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CONJUGACY CRITERIA FOR
HALF-LINEAR DIFFERENTIAL EQUATIONS

SIMON PENA

ABSTRACT. Sufficient conditions on the function ¢(¢) ensuring that the half-linear
second order differential equation

(lW'P=2u) + e u() P 2u(t) =0,  p>1

possesses a nontrivial solution having at least two zeros in a given interval are ob-
tained. These conditions extend some recently proved conjugacy criteria for linear
equations which correspond to the case p = 2.

1. INTRODUCTION

In this paper we investigate oscillatory behaviour of the solutions of half-linear
second order differential equation

(1.1) [6(u)]" + c(t)d(u) =0

where ¢ : R — R is the scalar p-Laplacian defined by ¢(s) := [s|F=2s,p > 1, and
¢ is a continuous real valued function in an interval 7 C R. If p = 2, then (1.1)
reduces to the linear equation

(1.2) u +ce(t)u=0.

The terminology half-linear equation for (1.1) is justified by the fact that if u(¢) is

a solution of (1.1) and & € R then au(t) also solves this equation. Here we look

for conditions on the function ¢ which guarantee that (1.1) has a solution having

at least two zero points in a given interval. Conjugacy of linear equation (1.2) was

investigated in severals papers. Tipler [6] proved that (1.2) is conjugate in R (i.e.,
(o]

there exists a nontrivial solution with at least zeros in R) provided e(t)dt > 0.
—00

This conjugacy criterion was extended by Miiller-Pfeiffer [5] to the more general

equation

(1.3) (r@)u") +c(t)u =0,
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where r(t) > 0, by showing that this equation is conjugate in an interval (a,b) C R
if , ,
() dt = 00 = rl(t)dt and e(t)dt > 0.

The result of Tipler is proved using the Riccati technique consisting in the fact that
if u is a nonzero solutions of (1.2) then v = - solves the so-called Riccati equation

(1.4) v/+v2+c(t) =0

and Muller-Pfeiffer’s criterion is proved via the variational principle. This principle
states that (1.2) is conjugate in (a, b) if and only if there exists a nontrivial function
y which is piecevise of the class C!, has compact support in (a,b), and

PO (0)? = eft)y?]dt < 0.
a

The above mentioned criteria were further generalized and extended in [1] using
the combination of the transformation method and the Riccati technique.

Concerning a possible extension of these linear methods to half-linear equa-
tion, after some computations one can find that neither variational principle, nor
transformation method extended directly to (1.1). On the other hand, the Riccati
technique can be modified in a suitable way to apply to (1.1). Indeed, if u is a

(u'(t))

nonzero solution of (1.1) then v(t) = Sy solves the generalized Riccati equation

(1.5) v +c(t)+(p—1)|v|[?=0,

where ¢ is the conjugate number of p, i.e. 1% + é =1, see e.g. [4].

In this paper we use this idea to prove conjugacy criteria for (1.1) and to derive
an estimate for distance of consecutive zeros of a solution of (1.1). If p = 2, our
results reduce to those of [3] and [6].

2. CONJUGACY CRITERIA

In this section we prove conjugacy criteria for (1.1). The first one concerns
conjugacy on a half-bounded interval.

Theorem 1. Let tg € R, ¢(t) > 0 in [tg,00) and suppose that there exist t1, to
such that tg < t; < 15 and

1 b2
(21) W < N C(t) dt.

Then the solution u of (1.1) given by the initial condition u(ty) = 0, v/ (tp) = 1
has at least one zero in (tg, 00).

Proof. First of all note that the solution w is by the initial condition determined
uniquely and exists up to oo, see [2]. Suppose, by contradiction, that u(¢) > 0 on
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(tg,00). Then we have also u/(t) > 0 on [{g,00). Indeed, if w/(7T) < 0 for some
T € (tg,o0), then a := ¢(v/(T)) < 0 and for ¢t > T

. [¢(u ()] dt = ¢(u'(t)) — o = — , c(t)u" = (t)dt <0,

hence ¢(u'(t)) < o < 0 and thus «'(t) < —|oz|v+1, which means

u(t) < u(T) = |a|7T(t —T) = —00 as ¢ — oo,

a contradiction, consequently u'(t) > 0, t € [tg, 00).
This implies that «’ is nonincreasing for ¢t = ¢y, since from (1.1)

0> [6(u)] = (W ()Y = (p— (o ()" (1)

i.e. u”(t) < 0. Using this fact and the mean value theorem, there exists £ € (tg,%1)
such that

)= ulho) - MO >t sl > 0

hence u(t1) > u'(t1) (t1 —to). Using this inequality and the fact that ¢(u/(t)) > 0,
t > 1y, we have

) =6l (1) — (1) = = e )
hence
(1) = WP > et >
>y ez @) -
and thus .
(' (t2))P~F 1= (t —to)P™! ) e(tydt >0
which contradicts to (2.1, i.c. u(f) has a zero in (o, 00). O

The next statement gives sufficient condition for conjugacy of (1.1) on the whole
real line.

Theorem 2. If

(2.2) c(t)dt >0,

— 00
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then there exists a nontrivial solution of (1.1) having at least two zeros in .

Proof. Condition (2.2) implies the existence of ¢y € R such that

[e%e) to
(2.3) e(t)dt >0, e(t)dt >0,

to — 00

see [6]. Let u be the solution of (1.1) given by the initial condition u(tg) = 1,
u'(tg) = 0. We will show that u has at least one zero point both in (—oo, ) and
(to, 00). Suppose, by contradiction, that u(t) > 0 for ¢ > ¢y (for ¢ < ¢ty we proceed
in the same way) and set

Then v satisfies generalized Riccati equation (1.5) and integrating this equation
from ¢y to t we get

v(t) =—(p—-1) |v(s)|fds—  c(s)ds.

to to

¢

By (2.3) there exist £ > 0 and T > ty such that «¢(s)ds > £ whenever ¢t > T,
to

hence for t > T, we have

t

v(t) <=(p—=1)  Jo(s)"ds = €.

to

¢

Denote R(t) := —(p— 1) |v(s)|9ds —&. Then for t > T v(t) < R(t) < —¢ and
to

hence

R(t)==(p—- D@ < =(p - DIR@)]".
This implies

RO
TENEO.

and integrating this inequality from 7" to ¢ we obtain

1 1
oD DR S T T T De - DRE)

which leads to a contradiction if we let t — oo O
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Theorem 3. Suppose that ¢(t) > 0 on [0,00). Then the solution of (1.1) given
by the initial condition u(0) = 1, «/(0) = 0 has a zero point in the interval I :=
[0,a+b" P+1] provided that
c(t)ydt >b.
0
Proof. Again, we proceed by contradiction, i.e., suppose that «(¢) > 0 in I. Then
we have
¢

d(u' (1)) — o (W' (0)) = — ) c(r)|u(r)P~tdr <0, W/(t)<0,tel.

This inequality implies that (1.1) takes the form
—[l OF ) + e(@)u" (1) =0
and integrating this equation from ¢ = 0 to ¢ = a we obtain

_1 t= —
W@t 2y = e (@)t =
a a

= c(t)up_l(t) dt > (u(a))p_1 e(t)dt > (u(a))p_lb.

0 0

Hence v/(a) < —u(a)bﬁ. Since (1) is decreasing, the graph of u lies below the line
y=u(a) 1-— bﬁ(t —a) which crosses the t-axis at t = a + b_ﬁ, consequently
u must have also a zero point in this interval, a contradiction. a

Theorem 4. Suppose c¢(t) is continuous and non-negative on the finite interval
I = [a,b). If (1.1) is disconjugate on this interval and for all solutions of (1.1) we
b

have lim wu(t) =0, then c¢(t)dt = occ.

t—b~ a
Proof. Suppose, by contradiction, that the statement does not hold. Then since
¢

c(t) > 0, the integral  e(r) dr is monotonically increasing. This means that it must
a
converge to some positive number as { — 5.

Let tg € [a, b). If we choose the solution u given by the initial condition u(ty) = 0,
u'(tog) > 0, then u(t) > 0 for ¢ € ({0, b) and

0> [¢(' ()] = (p— DI OF " (1), L€ [to,b),
hence u"(t) < 0 for ¢ € [t, ). This implies
u(t) < (to)(t —to) < u'(to)(b—to) for ¢ € [to,b)

and hence

$(u'(1)) = [/ ()P~  sgn ! () = o(u/ (t0)) — t e(ryu(r)P=tdr
> (u'(to))p_1 1—(b- to)p_l e(r)dr

to
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Since lim wu(¢) = 0, v'(¢) and hence also ¢(u'(¢)) must vanish for some ¢ € [tg, b).
t—b—
However, by choosing t; to be sufficiently close to & we can prevent this if the
t

integral converges. Thus lim  ¢(r) dr must diverge. O
t=b" 4

Theorem 5. Let ¢(t) be continuous and ¢(t) > 0 on the finite interval I = [a,b)
and suppose

t s -1

lim e(r)dr ds = +o00.

t—=b= 4 a
Then either (1.1) is oscillatory on [a, b) or else all solutions u(t) satisfy lim u(t) =0

t—b—
or both.

Proof. From hypothesis we have
s

lim e(t)dt = 400

s—=bT 4
Suppose, by contradiction, that there exists a solution u(¢) such that u(t) > 0 in
[m, b) for some m, a < m < b, and lirgl u(t) >d>0.
t—b=
Let M = min| 1<ntf bu(t), d] > 0. If &' > 0 in [m, d), from (1.1) we obtain:
m<t<
[/ ()7 e 1) =0, e [m,b),

W' (s =/ (m)PTt = — c(t)yuf~tdt, m<s<b,

u/(s)p_1 = — c(t)up_l(t) dt + u'(m)p_1

and the above equality will become negative as s — b~. This implies that «/(sg) < 0
for some sp in [m, b) and from (1.1) we obtain:

(/@Y —e®)u?~Ht) =0, so<t<sg+e >0,
|/ ()P~ — | (so) P~ = e(t)ul () dt, so<s<b,

So

|/ (s)[P~1 > MP=E e(t) dt.

Hence
W(s)| > M e(r)dr
and thus
t s p+1
u(t) < u(sog) — M e(r)dr ds

This inequality together with hypothesis implies that w(¢) has a zero in [sg, ),
contrary to the assumption. a
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Remarks.
(i) Consider a more general half-linear equation

(2.4) [r(®) ()] + e(t)(u) =0,

where r 1s a positive function. By a direct computation one can verify that the
transformation of the independent variable

t

(2.5) s=  [r(s)] 7 Tds

transforms (2.4) into the equation

d d 1

o ¢ pu HIrEE)FTe(t(s))o(u) = 0,

where ¢ = #(s) is the inverse function of s = s(¢) given by (2.5). Consequently,
using this transformation we have the following statement.

Theorem 6. Suppose that r(t) > 0 fort € (a,b) C R and

b
[7“(5)]_1’+1 ds = 0o = [r(s)]_ﬁds. 0

b
If  ¢(t)dt > 0 then (2.4) possesses a nontrivial solution with at least two zeros in

(a.b).

(i1) A closer examination of the proof of Theorem 2 reveals the fact that this
statement remains valid if we replace (2.2) by a weaker requirement

ta
lim inf e(t)ydt > 0.

t1—00,ta—00 t

(iii) Observe that conjugacy criterion from Theorem 2 is really a focal point

criterion. Indeed, the proof of this theorem establishes that there is a right focal
to
point of tg in (g, o0) and similarly may be proved that c(t) dt > 0 implies the
— 00
existence of a left focal point in (—oo, tg).
Recall that a point t2 > #; is said to be the (right) focal point ¢; if there exists
a solution u of (1.1) such that «/(¢1) = 0, u(tz) = 0. If an interval [{1,b) contains

no focal point of ¢1, then (1.1) is said to be disfocal in this interval.

3. DISTANCE BETWEEN CONSECUTIVE ZEROS

In this section we extend the result of B.J. Harris and Q. Kong [3].
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Theorem 7. If u is a solution of (1.1) satisfying u'(d) = 0, u(b) = 0 with u(t) > 0
and u'(t) <0 fort € (d,b), then

t
sup c(s)ds > 0.
d<t<b d

¢

Proof. Suppose the contrary. Let Q(t) := ¢(s)ds < 0, ¢t € [d,b] and define the
d

Riccati variable

_ WOPe@)
(3.1) r(t) = RN

we thus have:

(3.2) r() =)+ p=DIr@",  teldb)

. lim =) s+ QM
teldb), r(t)>0.

Since Q(t) < 0 for t € [d,b] and r(t) > 0 for t € [d,b], we have r(t) <

(p—1) t(r(s))q ds, and so r(t) = 0, t € [d, b) as a simple consequence of the general

theory Cz)f integral inequalities (we recall that ¢ > 1), contrary to tl_i}rgl_ r(t) = oo.

The proof is now complete. a

Theorem 7a. Ifu is a solution of (1.1) satisfying u(a) = 0, «'(b) = 0 with u(t) > 0
and u'(t) > 0 for t € (a,b), then

b
sup c(s)ds > 0.
a<t<b ¢

The proof is omitted.

Theorem 8. Let d < b and let u be a non-trivial solution of (1.1) satisfying
u'(d) = 0, u(b) = 0, and suppose that u(t) # 0 fort € [d,b). Then we have

t g—1

(3.4) (b—d)(¢g—1)(p—1) Sup c(s)ds > 1.

Moreover, if there are no extreme values of u in (d,b), then
t q-1

(3.5) (b—d)(¢g—1)(p—1) S e(s)yds > 1.
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Proof. We assume, without loss of generality, that u(¢) > 0 for ¢ € [d,b). Let r be
defined by

= _WOPre
)= (€Y

and let
(3.6) w(t):=(p-1) ) |r(s)|?ds, te€ldb)

with »(¢) satisfying
r(t) —et) = (p=Dlr@®" =0, teldb),

or equivalently ,

(3.7) rt)=(p-1) ) |r(a)|? dev + ) c(a) da.
Thus, r(d) =0, w(d) =0, tgrgl_ r(t) = oo, tgrgl_ w(t) = oo and
(3.8) r(t) = w(t) + ) c(s) ds.

We set @* := sup  ¢(s)ds and observe that |r(t)| < Q* + w(t) and
d<i<b 4

w'(t) = (p = DIr@)]7 < (p— D(Q + w(1))?

hence
w'(t)
p- @ +w@)y ="
thus
I ! T < (s—d)
e —(g— D(p— D@ + w®)]L t=a =
and

1
(¢ = D(p - DR~

We remark that equality cannot hold, for otherwise
¢
Q)] == c(s)yds =Q%, teldb)
d
which contradicts the fact that @ is continuous and @Q(d) = 0.
If d is the largest extreme point of u in [d,b), then «/(¢) < 0 and thus r(¢) > 0
¢

<b-d.

for t € [d,b). We set Q. := sup  ¢(s)ds. By Theorem 7, Q. > 0; and from (3.8)
d<t<b 4

0 <r(t) < Qu+w(t).
The proof of the second part of the theorem now follows in a way similar to that
of the first one. d
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Theorem 8a. Let u denote a non-trivial solution of (1.1) satisfying u(a) = 0,

w'(c) =0, and u(t) #0 fort € (a,c]. Then

(c—a)(p—l)(q—l)asggc t c(s)ds > 1.

Moreover, if there are no extreme values of u in (a,c), then

c g—1

(c—a)(p—-1)(¢g—1) asgigc t c(s)ds > 1. O

The proof of this result is similar to the proof of Theorem 8 and is omitted.

Theorem 9. Let a and b denote two consecutive zeros of a non-trivial solution u
of (1.1) and ¢ > 2. Then there exist two disjoint subintervals of [a,b], I} and I,
satisfying both

(3.9) (b—a)(p—1)(g—1) e(s)ds >4,

(3.10) e(s)ds <0.
[a,b]~(11UI2)

Proof. Let ¢ and d denote the least and greatest extreme points of u on [a, b],
respectively. If there is only one zero of «' in (a,bd), then ¢ and d coincide. Then
uw'(d) = 0, u(b) = 0, and u(t) # 0 for t € [d,b). By Theorem 8 the inequality (3.5)
holds. There thus exists b; € (d, b] such that

by a1 1 b b

p=—1)(g—-1) ) c(s)ds > T d and ) c(s)ds > ) c(s)ds.

c g—1 1 c c

(r—1(—-1) c(s) ds and c(s)ds > ¢(s)ds.

c—a

Let I :=[d, b1], T2 := [a1, ¢], and ¢ > 2. We have

p=1@@=-1)0=-a) o c(s)ds "
=p-1@g-1)(=-a) . c(s)ds + . c(s)ds "
>p=1)(¢g=1)(b—a) c(s)ds ) + c(s)ds )
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1 1
>p—1(g—-1)(b—a +
IR IR R C=r I 7
>b—a+b—a
—b—d c—a
>[b-d)+ (- ) gt
R S B
c—a b-—d
> 2 >4
+b—d+c—a_
b ay
and (3.9) is verified. Tt is also easy to see that ¢(s)ds <0 and ¢(s)ds <0.
by a
d

To verify (3.10) it is sufficient to show that ¢(s)ds < 0. Let r(t) be defined
as in Theorem 8. Since u/(¢) = u/(d) = 0, we have r(¢) = 7(d) = 0 and 0 =

d d d
r(d) —r(c) = c(s)ds+ (p—1) |r(s)|?ds. This means that ¢(s)ds < 0 and
hence that (3.10) holds. O
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