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ON THE OSCILLATION OF A CLASS
OF LINEAR HOMOGENEOUS THIRD
ORDER DIFFERENTIAL EQUATIONS

N. PArHI AND P. DAas

ABSTRACT.
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1.INTRODUCTION
The object of this work is to answer a question raised in [1, p. 683] for the
differential equation

(1.1) v +at)y + b)Yy +ect)y=0,

where a € C%([o, ), R), b € C([o,0), R), ¢ € C([o,0), R) and ¢ € R such that

a(t) <0, b6(t) <0 and ¢(t) <0 with b(¢t) Z 0 and ¢(¢) Z 0 on any sub-interval of

[0, 00). A solution y(t) of (1.1) on [¢, o0) is said to be oscillatory if it has arbitrarily

large zeros; otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be

oscillatory if it has an oscillatory solution; otherwise, it 1s said to be nonoscillatory.
If a(t), b(t) and ¢(t) are constants, then (1.1) reduces to

(1.2) v’ +ay’ by Fey=0
By the rule of signs, the characteristic equation
(1.3) A+ alN +bA+e=0
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has one and only one positive real root 7, say, and either two complex conjugate
roots a + ¢ and a — i3, where

20 = —(a? + = b) /vy <0,

or two negative real roots; counting multiplicities. In the first case every solution
of (1.2) is of the form

cre™ + e (cy cos Bt + czsin Bt) .

Thus a real nontrivial solution of (1.2) has arbitrarily large zeros if and only if
c1 = 0. If ¢; # 0, then the solution and all of its derivatives have the same sign
from a certain point on. In the second case, all solutions of (1.2) are nonoscillatory
and there exist solutions whose derivatives alternate in sign. In fact, (1.3) admits
two imaginary roots if

ab  2a° 2 a? b 3/2 50
- —— — — .
3 27 W3 3

Otherwise, (1.3) has two negative roots.
In an attempt to obtain results similar to the above observations for (1.1),
Ahmad and Lazer [1] have obtained the following theorems.

Theorem 1. Suppose that a(t) <0, b(t) < 0 and ¢(t) < 0. The following state-
ments are equivalent:

A) There exists an oscillatory solution of (1.1)

B) If w is a nonoscillatory solution of (1.1), then there exists a ty > ¢ such
that w(t)w' (t)w'(t) # 0 for t >ty and sgn w(t) = sgnw’ () = sgn w”(¢),
t> 1.

Theorem 2. If a(t) < 0, b(¢t) < 0, ¢(t) < 0 and (1.1) admits an oscillatory
solution, then there exist two linearly independent oscillatory solutions u and v of
(1.1) such that any nontrivial linear combination of u and v is also oscillatory and
the zeros of u and v separate.

Theorem 3. Ifp(t) <0, q(t) <0, 2p(t) —¢'(t) <0 fort € [7,00) and
(1.4) v +a)y +p(t)y =0

has an oscillator solution, then there exist two linearly independent oscillatory
solutions u and v of (1.4) whose zeros separate and such that a solution of (1.4) is
oscillatory if and only if it is a nontrivial linear combination of u and v.

In [3, Theorem 1], Jones has obtained Theorem 3 above without the condition
2p(t) —¢'(t) < 0. However, in the proof of his Theorem 1, the identity ¢ y2—y1y5 =
N 1s not clear. This identity plays the crucial role in the proof of the theorem.



In section 2 of this work we have obtained a result for (1.1) which provides an
affirmative answer to the question raised by Ahmad and Lazer in [1]. However,
we have additional restrictions wviz, a(t) is twice and b(¢) is once continuously
differentiable. This is because we are taking the help of adjoints. The adjoint of
(1.1) is given by

(1.5) " — (a(®)x)" + (b(t)z) —c(t)z = 0.
Equation (1.1) may be written as
(1.6) (r(0)y") +a()y" +p(t)y =0,

where r(t) = exp ;a(s) ds , q(t) = r(t)b(t) and p(t) = r(t)e(t). The adjoint of

(1.6) is written as

(1.7) (r)z")" + (q(t)z) — p(t)z =0.

We may note that the transformation ¢ = r(t)z transforms (1.5) into (1.7) and

vice versa. In Section 3 we obtain sufficient conditions for oscillation of (1.1).
Equation (1.1) is said to be of Class I or C7 if any of its solutions y(¢) for which

y(to) = ¥ (to) = 0, ¥ (o) > 0 (0 < tp < o0) satisfies y(t) > 0 for ¢ € [o,t0).

Equation (1.1) is said to be of Class IT or Cyy if any of its solutions y(t) for which

y(to) = ¢’ (to) = 0, ¥’ (to) > 0 (0 <ty < oo) satisfies y(¢) > 0 for ¢ > ¢o.

Remark 4. Tt is easy to see that (1.5) is of Ct or Cpy if and only if (1.7) is of Cf

or Crr. Further, (1.5) is oscillatory if and only if (1.7) is oscillatory.

2. MAIN RESULTS

Theorem 5. If (1.1) has an oscillatory solution, then there exist two linearly
independent oscillatory solutions y1(t) and ya(t) of (1.1) whose zeros separate and
such that a solution of (1.1) is oscillatory if and only if it is a nontrivial linear
combination of y1(t) and ya(t).

Theorem 5 may be written as follows:

Theorem 6. If (1.1) has an oscillatory solution, then the set of all oscillatory
solutions of (1.1) form a two dimensional subspace of the solution space of (1.1).

In the following we obtain some results which are interesting in themselves and
which will be needed for the proof of Theorem 5.

Lemma 7. Equation (1.6) is of Class II.

Proof. Let y(t) be a solution of (1.6) with y(tg) = 0 = ¢'(t0) and ¥’ (ts) > 0,
tg > o. From the continuity of y" it follows that y(¢) > 0 in a neighbourhood of ¢;.
We claim that y(¢) > 0 for ¢ > ¢g. If not, there exists a t; > tg such that ¢/ (1) =0
and y(t) >0,y (t) > 0, y'(t) > 0 for ¢ € (tp,t1). Now integrating (1.6) from g to
{1 we obtaln

ty

0> —rto)y"(to) == [g(t)y' (t) + p(t)y(t)] dt > 0,

to

a contradiction. Hence our claim holds and this completes the proof of the lemma.O



Lemma 8. Equation (1.7) is of Class L.

Proof. Equation (1.6) is of Cry implies that Equation (1.1) is of Crr. This in turn
implies that, by Lemma 2.9 due to Hanan [2], Equation (1.5) is of C7 and hence
Equation (1.7) is of Cf. O

Lemma 9. Equation (1.6) is oscillatory if and only if Equation (1.7) is oscillatory.
This follows from Theorem 4.1 due to Hanan [2].

Proposition 10. Equation (1.7) admits a nonoscillatory solution N (t) satisfying
N({#) >0, N'(@t) <0 and (rN')'(t) + q(t)N(t) > 0 for t € [0, 00).

The proof is similar to that of Theorem 2 due to Jones [3] and hence is omitted.
Lemma 11. With N(t) as in Proposition 10, the following statements hold:
(1) tl_lglo r(()N'(t) =0
(i) tl_lglo tr(t)N'(t) =0
(i) lim [N (1) + )N (0)] = 0.

The proof is simple and along the lines of Jones [3] and hence is omitted.

Theorem 12. If (1.1) has an oscillatory solution, then there exist two linearly
independent oscillatory solutions uy (t) and us(t) of

Y /+ (rN"Y'(t) + q(t) N (t)

N (1) OREG v=0

(2.1)

which satisfy (1.1).

Proof. Since Eq. (1.1) has an oscillatory solution, then Eq. (1.6) has an oscillatory
solution. From Lemma 9 it follows that (1.7) is oscillatory. Tt is clear from a result
due to Hanan [2, Theorem 3.4] that a solution of (1.7) which has at least one zero
1s oscillatory.

Let z1(¢) and z3(t) be two linearly independent solutions of (1.7) with

z1(0)=0=1z1(c), z/(o)=1
1, (rzh) (o) =0.

So z1(t) and z3(t) are oscillatory. It is easy to verify that

wi(t) = N0 (1) = N'(0)=1 (1) = N*(1)
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are oscillatory solutions of

(r(ha)’ " (N +a(ONE)
N(t) N2(1)

(2.2) r=0.
Consequently, uy(t) = r(t)wy(t) and ua(t) = r(t)wa(t) are oscillatory solutions of
(2.1). Tt may be shown easily that u;(¢) and us(t) satisfy (1.6) and hence (1.1).

To complete the proof of the theorem, it is to be shown that u;(¢) and wua(?)
are linearly independent. If possible, let u;(¢) and us(t) be linearly dependent. So
there exist ¢; and ca, not both zero, such that c¢ju(¢) 4+ caus(t) = 0 for t € [0, 0),
that is, cywy(t) + cowa(t) = 0 for ¢t € [, 00). Since w(t) and ws(t) are nontrivial
solutions of (2.2), then ¢; = 0 implies that ¢ = 0 and ¢2 = 0 implies that ¢; = 0.
Hence ¢; # 0 and ¢3 # 0. Now wy () + Awsa(t) = 0 for ¢ € [0, 00), where A = ¢a/¢q,
implies that

21 () +Az(t) _ N'(2)
z1(t) + Aza(t)  N(t)

Thus N(t) = ¢(#z1(t) +Az2(2)), ¢ # 0. Consequently, z1 () + Az2(?) is nonoscillatory.
Hence there exists a ¢; > o such that z1(¢) + Az2(¢) has one sign for ¢ > ¢;. Let
to and t3(t1 < t2 < t3) be successive zeros of z;. From a result in [5] it follows
that the function (z1(¢) + Az2(t)) + pz1(t) has a double zero in (t2,t3), where p
is a constant, that is, (1 4+ p)z1(¢) + Az2(t) has a double zero in (Z2,t3). Clearly,
(1 4+ p)z1(t) + Az2(t) is a solution of (1.7) with a zero at ¢t = o. This contradicts
the fact that (1.7) is of C7. Thus u1(¢) and uz(t) are linearly independent.

This completes the proof of the theorem. a

Remark 13. Any solution of (2.1) is a solution of (1.1). It is possible to choose
two linearly independent solutions y;(¢) and ya(t) of (2.1) such that w(t) > 0,
where w(t) = y1(t)y5(t) — ¥y (H)y2(t). Since (2.1) is oscillatory, y1(¢) and ya(t) are
oscillatory. Moreover, y; (t) and y2(?) are solutions of (1.1).

Proposition 14. N and W are linearly dependent. In fact, W (t) = AN (t), where
A > 0 is a constant.

Proof. Asy(t) and ya(t) are linearly independent solutions of (2.1), then W (¢) #
0 for t > o. Clearly, y1(¢) and y2(t) are solutions of

Yy Y1 Y2
y Y Yh =0,
r@)y" rt)y! )y

t € [0, 00), that is, of
wrey o W@

" +aOWE)
29 W COIO N
Equation (2.1) may be written as
w_ N, N @) +gONE)
IO v Y



Clearly, equations (2.1) and (2.3) have the same solution space. If u(#) is a solution
of (2.1), then it is a solution of (2.3) and hence u(t) is a solution of the first order
equation

ar(t)y +b1(t)y =10,

where
_N'@) W)
@) = T~ W
and
bty = T+ dOWE) 0NV (0 + N
rOW (1) N
Hence, in particular,
ar(t)yL(t) + b1 (H)yi (t) =

Since W(t) # 0 for t > o, then a;(t) = 0 and b;(t) =0 for ¢t > o. But a1(t) =0,
t > o implies that W(t) = AN(¢), where A # 0 is a constant. Further, W(t) > 0
and N (t) > 0 implies that A > 0.

Hence the proposition is proved. a

Remark 15. In view of Proposition 14, Proposition 10, Lemma 11 and Theorem

12 will hold when N () is replaced by W (t).
Theorem 16. For any solution y(t) of

v WY () +g()W ()

24 wo T W

y=20,

the function G(y(t)) is a decreasing function of t, where
Gy(1) = r(OW )y (1)) + ((rW') (1) + g(OW 1))y (1) -

The proof is similar to that of Theorem 4 due to Jones [3] and hence is omitted.
The proof of Theorem 5 of this paper proceeds along the lines of the proof of
Theorem 1 in [3]. However, for completeness and clarity the proof is given here.

Proof of Theorem 5. From Remark 13 it follows that there exist two linearly
independent oscillatory solutions y;(¢) and ya2(t) of (1.1) whose zeros separate.
To complete the proof of the theorem it is enough to show that any oscillatory
solution of (1.1) can be expressed as a linear combination of y;(t) and ya(t).



Let y3(¢) be a solution of (1.1) with y3(¢) = 0 = y4(o), v4 (o) > 0. From Lemma
7 it follows that ys(t) > 0 for t > ¢. Consequently, y5(¢) > 0 and y4(¢) > 0 for
t > o. Clearly {y1,y2,ys} is linearly independent. Hence

yi(?) y2(1) y3(1)

¥i (1) Z10) v(t) =k,

rQy/ () r)yr () rt)ys(t)
where k # 0 is a constant. Thus

nlt)  w)  a()

vi (1) Y5 (1) u'(7) =1,

rOy(t) r(ye () r)u"()

where u(t) = y3(t)/k. Expanding the determinant we get
(2.5) r(OW ()" (t) = r(OW' () (t) + ((rW)' (1) + g ()W (£))u(t) = 1.

Clearly, & < 0 implies that u(¢) < 0, v/(¢) < 0 and «”(¢) < 0. This in turn leads
to contradiction in (2.5) where the left hand side becomes negative. Thus & > 0.

Let z(t) be an oscillatory solution of (1.1). We claim that z(t) can be expressed
as a linear combination of y1(¢) and y2(¢). If not, there exist ¢1, ¢a and ¢z # 0,
such that z(t) = c1y1(t) + cay2(t) + csu(t). We may note that ¢; and ¢y cannot be
zero simultaneously. Writing

z1(t) = 2(t)/es and  y(t) = —(c1y1 () + cay2(t))/cs,

we get

21 (1) = u(t) - (1)

Clearly, y(t) is an oscillatory solution (nontrivial) of (2.4) and (1.1). Thus z;(¢) is
a solution of (2.5). Consequently,

(2.6) r(@OW (@) (u(t) —y(0)" —rOW'(@)(u(t) - y(¢))’
+ (W) (1) + aOWO) (u(t) —y(1)) = 1.

Since z(t) is oscillatory, u(t) — y(?) is oscillatory. From Theorem 16 it follows that
(P (8) + a(OW (1)) 52 (1)

1s bounded. As

(W) () + a ()W () y ()]



from Lemma 11 (iii) we obtain

lim [(PWV')(1) + ()W (1))y(t)] = 0.

t—=00

Hence there exists a 7" > o such that
(W) () + W (#)y(t)] < 1/4
for t > T From (2.5) we get, for t > o,

O[((rW") (1) + ¢()W (@) u(B)] < 1.

Let ¢ > T be a maximum of u — y. So u(tg) — y(to) > 0 and «'(¢g) — ¥/ (t0) = 0.
Now multiplying (2.6) through by «'(¢t)—y (t) and integrating the resulting identity
from ty to £, we obtain

1

ST OW O (1) -y ()

5 W) = i ()7 s

= r(sW(s)(u'(s) — ¥/ (5))" ds

o+
o

(WY (1) + g (W () (1) — (1))’
— (WY (10) + a(t6) W (10)) (o) — (10))?
=5 PEW)u(s) — yls)) ds

= (i=)(0) ~ (u— p){10),
since W (¢) is a solution of (1.7). As (rW)/ (1) = ¥ ()W () +r(t)W'(t) < 0, we have

(u—y)(to)[1 = %((TW')'(to) + q(to)W (to))(u = y)(to)] < (v —y)(1).

But
((rW') (to) + q(to) W (t0)) (u — ) (to)
=((rW")(to) + q(to)W (to))u(to)
= ((rW')'(to) + q(to) W (L0))y(to)
arlod
So, for t > tg,

(= )(0) > 2 (u—){t0) 20,

which contradicts the fact that u — y is oscillatory. Hence our claim holds.
This completes the proof of the theorem. a



3. SUFFICIENT CONDITIONS FOR OSCILLATION
In this section we have obtained sufficient conditions for oscillation of (1.1).
Theorem 17. Suppose that a(t) <0, a’(t) >0, b(t)—2a'(t) <0 and c(t)—'(¢) +
a’(t)y < 0. If
o0 2

3/2
(3.1) — = —d’(t) = b(t) +2d'(?) dt = oo,

then (1.1) is oscillatory.

Proof. Since (1.1) is of Cry, then from Theorem 4.7 due to Hanan [2] it follows
that (1.1) is oscillatory if and only if (1.5) is oscillatory, that is, if

" —a(t)r" + (b(t) — 24" (t))2’
~(eft) = Vt) + (1)) = 0
is oscillatory. From Theorem 8 [6] it follows that (1.5) is oscillatory and hence (1.1)

1s oscillatory.
Hence the theorem is proved. a

Remark 18. The above theorem generalizes Theorem 2.6 due to Lazer [4].

Remark 19. We may note that no sign restriction has been imposed on b(¢) and
¢(t) in the above theorem.

Theorem 20. Suppose that a(t) <0, b(t) <0, e¢(t) <0, a'(t) > 0, a”(t) <0 and
b'(t) > 0. If (3.1) holds, then (1.1) is oscillatory.

This follows from Theorem 17.
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