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AR CHIVUM MA THEMA TICUM (BRNO)

T om us 34 (1998), 435 { 443ON THE OSCILLATION OF A CLASSOF LINEAR HOMOGENEOUS THIRDORDER DIFFERENTIAL EQUATIONSN. Parhi and P. DasAbstract. In this pap er w e ha v e considered completely the equation

(*) y000
+ a( t) y00

+ b( t) y0
+ c( t) y = 0 ;

where a 2 C2
([ �;1) ;R), b 2 C1

([ �;1) ;R), c 2 C ([ �;1) ;R) and � 2 R suc h thata( t) � 0, b( t) � 0 and c( t) � 0. It has b een sho wn that the set of all oscillatory solu-

tions of (*) forms a t w o-dimension al subspace of the solution space of (*) pro vided

that (*) has an oscillatory solution. This answ ers a question raised b y S. Ahmad

and A. C. Lazer earlier. 1.IntroductionThe object of this work is to answer a question raised in [1, p. 683] for thedi�erential equation(1.1) y000 + a(t)y00 + b(t)y0 + c(t)y = 0 ;where a 2 C2([�;1); R), b 2 C1([�;1); R), c 2 C([�;1); R) and � 2 R such thata(t) � 0, b(t) � 0 and c(t) � 0 with b(t) 6� 0 and c(t) 6� 0 on any sub-interval of[�;1). A solution y(t) of (1.1) on [�;1) is said to be oscillatory if it has arbitrarilylarge zeros; otherwise, it is said to be nonoscillatory. Equation (1.1) is said to beoscillatory if it has an oscillatory solution; otherwise, it is said to be nonoscillatory.If a(t), b(t) and c(t) are constants, then (1.1) reduces to(1.2) y000 + ay00 + by0 + cy = 0By the rule of signs, the characteristic equation(1.3) �3 + a�2 + b� + c = 0
1991 Mathematics Subject Classi�cation : 34C10, 34C11.Key words and phrases : third order di�eren tial equations, oscillation, nonoscillation ,

asymptotic b eha viour of solutions.
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436 N. P ARHI, P . D AShas one and only one positive real root 
, say, and either two complex conjugateroots �+ i� and �� i�, where2� = �(�2 + �2 � b)=
 < 0 ;or two negative real roots, counting multiplicities. In the �rst case every solutionof (1.2) is of the form c1e
t + e�t(c2 cos �t + c3 sin �t) :Thus a real nontrivial solution of (1.2) has arbitrarily large zeros if and only ifc1 = 0. If c1 6= 0, then the solution and all of its derivatives have the same signfrom a certain point on. In the second case, all solutions of (1.2) are nonoscillatoryand there exist solutions whose derivatives alternate in sign. In fact, (1.3) admitstwo imaginary roots ifab3 � 2a327 � c� 23p3 � a23 � b� 3=2 > 0 :Otherwise, (1.3) has two negative roots.In an attempt to obtain results similar to the above observations for (1.1),Ahmad and Lazer [1] have obtained the following theorems.Theorem 1. Suppose that a(t) � 0, b(t) � 0 and c(t) < 0. The following state-ments are equivalent:A) There exists an oscillatory solution of (1.1)B) If w is a nonoscillatory solution of (1.1), then there exists a t0 � � suchthat w(t)w0(t)w00(t) 6= 0 for t � t0 and sgnw(t) = sgnw0(t) = sgnw00(t),t � t0.Theorem 2. If a(t) � 0, b(t) � 0, c(t) < 0 and (1.1) admits an oscillatorysolution, then there exist two linearly independent oscillatory solutions u and v of(1.1) such that any nontrivial linear combination of u and v is also oscillatory andthe zeros of u and v separate.Theorem 3. If p(t) < 0, q(t) � 0, 2p(t)� q0(t) � 0 for t 2 [�;1) and(1.4) y000 + q(t)y0 + p(t)y = 0has an oscillator solution, then there exist two linearly independent oscillatorysolutions u and v of (1.4) whose zeros separate and such that a solution of (1.4) isoscillatory if and only if it is a nontrivial linear combination of u and v.In [3, Theorem 1], Jones has obtained Theorem 3 above without the condition2p(t)�q0(t) � 0. However, in the proof of his Theorem 1, the identity y01y2�y1y02 =N is not clear. This identity plays the crucial role in the proof of the theorem.



OSCILLA TION OF THIRD ORDER DIFFERENTIAL EQUA TIONS 437In section 2 of this work we have obtained a result for (1.1) which provides ana�rmative answer to the question raised by Ahmad and Lazer in [1]. However,we have additional restrictions viz, a(t) is twice and b(t) is once continuouslydi�erentiable. This is because we are taking the help of adjoints. The adjoint of(1.1) is given by(1.5) x000 � (a(t)x)00 + (b(t)x)0 � c(t)x = 0 :Equation (1.1) may be written as(1.6) (r(t)y00)0 + q(t)y0 + p(t)y = 0 ;where r(t) = exp �

R t� a(s) ds� , q(t) = r(t)b(t) and p(t) = r(t)c(t). The adjoint of(1.6) is written as(1.7) (r(t)z0)00 + (q(t)z)0 � p(t)z = 0 :We may note that the transformation x = r(t)z transforms (1.5) into (1.7) andvice versa. In Section 3 we obtain su�cient conditions for oscillation of (1.1).Equation (1.1) is said to be of Class I or CI if any of its solutions y(t) for whichy(t0) = y0(t0) = 0, y00(t0) > 0 (� < t0 < 1) satis�es y(t) > 0 for t 2 [�; t0).Equation (1.1) is said to be of Class II or CII if any of its solutions y(t) for whichy(t0) = y0(t0) = 0, y00(t0) > 0 (� � t0 <1) satis�es y(t) > 0 for t > t0.Remark 4. It is easy to see that (1.5) is of CI or CII if and only if (1.7) is of CIor CII . Further, (1.5) is oscillatory if and only if (1.7) is oscillatory.2. Main resultsTheorem 5. If (1.1) has an oscillatory solution, then there exist two linearlyindependent oscillatory solutions y1(t) and y2(t) of (1.1) whose zeros separate andsuch that a solution of (1.1) is oscillatory if and only if it is a nontrivial linearcombination of y1(t) and y2(t).Theorem 5 may be written as follows:Theorem 6. If (1.1) has an oscillatory solution, then the set of all oscillatorysolutions of (1.1) form a two dimensional subspace of the solution space of (1.1).In the following we obtain some results which are interesting in themselves andwhich will be needed for the proof of Theorem 5.Lemma 7. Equation (1.6) is of Class II.Proof. Let y(t) be a solution of (1.6) with y(t0) = 0 = y0(t0) and y00(t0) > 0,t0 > �. From the continuity of y00 it follows that y(t) > 0 in a neighbourhood of t0.We claim that y(t) > 0 for t > t0. If not, there exists a t1 > t0 such that y00(t1) = 0and y(t) > 0, y0(t) > 0, y00(t) > 0 for t 2 (t0; t1). Now integrating (1.6) from t0 tot1 we obtain 0 > �r(t0)y00(t0) = � Z t1t0 [q(t)y0(t) + p(t)y(t)] dt > 0 ;a contradiction. Hence our claim holds and this completes the proof of the lemma.�



438 N. P ARHI, P . D ASLemma 8. Equation (1.7) is of Class I.Proof. Equation (1.6) is of CII implies that Equation (1.1) is of CII . This in turnimplies that, by Lemma 2.9 due to Hanan [2], Equation (1.5) is of CI and henceEquation (1.7) is of CI . �Lemma 9. Equation (1.6) is oscillatory if and only if Equation (1.7) is oscillatory.This follows from Theorem 4.1 due to Hanan [2].Proposition 10. Equation (1.7) admits a nonoscillatory solution N (t) satisfyingN (t) > 0, N 0(t) < 0 and (rN 0)0(t) + q(t)N (t) > 0 for t 2 [�;1).The proof is similar to that of Theorem 2 due to Jones [3] and hence is omitted.Lemma 11. With N (t) as in Proposition 10, the following statements hold:(i) limt!1 r(t)N 0(t) = 0(ii) limt!1 tr(t)N 0(t) = 0(iii) limt!1 t2[(rN 0)0(t) + q(t)N (t)] = 0 .The proof is simple and along the lines of Jones [3] and hence is omitted.Theorem 12. If (1.1) has an oscillatory solution, then there exist two linearlyindependent oscillatory solutions u1(t) and u2(t) of(2.1) � y0N (t) � 0 + � (rN 0)0(t) + q(t)N (t)r(t)N2(t) � y = 0which satisfy (1.1).Proof. Since Eq. (1.1) has an oscillatory solution, then Eq. (1.6) has an oscillatorysolution. From Lemma 9 it follows that (1.7) is oscillatory. It is clear from a resultdue to Hanan [2, Theorem 3.4] that a solution of (1.7) which has at least one zerois oscillatory.Let z1(t) and z2(t) be two linearly independent solutions of (1.7) withz1(�) = 0 = z01(�) ; z001 (�) = 1z2(�) = 0 ; z02(�) = 1 ; (rz02)0(�) = 0 :So z1(t) and z2(t) are oscillatory. It is easy to verify thatw1(t) = N (t)z01(t)� N 0(t)z1(t) = N2(t) � z1N � 0 (t)and w2(t) = N (t)z02(t)� N 0(t)z2(t) = N2(t) � z2N � 0 (t)



OSCILLA TION OF THIRD ORDER DIFFERENTIAL EQUA TIONS 439are oscillatory solutions of(2.2) � (r(t)x)0N (t) � 0 + � (rN 0)0(t) + q(t)N (t)N2(t) � x = 0 :Consequently, u1(t) = r(t)w1(t) and u2(t) = r(t)w2(t) are oscillatory solutions of(2.1). It may be shown easily that u1(t) and u2(t) satisfy (1.6) and hence (1.1).To complete the proof of the theorem, it is to be shown that u1(t) and u2(t)are linearly independent. If possible, let u1(t) and u2(t) be linearly dependent. Sothere exist c1 and c2, not both zero, such that c1u1(t)+ c2u2(t) = 0 for t 2 [�;1),that is, c1w1(t) + c2w2(t) = 0 for t 2 [�;1). Since w1(t) and w2(t) are nontrivialsolutions of (2.2), then c1 = 0 implies that c2 = 0 and c2 = 0 implies that c1 = 0.Hence c1 6= 0 and c2 6= 0. Now w1(t) +�w2(t) = 0 for t 2 [�;1), where � = c2=c1,implies that z01(t) + �z02(t)z1(t) + �z2(t) = N 0(t)N (t) :Thus N (t) = c(z1(t)+�z2(t)), c 6= 0. Consequently, z1(t)+�z2(t) is nonoscillatory.Hence there exists a t1 > � such that z1(t) + �z2(t) has one sign for t � t1. Lett2 and t3(t1 < t2 < t3) be successive zeros of z1. From a result in [5] it followsthat the function (z1(t) + �z2(t)) + �z1(t) has a double zero in (t2; t3), where �is a constant, that is, (1 + �)z1(t) + �z2(t) has a double zero in (t2; t3). Clearly,(1 + �)z1(t) + �z2(t) is a solution of (1.7) with a zero at t = �. This contradictsthe fact that (1.7) is of CI . Thus u1(t) and u2(t) are linearly independent.This completes the proof of the theorem. �Remark 13. Any solution of (2.1) is a solution of (1.1). It is possible to choosetwo linearly independent solutions y1(t) and y2(t) of (2.1) such that w(t) > 0,where w(t) = y1(t)y02(t) � y01(t)y2(t). Since (2.1) is oscillatory, y1(t) and y2(t) areoscillatory. Moreover, y1(t) and y2(t) are solutions of (1.1).Proposition 14. N and W are linearly dependent. In fact,W (t) = �N (t), where� > 0 is a constant.Proof. As y1(t) and y2(t) are linearly independent solutions of (2.1), thenW (t) 6=0 for t � �. Clearly, y1(t) and y2(t) are solutions of
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�

�

�

�

y y1 y2y0 y01 y02r(t)y00 r(t)y001 r(t)y002 �

�

�

�

�

�

= 0 ;t 2 [�;1), that is, of(2.3) y00 � � W 0(t)W (t) � y0 + � (rW 0)0(t) + q(t)W (t)r(t)W (t) � y = 0 :Equation (2.1) may be written asy00 � � N 0(t)N (t) � y0 + � (rN 0)0(t) + q(t)N (t)r(t)N (t) � y = 0 :



440 N. P ARHI, P . D ASClearly, equations (2.1) and (2.3) have the same solution space. If u(t) is a solutionof (2.1), then it is a solution of (2.3) and hence u(t) is a solution of the �rst orderequation a1(t)y0 + b1(t)y = 0 ;where a1(t) = N 0(t)N (t) � W 0(t)W (t)and b1(t) = (rW 0)0(t) + q(t)W (t)r(t)W (t) � (rN 0)0(t) + q(t)N (t)r(t)N (t) :Hence, in particular, a1(t)y01(t) + b1(t)y1(t) = 0a1(t)y02(t) + b1(t)y2(t) = 0 :Since W (t) 6= 0 for t � �, then a1(t) = 0 and b1(t) = 0 for t � �. But a1(t) = 0,t � � implies that W (t) = �N (t), where � 6= 0 is a constant. Further, W (t) > 0and N (t) > 0 implies that � > 0.Hence the proposition is proved. �Remark 15. In view of Proposition 14, Proposition 10, Lemma 11 and Theorem12 will hold when N (t) is replaced by W (t).Theorem 16. For any solution y(t) of(2.4) � y0W (t) � 0 + � (rW 0)0(t) + q(t)W (t)r(t)W 2(t) � y = 0 ;the function G(y(t)) is a decreasing function of t, whereG(y(t)) = r(t)W (t)(y0(t))2 + ((rW 0)0(t) + q(t)W (t))y2(t) :The proof is similar to that of Theorem 4 due to Jones [3] and hence is omitted.The proof of Theorem 5 of this paper proceeds along the lines of the proof ofTheorem 1 in [3]. However, for completeness and clarity the proof is given here.Proof of Theorem 5. From Remark 13 it follows that there exist two linearlyindependent oscillatory solutions y1(t) and y2(t) of (1.1) whose zeros separate.To complete the proof of the theorem it is enough to show that any oscillatorysolution of (1.1) can be expressed as a linear combination of y1(t) and y2(t).



OSCILLA TION OF THIRD ORDER DIFFERENTIAL EQUA TIONS 441Let y3(t) be a solution of (1.1) with y3(�) = 0 = y03(�), y003 (�) > 0. From Lemma7 it follows that y3(t) > 0 for t > �. Consequently, y03(t) > 0 and y003 (t) > 0 fort > �. Clearly fy1; y2; y3g is linearly independent. Hence
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y1(t) y2(t) y3(t)y01(t) y02(t) y03(t)r(t)y001 (t) r(t)y002 (t) r(t)y003 (t) �
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= k ;where k 6= 0 is a constant. Thus
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y1(t) y2(t) u(t)y01(t) y02(t) u0(t)r(t)y001 (t) r(t)y002 (t) r(t)u00(t) �

�

�

�

�

�

= 1 ;where u(t) = y3(t)=k. Expanding the determinant we get(2.5) r(t)W (t)u00(t)� r(t)W 0(t)u0(t) + ((rW 0)0(t) + q(t)W (t))u(t) = 1 :Clearly, k < 0 implies that u(t) < 0, u0(t) < 0 and u00(t) < 0. This in turn leadsto contradiction in (2.5) where the left hand side becomes negative. Thus k > 0.Let z(t) be an oscillatory solution of (1.1). We claim that z(t) can be expressedas a linear combination of y1(t) and y2(t). If not, there exist c1, c2 and c3 6= 0,such that z(t) = c1y1(t) + c2y2(t) + c3u(t). We may note that c1 and c2 cannot bezero simultaneously. Writingz1(t) = z(t)=c3 and y(t) = �(c1y1(t) + c2y2(t))=c3 ;we get z1(t) = u(t)� y(t) :Clearly, y(t) is an oscillatory solution (nontrivial) of (2.4) and (1.1). Thus z1(t) isa solution of (2.5). Consequently,(2.6) r(t)W (t)(u(t) � y(t))00 � r(t)W 0(t)(u(t) � y(t))0+ ((rW 0)0(t) + q(t)W (t))(u(t) � y(t)) = 1 :Since z(t) is oscillatory, u(t)� y(t) is oscillatory. From Theorem 16 it follows that((rW 0)0(t) + q(t)W (t))y2(t)is bounded. As[((rW 0)0(t) + q(t)W (t))y(t)]2= ((rW 0)0(t) + q(t)W (t))y2(t) � t2((rW 0)0(t) + q(t)W (t)) � t�2 ;



442 N. P ARHI, P . D ASfrom Lemma 11 (iii) we obtainlimt!1[((rW 0)0(t) + q(t)W (t))y(t)] = 0 :Hence there exists a T > � such thatj((rW 0)0(t) + q(t)W (t))y(t)j < 1=4for t � T . From (2.5) we get, for t � �,0[((rW 0)0(t) + q(t)W (t))u(t)] < 1 :Let t0 > T be a maximum of u � y. So u(t0) � y(t0) � 0 and u0(t0) � y0(t0) = 0.Now multiplying (2.6) through by u0(t)�y0(t) and integrating the resulting identityfrom t0 to t, we obtain12r(t)W (t)(u0(t)� y0(t))2� 12 Z tt0 (rW )0(s)(u0(s) � y0(s))2 ds� Z tt0 r(s)W 0(s)(u0(s) � y0(s))2 ds+ 12((rW 0)0(t) + q(t)W (t))(u(t) � y(t))2� 12((rW 0)0(t0) + q(t0)W (t0))(u(t0)� y(t0))2� 12 Z tt0 p(s)W (s)(u(s) � y(s))2 ds= (u�y)(t) � (u� y)(t0) ;since W (t) is a solution of (1.7). As (rW )0(t) = r0(t)W (t)+r(t)W 0(t) < 0, we have(u� y)(t0)[1� 12((rW 0)0(t0) + q(t0)W (t0))(u � y)(t0)] < (u� y)(t) :But ((rW 0)0(t0) + q(t0)W (t0))(u � y)(t0)=((rW 0)0(t0) + q(t0)W (t0))u(t0)� ((rW 0)0(t0) + q(t0)W (t0))y(t0)< 1+14 = 54 :So, for t > t0 , (u� y)(t) > 38(u� y)(t0) � 0 ;which contradicts the fact that u� y is oscillatory. Hence our claim holds.This completes the proof of the theorem. �



OSCILLA TION OF THIRD ORDER DIFFERENTIAL EQUA TIONS 4433. Sufficient conditions for oscillationIn this section we have obtained su�cient conditions for oscillation of (1.1).Theorem 17. Suppose that a(t) � 0, a0(t) � 0, b(t)�2a0(t) � 0 and c(t)�b0(t)+a00(t) < 0. If
Z 1 � � 227a3(t) + 13a(t)b(t)� c(t)� 23a(t)a0(t) + b0(t)� a00(t)� 23p3 � 13a2(t)� b(t) + 2a0(t)� 3=2 # dt =1 ;(3.1)then (1.1) is oscillatory.Proof. Since (1.1) is of CII, then from Theorem 4.7 due to Hanan [2] it followsthat (1.1) is oscillatory if and only if (1.5) is oscillatory, that is, ifx000 � a(t)x00 + (b(t)� 2a00(t))x0�(c(t) � b0(t) + a00(t))x = 0is oscillatory. From Theorem 8 [6] it follows that (1.5) is oscillatory and hence (1.1)is oscillatory.Hence the theorem is proved. �Remark 18. The above theorem generalizes Theorem 2.6 due to Lazer [4].Remark 19. We may note that no sign restriction has been imposed on b(t) andc(t) in the above theorem.Theorem 20. Suppose that a(t) � 0, b(t) � 0, c(t) < 0, a0(t) � 0, a00(t) � 0 andb0(t) � 0. If (3.1) holds, then (1.1) is oscillatory.This follows from Theorem 17.References
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