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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 347 { 352v-PROJECTIVE SYMMETRIES OF FIBERED MANIFOLDSC�at�alin T�ig�aeruAbstract. We prove that the set of the v-projective symmetries is a Lie algebra.IntroductionLet � : E ! B be a �bered manifold and let us suppose that every leaf isendowed with a symmetric covariant derivative. In other words, this means thatthere is de�ned the morphismr : V (E) � V (E)! V (E) (U; V )!r(U; V )which satis�es the following properties:(a) it is biadditive(b) r(f � U; V ) = f � r(U; V )(c) r(U; fV ) = f � r(U; V ) + (Uf)�V(d) [U; V ] = r(U; V ) �r(V; U ) ; f 2 F (E), U; V 2 V (E)where V (E) represents the Lie algebra of the vertical vector �elds.A v-projective symmetry is a projectable vector �eld X with the property inwhich every di�eomorphism 't of its one { parametric group is a projective mapbetween leaves. The purpose of this note is to investigate the set of the v-projectivesymmetries. We prove that the set of the v-projective symmetries is a Lie algebra.In the second paragraph we prove some results concerning with v-symmetrieswith respect to the Levi-Civita connection induced by a vertical metric. In a furtherpaper we shall study the v-projective symmetries in the context of Riemanniansubmersion and Riemannian foliations.1991 Mathematics Subject Classi�cation : 53B10, 53C22, 57R30.Key words and phrases: v-projective symmetries, the v-Weyl tensor.Received November 27, 1996.



348 C. T� IG�AERU1. The set of the v-symmetriesWe use the notation:{ V (E) is the Lie algebra of the vertical vector �elds of � ,{ P (E) is the Lie algebra of the projectable vector �elds of �. we recall that V (E)is an ideal of P (E) and that a projectable vector �eld has the property inwhich 't(Eb) = E't(b), where f't : E ! E ; t 2 Rg represents the ow ofX.De�nition 1. The vector �eld X 2 P (E) is called v-symmetry of r if and onlyif there exists a family ! : R� V (E)! R of 1-forms which satis�es the relation(1) 't � rUV = rUtV t + !(t; U ) � V t + !(t; V ) � U twhere we denote U t = 't �U and we also denote 't for the di�erential of 't.If ! = 0 we call X a v-a�ne symmetry.The result of the paragraph is the following:Theorem 1. The set of v-projective symmetries of r is a Lie algebra.In order to prove the theorem we need the following result:Proposition 1. The vector �eld X 2 V (E) is a v-projective symmetry if andonly if there exists a form !0 : V (E)! R such that the relation(2) [X;rUV ] + !0(U ) � V + !0(V ) � U = r[X;U ]V +rU [X;V ]holds good, for every U; V 2 V (E).Proof. Let us suppose that X is a v-projective symmetry: one obtainslimt!0(1=t)(rUV � 't � rUtV t) = flimt!0(1=t)!(t; U )g � V + flimt!0(1=t)!(t; V )g � U :The �rst limit is equal with�[X;rUV ] +r[X;U ]V +rU [X;V ] :Let us put(*) limt!0(1=t)!(t; U ) = !0(U ) for every U 2 V (E) :Hence, one obtains (2).Let us suppose that the relation (2) holds good. We de�ne the family ! :R� V (E)! R of 1-forms as follows:!(t; U ) = Z t0 !0('t �U ) dt ; U 2 V (E) :



v{PROJECTIVE SYMMETRIES OF FIBERED MANIFOLDS 349It is easy to check that !(t; U ) is the unique solution of the di�erential equationd!dt (t; U ) = !0('t �U ) = !0(U t)(**) !(0; U ) = 0 :for every U 2 V (E).If we put U = V in the relation (2), one obtains(3) [X;rUU ] + 2!0(U ) = r[X;U ]U +rU [X;U ] for every U 2 V (E) :We prove that, if (3) holds, then the ow has the property in which't � rUU = rutU t + 2!0(t; U ) �U t ;hence the map 't is a projective map between leaves.Let us put V (s) = rUU;e� ('�s);'s(e) �rUsU s 2 TeEb, where e 2 Eb, �(e) = b.Then one obtainsdVds (s) = lims!0(1=s) � (rUU;e � ('�s);'s(e) � rUsU s) == '�s � ��[X;rUsU s] +rUs [X;U s] +r[X;Us]U s	 == '�s � f2!0(U s) � U sg = 2!0(U s) � U;ewhere we put U s = 's �U . So the vector �eld V (s) is the solution of the equationdVds (s) = 2!0(U s) �U;eV (0) = 0Taking into account by (**), one deduces that V (s) = 2!(s; U ) � U;e. Conse-quently, the di�eomorphism 't is a projective map between leaves. This concludesthe proof. �We notice that the relation (3) is a necessary and su�cient condition for aprojective vector �eld X to be v-projective symmetry. Indeed, if we put in (3)the sum U + V and if we take into account by the fact that the torsion of r iszero, we obtain the relation (2). But, in general, the relations (2) and (3) are notequivalent.Proof of the Theorem 1. Let X and Y be two v-projective symmetries and let! and � be their 1-forms respectively. We verify the relation (3) holds good forthe bracket [X;Y ]. Let us denote !0 and �0 the derivatives as in the relation (*).One obtainsL[X;Y ]rUU = LXLYrUU � LY LXrUU == LX (r[Y;U ]U +rU [Y; U ]� 2�0(U )�)� LY (r[X;U ]U +rU [X;U ]� 2!0(U ) � U ) :Taking into account by (2) we obtain the relationL[X;Y ]rUU = rU [[X;Y ]; U ] +r[[X;Y ];U ]U � 2(LX�0 � LY !0) (U ) � U :Because the relation (3) is ful�led, we conclude the proof. �



350 C. T� IG�AERU2. The v-Weyl projective tensor fieldIn the theory of the projective transformations of connections the Weyl projec-tive tensor plays an important role. In our case, the correspondent tensor will bede�ned on the vertical vectors only. So, the v-Weyl projective tensor �eld is themorphism P : V (E)� V (E) � V (E)! V (E) de�ned by the relation(4) P (U; V )W = R(U; V )W � S(V;W ) � U+ S(U;W ) � V + [S(U; V )� S(V; U )] �Wwhere(5) S(U; V ) = 1n2 � 1 [Ric (U; V ) + nRic (V; U )]where n represents the common dimension of the leaves (see [1] for details).Proposition 2. The vector �eld X 2 P (E) is a v-projective symmetry if andonly if the relation(6) LXP = 0holds good.Proof. It is well known the property of the Weyl projective tensor to be invariantwith respect to projective transformations (see [2] for details). Furthermore, thisproperty is a su�cient condition for a di�eomorphism to be projective. In ourcase, this leads to the relation 't � P (U; V )W = P (U t; V t)W t which means that(LXP )(U; V )W = 0 (see Corollary 3.7, p. 33, [5]). This concludes the proof. �Let us suppose from now on that the �bered manifold � is endowed with avertical metric g : V (E) � V (E) ! R and let us suppose that r represents theLevi-Civita connection induced by the metric. Then the v-Weyl projective tensorhas the form P (U; V )W = R(U; V )W � 1n� 1 B(U; V )W(7)where B(U; V )W = Ric (V;W ) � U � Ric (U;W ) � V(8)(see [1], p. 94, (1.25)).Proposition 3. Let us suppose that � is endowed with a vertical metric and letus suppose that X is a v-projective symmetry. Then we have:(a) the family ! : R�V (E)! R is closed, i.e. d!(t; U; V ) = 0 for every t 2 R(b) the relation(9) (rU!0) (V ) = (LXRic ) (U; V )holds good, for every U; V 2 V (E).



v{PROJECTIVE SYMMETRIES OF FIBERED MANIFOLDS 351Proof. Before to start we recall that the family ! and !0 are related by therelations (*) and (**). We use the relations (0.5), (0.6) and (0.7) from [3]. So oneobtains the formula(***) R(U; V )W � '�t �R(U t; V t)W t = (r!) (t; U;W ) � V � (r!) (t; V;W ) � U+((r!) (t; U; V ) � (r!) (t; V; U )) �Wwhere we put (r!) (t; U; V ) = (rU!) (t; V )� !(t; U )!(t; V ). Because oflimt!0(1=t)!(t; U )!(t; V ) = !0(U )!(0; V ) = 0one obtains limt!0(1=t) (r! (t; U; V )) = (rU!0) (V ) :Passing through the limit in (***) we �nd(10) (LXR) (U; V )W = (rV !0) (W ) � U � (rU!0)V�((rU!0) (V ) � (rV !0) (U )) �W :But the relation (6) implies the equality(****) (LXR) (U; V )W = 1n� 1 (LXB) (U; V )W :A straightforward computation gives(LXB) (U; V )W = (LXRic ) (V;W ) �U � (LX Ric ) (U;W ) ; �V :Comparing the two members of the equality (****), one obtains the followingrelations: (rU!0) (V ) = 1n� 1(LX Ric ) (U; V ) ; i.e. the relation (9)and (rU!0) (V ) = (rV !0) (U ) :From the second relation we deduce d!0(U; V ) = 0 and so we conclude the point(a). We notice that the point (a) recon�rm the proposition 1.7 and the corollary1.8 from [3]. As a consequence of this result, it is easy to prove



352 C. T� IG�AERUCorollary 1. If the �bered manifold � endowed with the vertical metric g, allowsa v-a�ne symmetry, then the relations(11) LXR = 0 ; LX Ric = 0hold good.We would like to present, in the end, some very simple examples of v-projectivesymmetries. Let us consider the Euclidean space EN+1 and let �n : EN+1 ! R,n 2 f1; : : : ; Ng be the submersions de�ned by the relations�n(x1; : : : ; xN+1) =p(x1)2 + � � �+ (xn)2which generate the concentric hyperspheres arround the origin in the case n = Nand the generalized cilinders in the case n < N . It is easy to see that the positionvector �eld �r is a v-a�ne symmetry of the �bered manifold�N . We shall prove, in afurther paper, that the above examples, together with the parallel hyperplanes, arethe only �bered manifolds de�ned on the Euclidean space which allow v-projectivesymmetries. References[1] Theodorescu, I.D., Spatii cu conexiune aproape proiectiva, Conexiuni pe varietati diferen-tiabile, Bucuresti 1980, 116-147.[2] Nicolescu, L., Geometria de deformare a doua conexiuni lineare, Capitole speciale de geome-trie diferentiala, Bucuresti 1981, 118-160.[3] Prakash, N., Projective mappings on di�erentiable manifolds, Rocky Mountain J. of Math.,17, No. 3 1987, 511-533.[4] Eisenhart, L. P., Non-Riemannian geometry, A.M.S. 1927.[5] Kobayashi, S., Foundations of di�erential geometry, K. Nomizu, Wiley, Interscience Publ.,New York-London, vol. I 1963.University S�tefan cel MareSuceava 5800, ROMÂNIA
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