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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 483 { 504A NEW INFINITE ORDER FORMULATIONOF VARIATIONAL SEQUENCESRaffaele VitoloAbstract. The theory of variational bicomplexes is a natural geometricalsetting for the calculus of variations on a �bred manifold. It is a well{established theory although not spread out very much among theoretical andmathematical physicists. Here, we present a new approach to in�nite ordervariational bicomplexes based upon the �nite order approach due to Krupka.In this approach the information related to the order of jets is lost, but wehave a considerable simpli�cation both in the exposition and in the compu-tations. We think that our in�nite order approach could be easily applied inconcrete situations, due to the conceptual simplicity of the scheme.IntroductionThe theory of variational bicomplexes can be regarded as a natural geometricalsetting for the calculus of variations on a �bred manifold [1, 2, 9, 10, 11, 14, 16, 17,18, 19, 20]. The geometric objects which appear in the calculus of variations �nda place on the vertices of the bicomplex, and are put in relation by the morphismsof the bicomplex. Such morphisms are closely related to the di�erential of formson the jet spaces of the starting �bred manifold. Moreover, the global inverseproblem is solved in this context.Some formulations [2, 11, 14, 16, 17, 18, 19, 20] of variational bicomplexes arecarried on by means of in�nite order jet techniques. Roughly speaking, the verticesof variational bicomplexes are spaces of forms de�ned on jet spaces of any order.These spaces have a natural splitting which turns out to be very useful from atechnical viewpoint. The formulation in [1] is partially carried on by means of�nite order jet spaces.The �nite order variational bicomplex has been introduced by Krupka [9] bya very simple construction from a conceptual viewpoint. Namely, it is produced1991 Mathematics Subject Classi�cation : 58A12, 58A20, 58E30, 58G05.Key words and phrases: �bred manifold, jet space, in�nite order jet space, variational bicom-plex, variational sequence.This paper has been partially supported by Fondazione F. Severi, GNFM of CNR, MURST,University of Florence.Received December 30, 1997.



484 R. VITOLOwhen one quotients the de Rham sequence on a �nite order jet space by meansof an intrinsically de�ned subsequence arising from the �bring. In this way, oneobtains a bicomplex where the horizontal morphisms are either the di�erentials offorms or quotient morphisms, and the vertical morphisms are either inclusions ornatural projections on quotient spaces. For an intrinsic analysis of this theory, see[21].The above formulation can help in keeping trace of the order of the geometricobjects involved at each vertex of the bicomplex. This fundamental feature de-pends on the fact that Krupka's formulation uses �nite order jet. Of course, thisfeature is lost in in�nite order approaches. But, in order to show the connectionbetween the quotient sequence and the calculus of variations one has to face sev-eral technical di�culties. The most di�cult point is that the spaces of forms ona �nite order jets do not split as their analogues in the in�nite order case. Thisis one of the main obstacles that one meets when giving a representation of thequotient sequence by means of forms (see [21]).In this paper, we present a new approach to in�nite order variational bicom-plexes which is inspired by Krupka's �nite order approach. We think that thisin�nite order approach has both the advantages of the conceptual simplicity ofKrupka's scheme and the advantages in computations due to the use of spaces offorms at in�nite order.Indeed, as it is proved in [22], our in�nite order approach turn out to be thedirect limit of Krupka's �nite order approach. Anyway, in this paper we show thatwe can directly formulate our in�nite order approach without passing through the�nite order one and the direct limit.In the �rst section we introduce jet spaces, the contact structure [12, 15] andthe sheaves of forms on jets, and evaluate their direct limit.In the second section we de�ne the in�nite order variational bicomplex, whichis inspired by the �nite order approach due to Krupka.In the third and the fourth sections we give in two steps an isomorphism ofthe in�nite order variational sequence with a sequence of presheaves which arethe direct limit on some sheaves of forms on jet bundles. Here, the �rst variationformula [7] plays an essential role.In the last section, we interpret the sequence that we found in the above twosections in terms of geometric objects and operators of the calculus of variations.We end the introduction with some mathematical conventions. In this paper,manifolds are connected and C

1, and maps between manifolds are C

1. Mor-phisms of �bred manifolds (and hence bundles) are morphisms over the identityof the base manifold, unless otherwise speci�ed.We make use of de�nitions and results on presheaves and sheaves from [23].In particular, we are concerned only with (pre)sheaves of I R {vector spaces, hence`(pre)sheaf morphism' stands for morphism of (pre)sheaves of I R {vector spaces.If P be a presheaf, then we denote by P the sheaf generated (in the senseof [23]) by P. We denote by P
U

the set of sections of a (pre)sheaf P over atopological space X de�ned on the open subset U � X . We recall that a sequence



NEW FORMULATION OF VARIATIONAL SEQUENCES 485of (pre)sheaves over X is said to be exact if it is locally exact (see [23] for a moreprecise de�nition). If A, B are two sub(pre)sheaves of a sheaf P, then the wedgeproduct A ^ B is de�ned to be the sub(pre)sheaf of sections of 2̂P generated bywedge products of sections of A and B.Let fP
n

g
n 2Nbe a family of (pre)sheaves and f�

m

n

: P
n

! P
m

g
n;m 2N; n �m

be afamily of injective (pre)sheaf morphisms such that, for all n; m; p 2 N, n � m � p ,we have �

p

m

� �

m

n

= �

p

n

and �

n

n

= idPn . We say fP
n

; �

m

n

g to be an injective system of(pre)sheaves. We de�ne the direct limit of the injective system to be the presheafP := lim! P
n

:= G
n 2NPn

� � ;where � is the equivalence relation de�ned as follows. For each s 2 P
n

and
s

0 2 P
n

0 , if n � n

0, then s � s

0 if and only if �

n

0
n

(s ) = s

0. Note that, in general, thedirect limit of an injective system of sheaves needs not to be a sheaf. Let fP
n

; �

m

n

gand fQ
n

; �

m

n

g be two injective systems of (pre)sheaves, and suppose that we havea family of (pre)sheaf morphisms ff

n

: P
n

!Q
n

g such that the following diagramcommutes P
m

wf m Q
mP

n

wf nu
�

mn Q
n

u
�

mnThen, the presheaf morphism
f

:= lim! f

n

: P ! Q : [s ] 7! [f

m

(s )] ;where s 2 P
m

for some m , is well de�ned.Acknowledgements. I would like to thank I. Kol�a�r, D. Krupka, M. Modugno,and J. �Stef�anek for stimulating discussions.1. Jet spacesIn this section we recall some basic facts on jet spaces. Namely, we start witha natural splitting of the cotangent bundle of jet spaces. Then, we study somenatural sheaves of forms on jet spaces, and introduce the horizontal and verticaldi�erential of forms. Finally, we evaluate the direct limit of the sheaves andmorphisms.As our framework, we assume a �bred manifold
� : Y !Xwith dimX = n and dimY = n + m . We deal with the vertical bundle V Y :=ker T � ! Y . Moreover, for 0 � r , we are concerned with the r {th jet space J

r

Y ;in particular, we set J 0Y � Y . We recall the natural �brings �

r

s

: J

r

Y ! J

s

Yand �

r : J

r

Y ! X for 0 � s � r . A detailed account of the theory of jets can befound in [12, 11, 15].



486 R. VITOLOCharts on Y adapted to the �bring are denoted by (x

�

; y

i ). Greek indices
�; �; : : : run from 1 to n and label base coordinates; Latin indices i; j; : : : run from1 to m and label �bre coordinates. We denote by (@

�

; @

i

) and (d

�

; d

i ), respectively,the local bases of vector �elds and 1{forms on Y induced by an adapted chart. Wedenote multi{indices of dimension n by underlined letters such as p = (p 1 ; : : : ; p

n

),with 0 � p 1 ; : : : ; p

n

; we identify a standard index � with the multi{index � de�nedby �

�

= 1 and �

�

= 0 if � 6= � . We also set jp j := p 1+� � �+ p

n

and p ! := p 1! : : : p

n

!.The charts induced on J

r

Y are denoted by (x

0
; y

i

p

), with 0 � jp j � r ; in particular,if jp j = 0, then we set y

i0 � y

i . The local vector �elds and forms of J

r

Y inducedby the �bre coordinates are denoted by (@

p

i

) and (d

i

p

), 0 � jp j � r ; 1 � i � m ,respectively.A section s : X ! Y can be naturally prolonged to a section j

r

s : X ! J

r

Y ,with coordinate expression y

i

p

� j

r

s = @

p

y

i � s . If Z !X is another �bred manifoldand f : Y ! Z is a morphism over idX , then f can be naturally prolonged toa morphism J

r

f : J

r

Y ! J

r

Z over id
J r�1Y by means of the characterisation(J

r

f ) � j

r

s = j

r

(f � s ) for any section s : X ! Y . A vertical vector �eld u : Y !
V Y can be naturally prolonged to a vertical vector �eld u

r

: J

r

Y ! V J

r

Y byprolonging its ow in the above way and by considering the natural isomorphism
J

r

V Y ' V J

r

Y . The coordinate expressions are given later.Splitting of the cotangent bundleWe recall the natural inclusion J

r

Y �X T

�X � T

�
J

r

Y and projection T

�
J

r

Y !
V

�
J

r

Y . We have no natural complementary maps; so, T

�
J

r

Y has no naturalsplitting into the direct sum of `vertical' and `horizontal' tangent subspaces over
J

r

Y . On the other hand, we obtain such a natural splitting over J

r +1Y by meansof the \contact maps" on jet spaces (see [12]). Namely, for r � 0, we consider thenatural injective �bred morphism over J

r +1Y ! J

r

Yd
r +1 : J

r +1Y �X T X ! T J

r

Y ;and the complementary surjective �bred morphism
#

r +1 : J

r +1Y �
J rY T J

r

Y ! V J

r

Y ;whose coordinate expression ared
r +1 = d

� 
d
r +1

�

= d

� 
(@

�

+ y

j

p +�

@

p

j

) ; 0 � jp j � r ;

#

r +1 = #

j

p


 @

p

j

= (d

j

p

� y

j

p +�

d

� )
 @

p

j

; 0 � jp j � r :The transpose of the maps d
r +1 ; #

r +1 are the �bred morphism over J

r +1Y !
J

r

Y d�
r +1 : J

r +1Y �X T

�
J

r

Y ! T

�X ;

#

�
r

: J

r

Y �
J r�1Y V

�
J

r �1Y ! T

�
J

r �1Y :



NEW FORMULATION OF VARIATIONAL SEQUENCES 487We have the remarkable vector bundlesimd�
r +1 ' J

r +1Y �
J rY T

�X ;im #

�
r

� J

r

Y �
J r�1Y T

�
J

r �1Y � T

�
J

r

Y :Thus we obtain the natural splitting of T

�
J

r

Y over J

r +1Y [12]
J

r +1Y �
J rY T

�
J

r �1Y = imd�
r +1 � im #

�
r +1 ;(1)given by

� = (d
r +1 y � ) + (#

r +1 y � ) :Sheaves of formsWe are concerned with some distinguished sheaves of forms on jet spaces (seealso [15]). Note that we consider sheaves on J

r

Y with respect to the topologygenerated by open sets of the kind (�

r0)�1 (U ), where U � Y is open in Y . Thisis suggested by the topological triviality of the �bre of J

r +1Y ! J

r

Y [9].Let us introduce the sheaves which will play a basic role throughout the paper.Let 0 � k ; h .i. For 0 � r , we consider the standard sheaf k�
r

of k {forms � : J

r

Y ! k

T̂

�
J

r

Yon J

r

Y .ii. For 0 � s � r , we consider the subsheaf k�(r ;s ) � k�
r

of local �bred morphismsover J

r

Y ! J

s

Y of the type � : J

r

Y ! k^T

�
J

s

Y . Pullback by �

r

s

provides thenatural inclusion k�
s

� k�(r ;s ). Of course, if s = r , then k�(r ;r ) = k�
r

.iii. For 0 � r + 1, we consider the subsheaf (k ;h )�
r +1 � k +h�

r +1 of local �bredmorphisms over J

r +1Y of the type
� : J

r +1Y ! k^im #

�
r +1 X̂ h^T

�X :iv. For 0 � s < r + 1, we consider the subsheaf (k ;h )� (r +1;s ) � k +h� (r +1;s ) of local�bred morphisms over J

r +1Y ! J

s +1Y of the type
� : J

r +1Y ! k^im #

�
s +1 X̂ h^T

�X :Of course, if s = r then (k ;h )� (r +1;r ) = (k ;h )�
r +1.The �bred splitting (1) yields a fundamental sheaf splitting.Lemma 1.1. We have the splitting1�(r +1;r ) = (0; 1)�

r +1 � (1; 0)�
r +1 ;



488 R. VITOLOwhere the projection on the �rst factor and on the second factor are given, respec-tively, by 1
h = d�

r +1 : 1�(r +1;r ) ! (0; 1)�
r +1 : � 7! d

r +1 y � ;1
v = #

�
r +1 : 1�(r +1;r ) ! (1; 0)�

r +1 : � 7! #

r +1 y � :If � 2 1�(r +1;r ) has the coordinate expression � = �

�

d

� + �

p

i

d

i

p

(0 � p � r ),then 1
h (� ) = (�

�

+ y

i

p

�

p

i

) d

�

;

1
v (� ) = �

p

i

#

i

p

:Proposition 1.1. The above splitting of 1�(r +1;r ) induces the splitting
k�(r +1;r ) = kM

l =0 (k �l;l )�
r +1 ;where the projections are given by(k �l;l )� (#

�
r +1 ; d�

r +1) : k�(r +1;r ) ! (k �l;l )�
r +1(for (k �l;l )� see Appendix).Let us study explicitly the projection maps. We denote with k

h the projectionof the above splitting on the summand with the highest degree of the horizontalfactor (which, of course, cannot be greater than n ). In other words, we have
k

h : k�(r +1;r ) !8><>:(0;k )�
r +1 if k � n(k �n;n )�

r +1 if k > n ;We denote also the projection complementary to k

h by k

v

:= I d � k

h .Now, we evaluate the coordinate expression of k

h . Let � 2 k�(r +1;r ).If 0 < k � n , then we have the coordinate expression
� = �

p 1 :::p h
i 1 ::: i h � h+1 ::: � k d

i 1
p 1 ^ : : : ^ d

i h
p h ^ d

� h+1 ^ : : : ^ d

� kwhere the coordinate functions are sections of 0�
r +1, and the indices'range is 0 �jp

j

j � r , 0 � h � k . We remark that the indices �

j

are suppressed if h = k , andthe indices p j
i j are suppressed if h = 0. We have

k

h (� ) = y

i 1
p 1+� 1 : : : y

i h
p h+� h �

p 1 :::p h
i 1 ::: i h � h+1 :::� k d

� 1 ^ : : : ^ d

� k
:



NEW FORMULATION OF VARIATIONAL SEQUENCES 489If k > n , then we have the coordinate expression
� = �

p 1 :::p k�n+l
i 1 ::: i k�n+l � l+1 :::� n d

i 1
p 1 ^ : : : ^ d

i k�n+l
p k�n+l ^ d

� l+1 ^ : : : ^ d

� n
;where the coordinate functions are sections of 0�

r +1, and the indices'range is 0 �jp

j

j � r , 0 � l � n . We remark that, the indices �

j

are suppressed if l = n . Wehave
k

h (� ) =X y

j 1
q 1+� 1 : : : y

j l
q l+� l �

p 1b::: p k�n+l q 1 :::q l
i 1b::: i k�n+l j 1 :::j l � l+1 :::� n

#

i 1
p 1 ^c: : : ^ #

i k�n+l
p k�n+l ^ d

� 1 ^ : : : ^ d

� n
;where the sum is over the subsetsfj 1

q 1 : : :

j l
q lg � fi 1

p 1 : : :

i k�n+l
p k�n+lg ;and c: : : stands for suppressed indexes (and corresponding contact forms) belongingto one of the above subsets.Example 1.1. Here we evaluate the coordinate expressions of the projection h inthe case k = 2. Suppose that � 2 k�(2; 1) has the coordinate expression

� = �

��

d

� ^ d

� + �

i�

d

i ^ d

� + �

�

i

�

d

i

�

^ d

� +
�

j i

d

j ^ d

i + �

�

j

i

d

j

�

^ d

i + �

�

j

�

i

d

j

�

^ d

i

�

:If n = 1, then � = � = 1, d

� ^ d

� = 0 and
h (� ) =(�

i�

+ 2y

j

�

�

j i

� y

j

� +�

�

�

j

i

) #

i ^ d

� +(�

�

j

�

+ y

i

�

�

�

j

i

+ 2y

i

� +�

�

�

j

�

i

) #

j

�

^ d

�

:If n � 2, then
h (� ) =(�

��

+ y

i

�

�

i�

+ y

i

� +�

�

�

i

�

+
y

j

�

y

i

�

�

j i

+ y

j

� +�

y

i

�

�

�

j

i

+ y

j

� +�

y

i

� +�

�

�

j

�

i

) d

� ^ d

�

:Horizontal and vertical di�erentialThe exterior di�erential d together with the contact maps yield two derivations(`of degree one along �

r +1
r

') of k�
r

(see [15]). Namely, we de�ne the horizontal andvertical di�erentials to be the sheaf morphisms
d

h

:= i dr+1 � d � d � i dr+1 : k�
r

! k�
r +1 ; d

v

:= i

# r+1 � d � d � i

# r+1 : k�
r

! k�
r +1 ;



490 R. VITOLOIt can be proved (see [15]) that d

h

and d

v

ful�ll the properties
d

2
h

= d

2
v

= 0 ; d

h

� d

v

+ d

v

� d

h

= 0 ;

d

h

+ d

v

= (�

r +1
r

)�� d ;(j

r +1 s )�� d

v

= 0 ; d �(j

r

s )� = (j

r +1 s )�� d

h

:The action of d

h

and d

v

on functions f : J

r

Y ! I R and one{forms on J

r

Yuniquely characterises d

h

and d

v

. We have the coordinate expressions
d

h

f = (d
r +1)�

:f d

� = (@

�

f + y

i

p +�

@

p

i

f )d

�

;

d

h

d

� = 0 ; d

h

d

i

p

= �d

i

p +�

^ d

�

; d

h

#

i

p

= �#

i

p +�

^ d

�

;

d

v

f = @

p

i

f #

i

p

;

d

v

d

� = 0 ; d

v

d

i

p

= d

i

p +�

^ d

�

; d

v

#

i

p

= 0 :Direct limitThe sheaf injections �

r

s

(r � s ) provide several inclusions between the sheavesof forms previously introduced. This yields several injective systems, whose directlimit is studied here.We de�ne the presheaves on Y
k� := lim! k�

r

;

(k ;h )� := lim! (k ;h )� (r +1;r ) :By simple counterexamples, it can be proved that the above presheaves are notsheaves in general, because the gluing axiom fails to be true.Remark 1.1. For any equivalence class [� ] 2 k� there exists a distinguishedrepresentative � 2 k�
r

whose order r is minimal. The same holds for (0;k )� and (k ; 0)� .Accordingly, we shall often indicate by � 2 k� (without brackets) such a minimalsection.Lemma 1.2. We have lim! k�(r +1;r ) = lim! k�
r

� k�.Proof. In fact, we have the inclusions k�
r

� k�(r +1;r ) � k�
r +1 �Theorem 1.1. We have the natural splitting

k� = kM
l =0 (k �l;l )� :Proof. It comes from the above lemma and the splitting of proposition 1.1. �Remark 1.2. The above splitting represents one of the major di�erencies betweenthe �nite order and the in�nite order case. As we shall see, in the in�nite order



NEW FORMULATION OF VARIATIONAL SEQUENCES 491formulations one has to deal with quotients of k� by sheaves of contact forms. Theabove splitting allows us to identify such quotients with `more concrete' spaces(see section 3). The situation is much more complicated in the �nite order casefor the lack of such a splitting. In fact, the inclusion k�
r

� k�(r +1;r ) is a properinclusion, and we are in the bad situation described in remark A.1. Nevertheless,by means of the splitting of proposition 1.1, we are able to recover in the �niteorder case almost all features of in�nite order formulations, but in a much moredi�cult way (see [21]).Proposition 1.2. The sheaf morphisms d , d

h

, d

v

, k

h , admit direct limits. Namely,such direct limits turn out to be the presheaf morphisms
d : k�! k +1� : [� ] 7! [d� ] ;

d

h

: k�! k +1� : [� ] 7! [d

h

� ] ; d

v

: k�! k +1� : [� ] 7! [d

v

� ] ;

k

h : k�!8><>:(0;k )� : [� ] 7! [ k

h ] if k � n(k �n;n )� : [� ] 7! [ k

h ] if k > n ;Note that the map k

h of the above proposition turns out to be the projectionof the splitting of theorem 1.1 on the factor with the highest horizontal degree; inother words, the direct limit of the projection is the projection of the splitting ofthe direct limit.We observe that we did not indicate the degree of d , d

h

and d

v

. This is bothfor a matter of `tradition' and not to make too heavy the notation.Finally, next proposition analyses the relationship of d

h

and d

v

with the splittingof the above theorem.Proposition 1.3. We have
d

h

((0;k )� ) � (0;k +1)� ; d

v

((0;k )� ) � (1;k )� ;

d

h

((k ; 0)� ) � (k ; 1)� ; d

v

((k ; 0)� ) � (k +1; 0)� :Proof. From the action of d

h

, d

v

on functions and local coordinate bases of forms.�2. Infinite order variational sequenceIn this section, we introduce a new in�nite order approach to variational se-quences. This in�nite order approach is based on the �nite order approach byKrupka [9]. Indeed, as it is proved in [22], this in�nite order approach turn out tobe the direct limit of Krupka's �nite order approach.



492 R. VITOLOThe de Rham exact sheaf sequence on J

r

Y passes to direct limits. More pre-cisely, it yields the following exact presheaf sequence0 w I R w 0� wd

1� wd

: : : wd

k� wd

: : :which is said to be the in�nite order de Rham sequence. Of course, this sequencedoes not become trivial after a certain value of k .Now, we introduce an exact natural subsequence of the de Rham sequence,which is of particular importance in the variational calculus, although being de-�ned independently (see [9]).We consider the restriction k

h jk�r of the projection k

h to the subsheaf k�
r

�
k�(r +1;r ). We introduce a new subsheaf of k�

r

. Namely, following Krupka [9, 10]we set k�
r

to be the sheaf generated (in the sense of [23]) by the presheaf ker k

h jk�r+d ker k �1
h jk�r . In other words, we set

k�
r

:= ker k

h jk�r + d ker k �1
h jk�r :Remark 2.1. Of course ker k

h jk�r is a sheaf. But, in general, the gluing axiom failsto be true for d ker k �1
h jk�r . Anyway, in the particular case when dimX = 1 and

k > 1, the sum ker k

h jk�r +d ker k �1
h jk�r turns out to be a direct sum, and d ker k �1

h jk�rturns out to be a sheaf.Remark 2.2. If 0 � k � n , then d ker k �1
h jk�r � ker k

h jk�r , so that k�
r

= ker k

h jk�r .Moreover, we haveker k

h jk�r = f� 2 k�
r

j (j

r

s )� � = 0 for every section s :X ! Y g :This shows that for k � n the sheaf k�
r

consists of forms which do not givecontribution to action{like functionals [9, 15, 21].Thus, we have the injective system of sheaves f k�
s

; �

r

s

�g. We de�ne the presheav-es on Y
k� := lim! k�

r

:



NEW FORMULATION OF VARIATIONAL SEQUENCES 493It is clear that k� is a subpresheaf of k�. Thus, we say the following naturalsubsequence0 w 1� wd

2� wd

: : : wd

k� wd

: : :to be the in�nite order contact subsequence of the in�nite order de Rham sequence.Theorem 2.1. The in�nite order contact subsequence is exact.Proof. First, we observe that remark 1.1 still holds in the case of k�. So, to any[� ] 2 k� such that � 2 k�
r

we apply the contact homotopy operator [9], which is therestriction of the standard homotopy operator of Poincar�e's lemma to k�
r

� k�
r

to�nd a local potential [� ] 2 k �1� of [� ]. �Now, we introduce a bicomplex by quotienting the in�nite order de Rham se-quence by the in�nite order contact subsequence. We obtain a new sequence, thein�nite order variational sequence, which turns out to be exact.Theorem 2.2. The following diagram0u 0u 0u 0u 0u0 w 0 wu 0 wu 1� wdu 2� wdu : : : wd

k� wdu : : :0 w I R wu 0� wdu 1� wdu 2� wdu : : : wd

k� wdu : : :0 w I R wu 0� wE0u 1�=

1� wE1u 2�=

2� wE2u : : : wEk�1 k�=

k� wEku : : :0 0 0 0 0where E
k

are the quotient morphisms and the vertical arrows are natural inclusionsor quotient projections, is commutative. Moreover, rows and columns are exactpresheaf sequences.Proof. We have to prove only the exactness of the bottom row of the diagram.But this follows from the exactness of the other rows and of the columns. �De�nition 2.1. We say the bottom row of the above diagram to be the in�niteorder variational sequence associated with the �bred manifold Y !X (see [9]).



494 R. VITOLOThe above construction is yielded naturally just by the di�erential structureand the �bring of the underlying manifold. On the other hand our attention tothe bottom line is inspired by the variational calculus.It is possible to prove [22] that the in�nite order variational sequence is thedirect limit of the injective system of Krupka's �nite order variational sequences.We have an interesting result about the exactness of the in�nite order variationalsequence. Let us consider the cochain complex of global sections0 w I R Y w 0�Y wd ( 1�=

1�)Y wE1
: : : wEk�1 ( k�=

k�)Y wEk
: : :and denote by H

kIVS the k {th cohomology group of the above cochain complex.Corollary 2.1. For all k � 0 there is a natural isomorphism
H

kIVS ' H

kde RhamYProof. This comes from the analogous result about the �nite order variationalsequence [9, 22]. �3. Representation of the variational sequenceIn this section we provide a sequence which is isomorphic to the variationalsequence and is more easily interpreted in terms of the calculus of variations.First of all, we analyse the case 0 < k � n .Proposition 3.1. Let 0 < k � n . Then, we have the natural isomorphism
I

k

: k�=

k�! (0;k )� : [� ]! k

h (� ) :Proof. By remark 2.2 the above map is well de�ned. Clearly, if k

h (� ) = k

h (� ),then � � � 2 ker k

h � k�, so the map is injective. Moreover, the map is surjectivebecause k

h is surjective on (0;k )� . �Next, for k > n we study the quotient spaces k�=

k�.We denote by d

h

((k �n;n �1)�
r

) (see Introduction) the sheaf generated by thepresheaf d

h

((k �n;n �1)�
r

). This means that the sheaf d

h

((k �n;n �1)�
r

) consists of sec-tions � which are of the local type � = d

h

� with � 2 (k �n;n �1)�
r

.Moreover, we set
d

h

((k �n;n �1)� ) := lim! d

h

((k �n;n �1)�
r

) ;where we introduced the symbol d

h

for evident practical reasons.



NEW FORMULATION OF VARIATIONAL SEQUENCES 495Lemma 3.1. Let k > n . Then, we have the isomorphism
k

h ( k�)! d

h

((k �n;n �1)� ) :  7! k

h ( ) :Proof. It comes from the following inclusions
k

h (d ker k �1
h jk�r ) � d

h

((k �n;n �1)�
r +1) � k

h (d ker k �1
h jk�r+1) :

�Proposition 3.2. Let k > n . Then, we have the natural isomorphisms~
I

k

: k�=

k�! (k �n;n )� �
d

h

((k �n;n �1)� ) : [� ]! [ k

h (� )] :Theorem 3.1. The in�nite order variational sequence is isomorphic to the fol-lowing sequence0 w 0� w~E0 (0; 1)� w~E1
: : : w~En�1 (0;n )� w~Enw~En (1;n )� �d

h

((1;n �1)� ) w~En+1
: : : w~En+i�1 (i;n )� �d

h

((1;n �1)� ) w~En+i
: : :where ~E

k

= d

h

if 0 � k � n � 1, and ~E
k

([� ]) = [d

v

(� )] if k > n .Proof. If 0 � k � n � 1 then we have~E
k

( k

h (� )) = I

k

(E
k

([� ])) = I

k

([d� ]) = I

k

([(d

h

+ d

v

)( k

h (� ) + k

v (� ))]) = d

h

k

h (� ) ;where the last passage is due to proposition 1.3.If k � n then we have~E
k

([ k

h (� )]) = I

k

(E
k

([� ])) = I

k

([d� ]) = [ k

h (d� )] ;and
k

h (d� ) = k

h ((d

h

+ d

v

)( k

h (� ) + k

v (� ))) = d

v

( k

h (� )) + d

h

( k

v (� )) ;hence the result. �



496 R. VITOLO4. Representation of the `shortened' variational sequenceAs far as we know, there is no interpretation of the k {th degree terms of thevariational sequence in terms of the calculus of variations, for k � n + 3. For thisreason, we restrict our interest to a `shortened' version of the representation of thevariational sequence of the previous section. Namely, we consider the subsequence0 w I R w 0� wd h (0; 1)� wd h (0; 2)� wd h
: : :

: : : wd h (0;n )� w~En (1;n )� �d

h

((1;n �1)� ) w~En+1 ~E
n +1((1;n )� �d

h

((1;n �1)� )) w 0 ;of the in�nite order variational sequence.The task of the next subsections is to give a natural isomorphism betweenthe two quotient spaces of the above `shortened' variational sequence and somepresheaves of forms on jet spaces. In this way, we are able to give explicit coordi-nate expressions for the morphisms ~E
n

and ~E
n +1.Euler morphismHere we �nd an isomorphism of (1;n )� �d

h

((1;n �1)� ) with a direct limit of an in-jective system of sheaves of forms on jet bundles. To this aim, we use a result byKol�a�r [7].To proceed further, we introduce new notation and recall a few results from thetheory of jets [12].On any coordinate open subset U � Y (with coordinates adapted to the �bring)we set
�

:= d

1 ^ : : : ^ d

n

; �

�

:= i

@ � � :We recall the natural inclusion i

r ;s

: J

r +s

Y ! J

r

J

s

Y which is characterised by
i

r ;s

� j

r +s

t = j

r

(j

s

t ) for any section t :X ! Y .Now, consider the �brings J

r

Y ! X and pr 1 : X � I R !X. For s � 0 thereis the well{known isomorphism J

s

(X � I R ) ' T

�
s

X � I R , where T

�
s

X is the s {thorder cotangent bundle of X. Let f : J

r

Y ! I R be a map. Then we de�ne theformal derivative of f to be the functionD(s ) f

:= J

s

f � i

s;r

: J

s +r

Y ! T

�
s

X � I R :Let (z

p

) be local coordinates on T

�
s

X, 0 � jp j � s . Then we setD
p

f

:= z

p

�D(s ) f :The de�nition of prolongation yields D
p

f � j

r +jp j s = @

p

(f � j

r

s ); of course, thisequality uniquely characterises D
p

. We can easily verify that D
p

�D
q

= D
p +q

. Inthe particular case when jp j = 1 (so that we can identify p = � ) then we have thecoordinate expressionD
�

f = (d
r +1)�

:f = @

�

f + y

i

q +�

@

q

i

f 0 � jq j � s ;



NEW FORMULATION OF VARIATIONAL SEQUENCES 497which coincides with the standard �rst order formal derivative expression. Thecoordinate expression of D
p

f can be easily derived from the inductive formulaD
p +�

= D
�

D
p

. A Leibnitz' rule holds for D
p

(see [15]); if g 2 0�
r

, then we haveD
p

(f g ) = X
q +t =p

p !
q !t ! Dq

f D
t

g :If a vertical vector �eld u : Y ! V Y has the expression u = u

i

@

i

, then itsnatural prolongation u

r

: J

r

Y ! V J

r

Y has the expression u

r

= D
p

u

i

@

p

i

.Theorem 4.1. (First variation formula [7]) Let � 2 1�
r

^ (0;n )�
r

� (1;n )�
r

. Thenthere is a unique pair of elements
E

�

2 (1; 0)� (2r ; 0) ^ (0;n )� 2r

; F

�

2 (1; 0)� (2r ;r ) ^ (0;n )� 2r

;such thati. (�

2r

r

)� � = E

�

� F

�

;ii. F

�

is locally of the form F

�

= d

h

p

�

, with p

�

2 (1; 0)� (2r �1;r �1) ^ (0;n )� 2r

.Remark 4.1. Thus, E

�

and F

�

are uniquely de�ned. However, it is possibleto determine a global p

�

ful�lling the above conditions, but p

�

is not uniquelydetermined unless dimX = 1 or r = 1. For r = 2, we are able to characterise aunique p

�

by means of an additional requirement (see [7] for a complete discussion).In coordinates, if � = �

p

i

#

i

p

^ � , then we have the well{known expression
E

�

= (�1)jp jD
p

�

p

i

#

i ^ � :(2)Proposition 4.1. We have the injective sheaf morphism
I

n +1 : (1;n )� = d

h

((1;n �1)� )! n +1� : [� ] 7! E

�

:Proof. The morphism I

n +1 is well{de�ned. In fact, it is easily seen that it doesnot depend on the representative of the equivalence class [� ]. Moreover, due tothe uniqueness of the decomposition in the �rst variation formula, E

�

annihilatessections [� ] 2 d

h

((1;n �1)� ).The morphism is also injective. In fact, suppose that E

�

= E

�

. Then by the�rst variation formula we have � � � = F

�

� F

�

, hence [� � � ] = 0. �The �nal step is to characterise the image of I

n +1. Let us de�ne the followingpresheaf (1; 0)� (�; 0) := lim! (1; 0)� (r ; 0) :



498 R. VITOLOThe claimed result is given by the following theorem.Theorem 4.2. We have the sheaf isomorphism
I

n +1 : (1;n )� = d

h

((1;n �1)� )! E ;where E is the presheaf E := (1; 0)� (�; 0) ^ (0;n )� :Proof. The image of I

n +1 is characterised by the �rst variation formula. Namely,we have E = ((1;n )� + d

h

((1;n �1)� )) \ ((1; 0)� (�; 0) ^ (0;n )� ) :But we have the inclusion ((1; 0)� (�; 0)^ (0;n )� ) � ((1;n )� + d

h

((1;n �1)� )), hence the result.�Helmholtz morphismHere we �nd an isomorphism of ~E
n +1((1;n )� �d

h

((1;n �1)� )) with a direct limit of aninjective system of sheaves of forms on jet bundles. To this aim, we make use ofthe second variation formula [21].Lemma 4.1. We have the natural injection~E
n +1((1;n )� �d

h

((1;n �1)� ))! (2;n )� �d

h

((2;n �1)� ) : [d

v

� ] 7! [d

v

E

h (� )] :Proof. It is a direct consequence of the �rst variation formula and d

v

d

h

= �d

h

d

v

.�Lemma 4.2. Let � 2 (1; 0)�
s

^ (1; 0)� (s; 0) ^ (0;n )�
s

. Then, there is a unique element~
H

�

2 (1; 0)� (2s;s ) 
 (1; 0)� (2s; 0) ^ (0;n )� 2ssuch that, for all u : Y ! V Y , we have
E ^

�

= u 2s

y ~
H

�

;where ^
�

:= i

u s � .Proof. Let U � Y be an open coordinate subset, and suppose that we have theexpression on U
� = �

p

i

j

#

i

p

^ #

j ^ � ; 0 � jp j � s :



NEW FORMULATION OF VARIATIONAL SEQUENCES 499Then we have the coordinate expression
E ^

�

= D
p

u

i

0@
�

p

i

j

� s �jp jXjq j=0(�1)jp +q j (p + q )!
p !q ! D

q

�

p +q

j

i

1A
#

j ^ � :Let us set~
H

�

:= 0@�

p

i

j

� s �jp jXjq j=0(�1)jp +q j (p + q )!
p !q ! D

q

�

p +q

j

i

1A
#

i

p


 #

j ^ � :Then, by the arbitrariness of u , ~
H

�

is the unique morphism ful�lling the conditionsof the statement on U . By uniqueness, we deduce that ~
H

�

is intrinsic. �Theorem 4.3. (Second variation formula [21]).Let � 2 (1; 0)�
s

^ (1; 0)� (s; 0) ^ (0;n )�
s

. Then, there is a unique pair of elements
H

�

2 (1; 0)� (2s;s ) ^ (1; 0)� (2s; 0) ^ (0;n )� 2s

; G

�

2 (2; 0)� (2s;s ) ^ (0;n )� 2s

;such thati. �

2s

s

�
� = H

�

� G

�ii. H

�

= 1= 2 A ( ~H

�

), where A is the antisymmetrisation map.Moreover, G

�

is locally of the type G

�

= d

h

q

�

, where q

�

2 (2;n �1)� 2s �1.Proof. It is clear that G

�

is uniquely determined by � and the choice H

�

=1= 2 A ( ~H

�

).Let us denote by L D� the Lie derivative with respect to the �eld (d
r +1)�

. Wedenote by L Dp the iterated Lie derivative. It can be easily seen [15] by inductionon jp j that, on a coordinate open subset U � Y , we have
� = �

p

i

j

#

i

p

^ #

j ^ � = �

p

i

j

L

p

(#

i ) ^ #

j ^ � = (�1)jp j
#

i ^ L

p

(�

p

i

j

#

j ) ^ � + 2d

h

q

�

;which yields the thesis by the Leibnitz' rule. �Remark 4.2. Thus, H

�

and G

�

are uniquely de�ned. However, in general, wedo not know whether it is possible to determine a global q

�

ful�lling the aboveconditions. If dimX = 1, then there exists a unique q

�

ful�lling the above condi-tions. Moreover, if s = 2, we are able to characterise a unique q

�

by means of anadditional requirement [8].Proposition 4.2. We have the injective morphism
I

n +2 : ~En +1((1;n )� �d

h

((1;n �1)� ))! (1; 0)� ^ (1; 0)� (�; 0) ^ (0;n )� : [d

v

� ] 7! H

d v E � :Proof. I

n +2 is well de�ned due to the uniqueness of the decomposition of thesecond variation formula. The injectivity of I

n +2 follows from the above theorem,



500 R. VITOLObecause if d

v

E

�

and d

v

E

�

ful�ll H

d v E � = H

d v E � , then we have
d

v

E

�

� d

v

E

�

= G

d v E � � G

d v E � : �Let us set H := im I

n +2. We have no characterisation of H. But the aboveproposition allows us to select a distinguished presheaf containing H. More pre-cisely, we can state the following theorem.Theorem 4.4. The sheaf ~E
n +1((1;n )� �d

h

((1;n �1)� )) is isomorphic to the imageH � (1; 0)� ^ (1; 0)� (�; 0) ^ (0;n )�of the injective morphism I

n +2.5. Variational sequence and the calculus of variationsWe can summarise the results of the above sections in the following theorem.Let us set L := (0;n )� .Theorem 5.1. The shortened in�nite order variational sequence is isomorphic tothe exact sequence0 w I R w 0� wd h (0; 1)� wd h
: : : wd h (0;n �1)� wd h L wE E wH H w 0 ;where the maps E andH are de�ned as the maps which make the following diagramcommuting L������E wEn n +1� =

n +1�u I n+1�~I n+1 wEn+1 E
n +1(n +1� =

n +1� )u I n+2�~I n+2 w 0E wH H w 0Remark 5.1. The natural representation of the quotient sequence as a sequenceof sheaves of `concrete' forms yields a clear interpretation in terms of the calculusof variations.We have the following coordinate expressions.If L 2 L, with L = f � , thenE(L ) = (�1)jp jD
p

@

p

i

f #

i ^ � :If E 2 E , with E = E

i

#

i ^ � , thenH(E ) = 12 0@ @

p

i

E

j

� 2r +1�jp jXjq j=0 (�1)jp +q j (p + q )!
p !q ! D

q

@

p +q

j

E

i

1A
#

i

p

^ #

j ^ � :



NEW FORMULATION OF VARIATIONAL SEQUENCES 501We say L 2 L to be a Lagrangian type morphism. We observe that, due to theexactness of the variational sequence, a variationally trivial Lagrangian is locallyof the form d

h

� , where � 2 (0;n �1)� .We say the map E : L ! E to be the Euler operator . We say E(L ) 2 E tobe the Euler morphism associated with L . We say E 2 E to be an Euler typemorphism.We say the map H : E !H to be the Helmholtz operator . We say H(E ) 2Hto be the Helmholtz morphism associated with E . We observe that, due to theexactness of the variational sequence, if H(E ) = 0 then there exists (locally) aLagrangian L such that E(L ) = 0. Moreover, if H

n +1de Rham(Y ) = 0, then it ispossible to �nd a global Lagrangian ful�lling the above condition.We recall from the above section that
I

n +1� ~I n +1([� ]) = E ^� ;

I

n +2� ~I n +2(En +1([� ])) = H

d v(E �̂) ;where ^� := n +1
h (� ).We say p ^� (see theorem 4) to be a (local) momentum associated with the Eulermorphism induced by � .Let L 2 L be a Lagrangian type morphism. Then we say �

:= L + p

dL

to bea Poincar�e{Cartan form associated with the Lagrangian L . It is evident that thewell{known problem of the uniqueness of the Poincar�e{Cartan form is equivalentto the problem of the uniqueness of the momentum for dL .We say q

d v E �̂ (see theorem 4.3) to be a (local) momentum associated with theHelmholtz morphism induced by � .Remark 5.2. Our names given to the above objects (q

d v E �̂ excepted) are justi�edby the fact that this objects turn out to be just the homonymous objects of thestandard calculus of variations on �bred manifolds. As for q

d v E �̂ , it is a new objectintroduced in [21] (see also [8]) whose interpretation in terms of the calculus ofvariaitons is still unknown.Remark 5.3. In the direct approach to Lagrangian formalism one starts with aLagrangian L 2 L and �lls in the further vertices of the bicomplex (in the directionbottom-up, left-right) by means of the maps of the variational sequence and bythe surjectivity of the projections. Of course, the objects in the center and toprow need not to be unique.In the inverse approach to Lagrangian formalism one starts with a Euler typemorphism E 2 E and �nds, under the Helmholtz closure condition, a local La-grangian, which is de�ned up to the horizontal di�erential of a form � 2 (0;n �1)� .Clearly, this form yields the �lling in procedure as in the direct case; but, now,some objects are de�ned up to a gauge.In [13] we studied the Lagrangian formalism for the mechanics of one parti-cle associated with a geometric model of Galilei spacetime. Namely, a metric,



502 R. VITOLOa connection and a spacetime 2{form yield directly a global dynamical 2{form
! 2 2� and a global E 2 E . Thus, we are able to �ll in the bicomplex startingequivalently with ! or E . Therefore, the objects recovered on left (Lagrangian,Poincar�e{Cartan form and momentum) are de�ned only locally and up to a gauge.We proved that this approach is of fundamental importance for the quantisation ofmechanics. We hope that it could be of the same importance for the quantisationof �elds. Appendix: Direct sums and exterior productsLet V be a vector space such that dim V = n . We de�ne the box product (seealso [6]) of r linear morphisms a 1 ; : : : ; a

r

: V ! V is de�ned to be the linear map
r�a

i

: r^ V ! r^V :
v 1 ^ : : : ^ v

r

7! X
� 2S r j� ja 1(v

� (1)) ^ : : : ^ a

r

(v

� (r )) :where S

r

is the set of all permutation of order r . The box product ful�lls
r�a

i

= r� a

� (i ) 8 � 2 S

r

;in particular, if a 1 = � � � = a

r

= a , then r� a = r ! r^ a . So, r� yields a map
k�(End(V ))! End( k

V̂ ).We have a remarkable feature of the box product. Suppose that V = W 1� W 2,with p 1 : V ! W 1 and p 2 : V ! W 2 the related projections. Then, we have thesplitting
m^ V = M

k +h =m

k^W 1 ^ h^W 2 ;(3)where k^W 1 ^ h^W 2 is the subspace of m^V generated by the wedge products ofelements of k^W 1 and h

Ŵ 2. The projections related to the above splitting turnout to be the maps (k ;h )� (p 1 ; p 2) : m^V ! k^W 1 ^ h

Ŵ 2 ;where (k ;h )� (p 1 ; p 2) := 1
k !h ! k +h� a

i

, with a

i

= p 1 if 1 � i � k and a

i

= p 2 if k + 1 �
i � k + h .Remark A.1. Let V

0 � V be a vector subspace, and set W

01 := p 1(V

0), W

02 :=
p 2(V

0). Then we have
V

0 � W

01 � W

02 ;but the inclusion, in general, is not an equality.
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