned by�(X;Y ) = g(X;'Y );for X;Y 2 X(M ): The almost contact metric structure ('; �; �; g) is said to be[1]: integrable if N' = 0; N' being the Nijenhuis tensor of '; cosymplectic if it isintegrable and d� = 0; d� = 0:Now, let N be a 2n-dimensional compact K�ahler manifold with Hermitian struc-ture (J; h): Consider an Hermitian isometry f : N ! N; i.e., f is a di�eomorphismand f� � J = J � f� , f�h = h:(2.1)We de�ne the action A ofZon the product manifold N � IR byA(n; (x; z)) = (fn(z); z � n);(2.2)for all n 2 Zand (x; z) 2 N � IR: This action is free and properly discontinuous.Thus, the orbit space (N � IR)=A of theZ-action is a (2n+1)-dimensional compact



COMPACT COSYMPLECTIC SOLVMANIFOLDS 339manifold and the canonical projection p0 : N�IR!M is a covering map. Moreover,we can de�ne a �bration � of M on S1 = IR=Zby � ([(x; z)]) = [z]; for all (x; z) 2N � IR: It is clear that the �bers of � are di�eomorphic to N:Denote by % :Z! Diff(N ) the representation ofZon the group of the di�eo-morphisms of N; Diff(N ); given by %(k) = fk; for all k 2 Z: Then the manifoldM is called the suspension with �bre N of the repesentation % (see [4]).Next, we shall obtain a cosymplectic structure on M (see [3]).We consider on N � IR the cosymplectic structure ( �'; ��; ��; �g) given by�' = J � (pr1)�; �� = @@t ; �� = pr�2(dt); �g = pr�1(h) + pr�2(dt2);(2.3)where pr1 : N � IR! N and pr2 : N � IR! IR are the canonical projections ontothe �rst and second factor, respectively and t is the usual coordinate on IR:Since f is an Hermitian isometry, using (2.1), (2.2) and (2.3), we deduce that thecosymplectic structure ( �'; ��; ��; �g) is invariant under the action A of Zon N � IR:Therefore, it induces a cosymplectic structure ('; �; �; g) on M (see [3]).Remark 2.1.(1) If the Hermitian isometry f is the identity thenM = N�S1 and ('; �; �; g)is the usual cosymplectic structure on M:(2) If the Riemannian manifold (N; h) is 
at then it is clear that the Rieman-nian manifold (M; g) is also 
at.3. The examplesIn this Section, using the construction of Section 2, we shall obtain some exam-ples of (2n+1)-dimensional compact cosymplectic solvmanifolds. For this purpose,we shall consider two K�ahler structures on the 2n-dimensional real torus T2n:CASE A: Let (J; h) be the natural K�ahler structure on the 2n-dimensional realtorus T2n given byJXi = �Yi; JYi = Xi; h = nXj=1(�j 
 �j + �j 
 �j);for all i 2 f1; : : : ; ng; where fX1; : : : ; Xn; Y1; : : : ; Yng is the canonical global basisof vector �elds on T2n and f�1; : : : ; �n; �1; : : : ; �ng is its dual basis of 1-forms.Case A1: We consider the di�eomorphism ef1 : IR2n ! IR2n de�ned byef1(x1; : : : ; xn; y1; : : : ; yn) = (y1; : : : ; yn;�x1; : : : ;�xn);for all (x1; : : : ; xn; y1; : : : ; yn) 2 IR2n: It is easy to prove that ef1 induces an Hermi-tian isometry f1 : (T2n; J; h)! (T2n; J; h):



340 J.C. MARRERO, E. PADRONSuppose that M1(n) is the suspension with �bre T2n of the representation %1 :Z! Diff(T2n) given by %1(k) = (f1)k; for all k 2Z: A direct computation showsthat the fundamental group of M1(n); �1(M1(n)); is the semidirect product�1(M1(n)) =Z2n� 1 Z;(3.1)where  1 :Z! Aut(Z2n) is the homomorphism of Zon the automorphism groupofZ2n; Aut(Z2n); de�ned by  1(k) = (( ef1)jZ2n)�k for all k 2Z:From (3.1), we deduce that the commutator subgroup [�1(M1(n)); �1(M1(n))]of �1(M1(n)) is[�1(M1(n)); �1(M1(n))] == f(p1; : : : ; pn; q1; : : : ; qn; 0) 2Z2n+1 = (p1 + q1; : : : ; pn + qn) 2 (2Z)ng:This implies that the �rst integral homology group H1(M1(n);Z) is Z�Z2 �� n)� � � �Z2:Next, we shall describe the manifoldM1(n) as a compact solvmanifold.For this purpose, we consider the vector �eld e� on IR2n de�ned bye� = nXi=1 3�2 �yi @@xi � xi @@yi� :(3.2)The vector �eld e� is an in�nitesimal automorphism of the usual K�ahler structure( eJ;eh) of IR2n; i.e., Le� eJ = 0 and Le�eh = 0; L being the Lie derivative operator onIR2n: In fact, if e : IR� IR2n! IR2n is the 
ow of e�; we have that(3.3) e (z; (x1; : : : ; xn; y1; : : : ; yn)) == �x1 cos�3�2 z�+ y1 sin�3�2 z� ; : : : ; xn cos�3�2 z�+ yn sin�3�2 z� ;y1 cos�3�2 z�� x1 sin�3�2 z� ; : : : ; yn cos�3�2 z�� xn sin�3�2 z�� :Thus, the di�eomorphism e (1) : IR2n! IR2ngiven by e (1)(x1; : : : ; xn; y1; : : : ; yn) = e (1; (x1; : : : ; xn; y1; : : : ; yn)) is just the mapef�11 : Furthermore, if on IR2n we consider the structure of additive Lie group then,for all z 2 IR; the di�eomorphism e (z) : IR2n ! IR2n is an automorphism ofIR2n: Consequently, the map e induces a Lie group homomorphism of IR into theautomorphism group of IR2n; Aut(IR2n); which we also denote by e :



COMPACT COSYMPLECTIC SOLVMANIFOLDS 341Now, let IR2n �e IR be the semidirect product de�ned by the homomorphisme : IR! Aut(IR2n): From (3.3), we deduce that a basis for the left invariant vector�elds on IR2n �e IR is given byXi = cos�3�2 z� @@xi � sin�3�2 z� @@yi ; Yi = sin�3�2 z� @@xi + cos�3�2 z� @@yi ;Z = @@z ;for all i 2 f1; : : : ; ng: Then, for all i 2 f1; : : : ; ng;[Xi; Z] = 3�2 Yi; [Yi; Z] = �3�2 Xi;(3.4)and the other brackets being zero. Using (3.4), we conclude that IR2n �e IR is a(2n+ 1)-dimensional simply connected solvable non-nilpotent Lie group.On the other hand, since e (k)jZ2n =  1(k) for all k 2 Z; we obtain that thefundamental group �1(M1(n)) of M1(n) is a discrete subgroup of IR2n �e IR:Finally, it is easy to prove that the compact solvmanifold �1(M1(n))n(IR2n�e IR)is di�eomorphic to the suspension M1(n):Case A2: Now, we consider the di�eomorphism ef2 : IR2n ! IR2n de�ned byef2(x1; : : : ; xn; y1; : : : ; yn) = (�x1; : : : ;�xn;�y1; : : : ;�yn);for all (x1; : : : ; xn; y1; : : : ; yn) 2 IR2n: Then, the di�eomorphim ef2 induces an Her-mitian isometry f2 :(T2n; J; h)! (T2n; J; h):We denote by M2(n) the suspension with �bre T2n of the representation %2 :Z! Diff(T2n) given by %2(k) = (f2)k; for all k 2Z: The fundamental group ofM2(n); �1(M2(n)); is the semidirect product�1(M2(n)) =Z2n� 2 Z;(3.5)where  2 : Z! Aut(Z2n) is the homomorphism de�ned by  2(k) = (( ef2)jZ2n )�kfor all k 2Z:From (3.5), we deduce that the commutator subgroup of �1(M2(n)) is[�1(M2(n)); �1(M2(n))] = (2Z)2n� f0gand the �rst integral homology group H1(M2(n);Z) is Z�Z2� 2n)� � � �Z2:Using the vector �eld 2e� (see (3.2)) and the fact that f2 = (f1)2; by a similardevice to used for the manifold M1(n); we obtain that M2(n) is also a compactsolvmanifold.



342 J.C. MARRERO, E. PADRONCASE B: Let fX1; : : : ; Xn; Y1; : : : ; Yng be the canonical global basis of vector�elds on T2n and f�1; : : : ; �n; �1; : : : ; �ng its dual basis of 1-forms. Denote by �0iand �0i the 1-forms on T2n given by�0i = �i + cos �3 �i; �0i = � sin �3 �i;for all i 2 f1; : : : ; ng: If fX01; : : : ; X0n; Y 01; : : : ; Y 0ng is the dual basis of vector �eldsof the basis of 1-forms f�01; : : : ; �0n; �01; : : : ; �0ng then we consider on T2n the K�ahlerstructure (J 0; h0) de�ned byJ 0X0i = �Y 0i ; J 0Y 0i = X0i; h0 = nXj=1(�0j 
 �0j + �0j 
 �0j):Case B1: The di�eomorphism ef 01 : IR2n ! IR2n de�ned byef 01(x1; : : : ; xn; y1; : : : ; yn) = (�y1; : : : ;�yn; x1 + y1; : : : ; xn + yn);for all (x1; : : : ; xn; y1; : : : ; yn)2IR2n; induces an Hermitian isometry f 01 :(T2n; J 0; h0)!(T2n; J 0; h0):Denote by M 01(n) the suspension with �bre T2n of the representation %01 :Z!Diff(T2n) given by %01(k) = (f 01)k; for all k 2 Z: We have that the fundamentalgroup of M 01(n); �1(M 01(n)); is the semidirect product�1(M 01(n)) =Z2n� 01 Z;(3.6)where  01 : Z! Aut(Z2n) is the homomorphism de�ned by  01(k) = (( ef 01)jZ2n )�kfor all k 2Z:From (3.6), we deduce that the commutator subgroup of �1(M 01(n)) is[�1(M 01(n)); �1(M 01(n))] =Z2n� f0g:This implies that the �rst integral homology group H1(M 01(n);Z) isZ:Next, we shall describe the manifoldM 01(n) as a compact solvmanifold.Let ( eJ 0; eh0) be the induced K�ahler structure on IR2n by the K�ahler structure(J 0; h0) of T2n = IR2n=Z2n: Then, the vector �eld e� 0 on IR2n given bye� 0 = nXi=1 �3 sin �3 ((43yi + 23xi) @@xi � (43xi + 23yi) @@yi )(3.7)in an in�nitesimal automorphismof the structure ( eJ 0; eh0): In fact, if ~ 0 : IR�IR2n !IR2n is the 
ow of e�0 we have that



COMPACT COSYMPLECTIC SOLVMANIFOLDS 343(3.8) e 0(z; (x1; : : : ; xn; y1; : : : ; yn)) == (x1�(z + 1) + y1�(z); : : : ; xn�(z + 1) + yn�(z);� x1�(z) � y1�(z � 1); : : : ;�xn�(z) � yn�(z � 1));where � : IR ! IR is the map de�ned by �(z) = 43 sin �3 sin(�3 z); for all z 2 IR:Thus, the di�eomorphism e 0(1) : IR2n ! IR2ngiven by e 0(1)(x1; : : : ; xn; y1; : : : ; yn) = e 0(1; (x1; : : : ; xn; y1; : : : ; yn)) is just themap ( ef 01)�1: Moreover, for all z 2 IR; the di�eomorphism e 0(z) : IR2n ! IR2nis an automorphism of IR2n: Consequently, the map e 0 induces a Lie group ho-momorphism of IR into the automorphism group of IR2n; Aut(IR2n); which we alsodenote by e 0:Now, let IR2n �e 0 IR be the semidirect product de�ned by the homomorphisme 0 : IR! Aut(IR2n): From (3.8), we deduce that a basis for the left invariant vector�elds is given byX0i = �(z + 1) @@xi � �(z) @@yi ; Y 0i = �(z) @@xi � �(z � 1) @@yi ; Z0 = @@z ;for all i 2 f1; : : : ; ng: Then, for all i 2 f1; : : : ; ng;[X 0i; Z0] = �3 sin �3 (43Y 0i � 23X 0i); [Y 0i ; Z0] = �3 sin �3 (23Y 0i � 43X0i);(3.9)and the other brackets being zero. Using (3.9), we conclude that IR2n �e 0 IR is a(2n+ 1)-dimensional simply connected solvable non-nilpotent Lie group.On the other hand, since e 0(k)jZ2n =  01(k) for all k 2 Z; we obtain that thefundamental group �1(M 01(n)) of M 01(n) is a discrete subgroup of IR2n �e 0 IR:Finally, it is easy to prove that the compact solvmanifold�1(M 01(n))n(IR2n�e 0IR)is di�eomorphic to the suspension M 01(n):Case B2: We consider the di�eomorphism ef 02 : IR2n ! IR2n de�ned byef 02(x1; : : : ; xn; y1; : : : ; yn) = (�x1 � y1; : : : ;�xn � yn; x1; : : : ; xn);for all (x1;: : :; xn; y1; : : : ; yn)2IR2n: Then, the di�eomorphism ef 02 induces an Hermi-tian isometry f 02 :(T2n; J 0; h0)!(T2n; J 0; h0):We denote by M 02(n) the suspension with �bre T2n of the representation %02 :Z! Diff(T2n) given by %02(k) = (f 02)k; for all k 2Z: The fundamental group ofM 02(n); �1(M 02(n)); is the semidirect product�1(M 02(n)) =Z2n� 02 Z;(3.10)



344 J.C. MARRERO, E. PADRONwhere  02 : Z! Aut(Z2n) is the homomorphism de�ned by  02(k) = (( ef 02)jZ2n )�kfor all k 2Z:From (3.10), we deduce that the commutator subgroup of �1(M 02(n)) is[�1(M 02(n)); �1(M 02(n))] == f(p1; : : : ; pn; q1; : : : ; qn; 0) 2Z2n+1=(p1 � q1; : : : ; pn � qn) 2 (3Z)ng:Thus, the �rst integral homology group H1(M 02(n);Z) is Z�Z3� n)� � � �Z3:Similarly to the case B1, since f 02 = (f 01)2; if we consider the vector �eld 2e� 0 (see(3.7)) on IR2n; we obtain that M 02(n) is also a compact solvmanifold.From (3.1), (3.5), (3.6) and (3.10), we deduce that the fundamental group of themanifoldsMi(n);M 0i(n) (i = 1; 2) is not abelian. Therefore, using Remark 2.1 andthe results obtained in this Section, we conclude thatTheorem 3.1. The manifolds M1(n);M2(n);M 01(n) and M 02(n) are (2n + 1)-di-mensional compact 
at cosymplectic solvmanifolds which are not topologically equiv-alent to the compact cosymplectic manifolds T2m+1 � CP r ; with m; r � 0 andm+ r = n:Moreover, in the particular case n = 1; we haveTheorem 3.2. Let M be a 3-dimensional compact 
at orientable Riemannianmanifold and b1(M ) its �rst Betti number.i) If b1(M ) 6= 0 then M admits a cosymplectic structure.ii) If b1(M ) = 1 then M is not topologically equivalent to the global productof a compact K�ahler manifold with S1:Proof. Two 3-dimensional compact 
at orientable Riemannian manifolds are dif-feomorphic if their �rst integral homology groups are isomorphic (see [6]). More-over, if M is a 3-dimensional compact 
at orientable Riemannian manifold andb1(M ) 6= 0 then the �rst integral homology group of M is Z�Z2; Z�Z2�Z2;Z;Z�Z3 or Z�Z�Z(see [6]). Consequently, M is either di�eomorphic to M1(1);or to M2(1); or to M 01(1); or to M 02(1); or to the 3-dimensional real torus T3: Thisimplies that M admits a cosymplectic structure (see Theorem 3.1), which provesi):Now, if b1(M ) = 1 then M is either di�eomorphic to M1(1); or to M2(1); orto M 01(1); or to M 02(1): Thus, if M is homeomorphic to the global product of a2-dimensional compact K�ahler manifold N with S1 then the �rst Betti number ofN is zero. Hence N would be di�eomorphic to the 2-dimensional unit sphere S2which yields a contradiction with the fact that the fundamental group of M is notabelian (see (3.1), (3.5), (3.6) and (3.10)). �



COMPACT COSYMPLECTIC SOLVMANIFOLDS 345Remark 3.1.(1) IfM is a compact cosymplectic manifold and bp(M ) is the pth Betti numberof M; 0 � p � dimM; then bp(M ) 6= 0 (see [2] and [3]). In particular,b1(M ) 6= 0:(2) In [3], the authors obtain an example of 3-dimensional compact cosymplec-tic manifold which is not topologically equivalent to the global product of acompact K�ahler manifoldwith S1: Such a manifold is just the 3-dimensionalcompact 
at cosymplectic solvmanifoldM1(1):References[1] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509,Springer-Verlag, Berlin, (1976).[2] Blair, D.E., Goldberg, S. I., Topology of almost contact manifolds, J. Di�. Geometry, 1,347-354 (1967).[3] Chinea, D., Le�on, M. de, Marrero, J. C., Topology of cosymplectic manifolds, J. Math. PuresAppl., 72, 567-591 (1993).[4] Hector, G., Hirsch, U., Introduction to the Geometry of Foliations. Part A, Aspects ofMath., Friedr. Vieweg and Sohn, (1981).[5] Le�on, M. de, Marrero, J.C., Compact cosymplectic manifolds with transversally positivede�nite Ricci tensor, Rendiconti di Matematica, Serie VII, 17 Roma, 607-624 (1997).[6] Wolf, J. A., Spaces of constant curvature, 5nd ed., Publish or Perish, Inc., Wilmington,Delaware, (1984).Depto. Matematica Fundamental, Facultad de MatematicasUniversidad de la Laguna, TenerifeCanary Islands, SPAINE-mail: jcmarrer@ull.es, mepadron@ull.es
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