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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 387 { 391NATURAL OPERATORS LIFTING FUNCTIONS TOBUNDLE FUNCTORS ON FIBERED MANIFOLDSW. M. MikulskiAbstract. The complete description of all natural operators lifting real valuedfunctions to bundle functors on �bered manifolds is given. The full collection ofall natural operators lifting projectable real valued functions to bundle functors on�bered manifolds is presented.0. Various natural operators lifting smooth real valued functions are used practi-cally in all papers in which problems of prolongations of geometric structures havebeen studied, see [2], [8], [9], [10], e.t.c. Thus the problem of the classi�cation ofsuch natural operators is very important.The above problem has been studied in papers [1], [3], [5], [6] and [7]. Forexample, in [5], we determined all natural operators lifting a smooth functionf : M ! R into a smooth function �(f) : G(M )! R, where G :Mf ! FM isa bundle functor on manifolds. All of them have the form �(f) = h� � G(f) forsome (uniquely determined by �) smooth function h� : G(R)! R.In this paper we obtain quite similar classi�cations of all natural transformationslifting functions or projectable functions to bundle functors on �bered manifolds.The de�nitions of bundle functors and natural operators can be found in thefundamental monograph of Kol�a�r, Michor, Slov�ak [4].All considered manifolds are assumed to be �nite dimensional, without boun-daries and smooth, i.e. of class C1. Mappings between manifolds are assumed tobe smooth, i.e. of class C1.1. Let F : FM ! FM be a bundle functor on �bered manifolds. Let m and nbe two non-negative integers. Let F (m;n) : FMm;n ! FM denote the restrictionof F to the category FMm;n of �bered manifolds with m-dimensional bases andn-dimensional �bers and locally invertible �bre respecting mappings.We study the problem how a mapping f : X ! R, where � : X ! Y is a �beredmanifold from FMm;n, induces canonically a mapping ��(f) : F (m;n)(�) ! R.1991 Mathematics Subject Classi�cation : 58A20, 53A55.Key words and phrases: natural operator, bundle functor.Received July 15, 1997.



388 W. M. MIKULSKIThis problem is reected in the concept of natural operators T (0;0)  T (0;0)F (m;n)in the sense of [4].1.1. Example. We �x a one-point manifold pt. Let � : F (ptR) ! R be amapping, where ptR : R! pt is the �bered manifold.For any �bered manifold � : X ! Y and any mapping f : X ! R we de�ne amapping f (�) : F (�)! R as follows. We consider the mapping f : X ! R as the�bered mapping f : � ! ptR. We de�ne f (�) : F (�)! R to be the compositionf (�) : F (�) F (f)���! F (ptR) ��! R :The family �(�) = f�(�)� g of functions �(�)� : C1(X) ! C1(F (�)), f ! f (�), forany �bered manifold � : X ! Y from FMm;n is a natural operator T (0;0)  T (0;0)F (m;n).The main result of this item is the following classi�cation theorem.1.2. Theorem. Let F , m, n F (m;n), pt and ptR be as above. Let � : T (0;0)  T (0;0)F (m;n) be a natural operator. If n � 1, then there exists one and only onemapping � : F (ptR)! R such that � = �(�).The proof of this theorem will occupy the rest of this item.Let q : Rm �Rn ! Rm denote the projection onto �rst factor. (It is a �beredmanifold fromFMm;n.) Let x1; :::; xm; y1; :::; yn : Rm�Rn ! R denote the usualcoordinates.1.3. Lemma. Assume that n � 1. If �0;�00 : T (0;0)  T (0;0)F (m;n) are naturaloperators such that �0q(y1) = �00q (y1), then �0 = �00.Proof. We have to show that �0� = �00� for any �bered manifold � : X ! Y fromFMm;n. By the naturality of �0 and �00 with respect to �bered manifold charts,we can assume that � = q : Rm �Rn ! Rm.Let f : Rm�Rn ! R be a mapping and let vo 2 F(xo;yo)(q), (xo; yo) 2 Rm�Rn.It remains to show that �0q(f)(vo) = �00q (f)(vo). By the regularity of �0 and �00, wecan assume that @f@y1 (xo; yo) 6= 0. Then ' = (x1; :::; xm; f; y2; :::; yn) : Rm �Rn !Rm�Rn is a �bered manifold chart de�ned near (xo; yo). Now, by the naturalityof �0 and �00 with respect to ' and the assumption of the lemma we obtain�0q(f)(vo) = �0q(y1)(F (')(vo)) = �00q (y1)(F (')(vo)) = �00q (f)(vo) :The proof of the lemma is complete. �Proof of Theorem 1.2. At �rst we prove the existence part of the theorem.De�ne � : F (ptR)! R to be the composition� : F (ptR) F (i)��! F (q) �q(y1)����! R ;



NATURAL OPERATORS LIFTING FUNCTIONS 389where i : ptR ! q is determined by i : R! Rm �Rn, i(t) := (0; :::; 0; t;0; :::;0) 2Rm �Rn, t in (m + 1)-position. We prove that � = �(�).For any t 2 R we de�ne at = (tx1; :::; txm; y1; ty2; :::; tyn) : Rm �Rn ! Rm �Rn. We see that: y1 � at = y1 for any t 2 R, a0 = i � y1 and the mappings at fort 6= 0 are �bered isomorphisms q ! q. Then by the naturality of � with respectto the at and by the regularity of F we obtain�q(y1) = �q(y1 � at) = �q(y1) � F (at) t!0��! �q(y1) � F (i � y1) ;i.e. �q(y1) = �q(y1) � F (i) � F (y1), where the last y1 is considered as the �beredmapping q ! ptR. Then �q(y1) = �q(y1) � F (i) � F (y1) = � � F (y1) = �(�)q (y1).Consequently, � = �(�) because of Lemma 1.3.It remains to prove the uniqueness part of the theorem. Assume that � = �(�)for some � : F (ptR)! R. Then �q(y1) = �(�)q (y1) = � �F (y1), where the last y1is considered as the �bered mapping q ! ptR. Then (since y1 � i : ptR ! ptR isthe identity �bered mapping) we have� = � � F (y1 � i) = � � F (y1) � F (i) = �q(y1) � F (i) :The proof of the theorem is complete. �2. If � : X ! Y is a �bered manifold, a mapping f : X ! R is called projectablewith respect to � if there exists a mapping f : Y ! R such that f = f � �.Let F : FM! FM, m, n and F (m;n) : FMm;n ! FM be as in Item 1.We study the problem how a projectable with respect to � mapping f : X ! R,where � : X ! Y is a �bered manifold from FMm;n, induces canonically amapping K�(f) : F (m;n)(�) ! R. This problem is reected in the concept ofnatural operators T (0;0)proj  T (0;0)F (m;n).2.1. Example. Let � : F (idR) ! R be a mapping, where idR : R ! R is the�bered manifold (the identity map).For any �bered manifold � : X ! Y and any projectable with respect to �mapping f : X ! R we de�ne a mapping f<�> : F (�) ! R as follows. Weconsider the mapping f as the �bered mapping f : � ! idR over f : Y ! R,where f is such that f = f ��. We de�ne f<�> : F (�)! R to be the compositionf<�> : F (�) F (f)���! F (idR) ��! R :The family K<�> = fK<�>� g of functions K<�>� : ff = f � � 2 C1(X)j f 2C1(Y )g ! C1(F (�)), f ! f<�> , for any �bered manifold � : X ! Y fromFMm;n is a natural operator T (0;0)proj  T (0;0)F (m;n).The main result of this item is the following classi�cation theorem.



390 W. M. MIKULSKI2.2. Theorem. Let F , m, n and F (m;n) be as above. Let K : T (0;0)proj  T (0;0)F (m;n) be a natural operator. If m � 1, then there exists one and onlyone mapping � : F (idR)! R such that K = K<�>.The proof of this theorem will occupy the rest of this item.Let q : Rm�Rn ! Rm and x1; :::; xm; y1; :::; yn : Rm �Rn ! R be as in Item1. We see that x1; :::; xm : Rm �Rn ! R are projectable with respect to q.2.3. Lemma. Assume that m � 1. If K0;K00 : T (0;0)proj  T (0;0)F (m;n) are naturaloperators such that K0q(x1) = K00q (x1), then K0 = K00.Proof. We have to show that K0� = K00� for any �bered manifold � : X ! Y fromFMm;n. By the naturality of K0 and K00 with respect to �bered manifold charts,we can assume that � = q : Rm �Rn ! Rm.Let f : Rm�Rn ! R be a projectable with respect to q mapping and let vo 2F(xo;yo)(q), (xo; yo) 2 Rm �Rn. It remains to show that K0q(f)(vo) = K00q (f)(vo).By the regularity of K0 and K00, we can assume that @f@x1 (xo; yo) 6= 0. Then, sincef is projectable with respect to q, ' = (f; x2; :::; xm; y1; :::; yn) : Rm � Rn !Rm�Rn is a �bered manifold chart de�ned near (xo; yo). Now, by the naturalityof K0 and K00 with respect to ' and the assumption of the lemma we obtainK0q(f)(vo) = K0q(x1)(F (')(vo)) = K00q (x1)(F (')(vo)) = K00q (f)(vo) :The proof of the lemma is complete. �Proof of Theorem 2.2. At �rst we prove the existence part of the theorem.De�ne � : F (idR)! R to be the composition� : F (idR) F (j)���! F (q) Kq(x1)����! R ;where j : idR ! q is determined by j : R ! Rm � Rn, j(t) := (t; 0; :::; 0) 2Rm �Rn, t in 1-position. We prove that K = K<�>.For any t 2 R we de�ne bt = (x1; tx2; :::; txm; ty1; :::; tyn) : Rm �Rn ! Rm �Rn. We see that: x1 � bt = x1 for any t 2 R, b0 = j � x1 and the mappings bt fort 6= 0 are �bered isomorphisms q ! q. Then by the naturality of K with respectto the bt and by the regularity of F we obtainKq(x1) = Kq(x1 � bt) = Kq(x1) � F (bt) t!0��! Kq(x1) � F (j � x1) ;i.e. Kq(x1) = Kq(x1) �F (j) �F (x1), where the last x1 is considered as the �beredmapping q! idR. Then Kq(x1) = Kq(x1)�F (j)�F (x1) = ��F (x1) = K<�>q (x1).Consequently, K = K<�> because of Lemma 2.3.It remains to prove the uniqueness part of the theorem. Assume that K = K<�>for some � : F (idR)! R. Then Kq(x1) = K<�>q (x1) = � � F (x1), where the last



NATURAL OPERATORS LIFTING FUNCTIONS 391x1 is considered as the �bered mapping q ! idR. Then (since x1 � j : idR ! idRis the identity �bered mapping) we have� = � � F (x1 � j) = � � F (x1) � F (j) = Kq(x1) � F (j) :The proof of the theorem is complete. �Acknowledgement. This paper is supported by the Grant of KBNno. 2P03A02410. References[1] Debecki, J., Gancarzewicz, J., Mikulski, W.M., de Leon, M., Invariants of Lagrangians andtheir classi�cations, J. Math. Phys. 35(9) 1994, 4568-4593.[2] Doupovec, M., Kurek, J., Liftings of tensor �elds to the cotangent bundles, Di�erentialGeometry and Applications, Proc. of the 6th International Conference Brno 1995, 141-150.[3] Gancarzewicz, J., Liftings of functions and vector �elds to natural bundles, Warszawa 1983,Dissertationes Mathematicae CCXII.[4] Kol�a�r, I., Michor, P.W., Slov�ak, J., Natural operations in di�erential geometry,Springer-Verlag, Berlin 1993.[5] Mikulski, W.M., Natural transformations transforming functions and vector �elds to func-tions on some natural bundles, Math. Bohemica, 117 (1992), 217-223.[6] Mikulski, W.M., Natural operators lifting functions to cotangent bundles of linear higherorder tangent bundles, Winter School on Geometry and Physics (Srni 1995), Suppl. aiRendiconti del Circolo Matematico di Palermo, 43 (1996), 199-206.[7] Mikulski, W.M., Invariants of Lagrangians on Weil bundles and their classi�cations, Geom.Dedicata, (1997) (to appear).[8] Morimoto, A., Prolongations of connections to bundles of in�nitely near points, J. Di�.Geom. 11 (1976), 476-498.[9] Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker, INC., New York1973.[10] Yano, K., Kobayashi, S., Prolongations of tensor �elds and connections to tangent bundles,J. Math. Soc. Japan, 18(1966), 194-210.Institute of Mathematics, Jagiellonian UniversityReymonta 4, Krak�ow, POLANDE-mail: mikulski@im.uj.edu.pl
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