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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 1 { 11CONJUGACY CRITERIA FORHALF{LINEAR DIFFERENTIAL EQUATIONSSim�on Pe�naAbstract. Su�cient conditions on the function c(t) ensuring that the half-linearsecond order di�erential equation(ju0jp�2u0)0 + c(t)ju(t)jp�2u(t) = 0 ; p > 1possesses a nontrivial solution having at least two zeros in a given interval are ob-tained. These conditions extend some recently proved conjugacy criteria for linearequations which correspond to the case p = 2.1. IntroductionIn this paper we investigate oscillatory behaviour of the solutions of half-linearsecond order di�erential equation(1.1) [�(u0)]0 + c(t)�(u) = 0where � : R! R is the scalar p-Laplacian de�ned by �(s) := jsjp�2s; p > 1, andc is a continuous real valued function in an interval I � R. If p = 2, then (1.1)reduces to the linear equation(1.2) u00 + c(t)u = 0 :The terminology half-linear equation for (1.1) is justi�ed by the fact that if u(t) isa solution of (1.1) and � 2 R then �u(t) also solves this equation. Here we lookfor conditions on the function c which guarantee that (1.1) has a solution havingat least two zero points in a given interval. Conjugacy of linear equation (1.2) wasinvestigated in severals papers. Tipler [6] proved that (1.2) is conjugate in R (i.e.,there exists a nontrivial solution with at least zeros in R) provided 1
R�1 c(t) dt > 0.This conjugacy criterion was extended by M�uller-Pfei�er [5] to the more generalequation(1.3) (r(t)u0)0 + c(t)u = 0 ;1991 Mathematics Subject Classi�cation : 34C10.Key words and phrases: half-linear equation, scalar p-Laplacian, conjugate points, conjugacycriteria.Received February 4, 1997.



2 SIM�ON PE�NAwhere r(t) > 0, by showing that this equation is conjugate in an interval (a; b) � Rif
Z a r�1(t) dt =1 = Z b r�1(t)dt and Z ba c(t) dt > 0 :The result of Tipler is proved using the Riccati technique consisting in the fact thatif u is a nonzero solutions of (1.2) then v = u0u solves the so-called Riccati equation(1.4) v0 + v2 + c(t) = 0and M�uller-Pfei�er's criterion is proved via the variational principle. This principlestates that (1.2) is conjugate in (a; b) if and only if there exists a nontrivial functiony which is piecevise of the class C1, has compact support in (a; b), and

Z ba [r(t)(y0(t))2 � c(t)y2] dt � 0 :The above mentioned criteria were further generalized and extended in [1] usingthe combination of the transformation method and the Riccati technique.Concerning a possible extension of these linear methods to half-linear equa-tion, after some computations one can �nd that neither variational principle, nortransformation method extended directly to (1.1). On the other hand, the Riccatitechnique can be modi�ed in a suitable way to apply to (1.1). Indeed, if u is anonzero solution of (1.1) then v(t) = �(u0(t))�(u(t)) solves the generalized Riccati equation(1.5) v0 + c(t) + (p� 1)jvjq = 0 ;where q is the conjugate number of p, i.e. 1p + 1q = 1, see e.g. [4].In this paper we use this idea to prove conjugacy criteria for (1.1) and to derivean estimate for distance of consecutive zeros of a solution of (1.1). If p = 2, ourresults reduce to those of [3] and [6].2. Conjugacy criteriaIn this section we prove conjugacy criteria for (1.1). The �rst one concernsconjugacy on a half-bounded interval.Theorem 1. Let t0 2 R, c(t) � 0 in [t0;1) and suppose that there exist t1, t2such that t0 < t1 < t2 and(2.1) 1(t1 � t0)p�1 < Z t2t1 c(t) dt :Then the solution u of (1.1) given by the initial condition u(t0) = 0, u0(t0) = 1has at least one zero in (t0;1).Proof. First of all note that the solution u is by the initial condition determineduniquely and exists up to 1, see [2]. Suppose, by contradiction, that u(t) > 0 on



CONJUGACY CRITERIA FOR HALF{LINEAR DIFFERENTIAL EQUATIONS 3(t0;1). Then we have also u0(t) � 0 on [t0;1). Indeed, if u0(T ) < 0 for someT 2 (t0;1), then � := �(u0(T )) < 0 and for t > T
Z tT [�(u0(t))]0 dt = �(u0(t))� � = � Z tT c(t)up�1(t) dt � 0 ;hence �(u0(t)) � � < 0 and thus u0(t) � �j�j 1p�1 , which meansu(t) � u(T )� j�j 1p�1 (t� T )!�1 as t!1 ;a contradiction, consequently u0(t) � 0, t 2 [t0;1).This implies that u0 is nonincreasing for t = t0, since from (1.1)0 � [�(u0)]0 = ((u0(t))p�1)0 = (p� 1)(u0(t))p�2u00(t)i.e. u00(t) � 0. Using this fact and the mean value theorem, there exists � 2 (t0; t1)such that u(t1)� u(t0)t1 � t0 = u(t1)t1 � t0 = u0(�) � u0(t1) ; �(u0(t1)) > 0hence u(t1) � u0(t1) (t1 � t0). Using this inequality and the fact that �(u0(t)) � 0,t � t0, we have�(u0(t))�

�

�

t2t1 = �(u0(t2))� �(u0(t1)) = � Z t2t1 c(t)up�1(t) dt ;hence�(u0(t1)) = (u0(t1))p�1 � Z t2t1 c(t)up�1(t) dt �� up�1(t1) Z t2t1 c(t) dt � (u0(t1))p�1(t1 � t0)p�1 Z t2t1 c(t) dtand thus (u0(t1))p�1 � 1� (t1 � t0)p�1 Z t2t1 c(t) dt� � 0which contradicts to (2.1), i.e. u(t) has a zero in (t0;1). �The next statement gives su�cient condition for conjugacy of (1.1) on the wholereal line.Theorem 2. If(2.2) Z 1�1 c(t) dt > 0 ;



4 SIM�ON PE�NAthen there exists a nontrivial solution of (1.1) having at least two zeros in R.Proof. Condition (2.2) implies the existence of t0 2 R such that(2.3) Z 1t0 c(t) dt > 0 ; Z t0�1 c(t) dt > 0 ;see [6]. Let u be the solution of (1.1) given by the initial condition u(t0) = 1,u0(t0) = 0. We will show that u has at least one zero point both in (�1; t0) and(t0;1). Suppose, by contradiction, that u(t) > 0 for t > t0 (for t < t0 we proceedin the same way) and set v(t) = �(u0(t))�(u(t)) :Then v satis�es generalized Riccati equation (1.5) and integrating this equationfrom t0 to t we get v(t) = �(p� 1) Z tt0 jv(s)jq ds� Z tt0 c(s) ds :By (2.3) there exist � > 0 and T > t0 such that t
Rt0 c(s) ds > � whenever t > T ,hence for t > T , we havev(t) � �(p� 1) Z tt0 jv(s)jq ds � � :Denote R(t) := �(p � 1) t

Rt0 jv(s)jq ds � �. Then for t > T v(t) � R(t) � �� andhence R0(t) = �(p � 1)jv(t)jq � �(p� 1)jR(t)jq :This implies R0(t)(p � 1)jR(t)jq � �1and integrating this inequality from T to t we obtain1(p� 1)(q � 1)jR(t)jq�1 � �t+ T + 1(p� 1)(q � 1)jR(T )jq�1which leads to a contradiction if we let t!1 . �



CONJUGACY CRITERIA FOR HALF{LINEAR DIFFERENTIAL EQUATIONS 5Theorem 3. Suppose that c(t) > 0 on [0;1). Then the solution of (1.1) givenby the initial condition u(0) = 1, u0(0) = 0 has a zero point in the interval I :=[0; a+ b� 1p�1 ] provided that
Z a0 c(t) dt � b :Proof. Again, we proceed by contradiction, i.e., suppose that u(t) > 0 in I. Thenwe have�(u0(t)) � �(u0(0)) = � Z t0 c(r)ju(r)jp�1 dr � 0 ; u0(t) � 0; t 2 I :This inequality implies that (1.1) takes the form�[ju0(t)jp�1]0 + c(t)up�1(t) = 0and integrating this equation from t = 0 to t = a we obtain

� ju0(t)jp�1 � t=at=0 = ju0(a)jp�1 == Z a0 c(t)up�1(t) dt � (u(a))p�1 Z a0 c(t) dt � (u(a))p�1b :Hence u0(a) � �u(a)b 1p�1 . Since u0(t) is decreasing, the graph of u lies below the liney = u(a) h 1� b 1p�1 (t � a)i which crosses the t-axis at t = a + b� 1p�1 , consequentlyu must have also a zero point in this interval, a contradiction. �Theorem 4. Suppose c(t) is continuous and non-negative on the �nite intervalI = [a; b). If (1.1) is disconjugate on this interval and for all solutions of (1.1) wehave limt!b� u(t) = 0, then b
Ra c(t) dt =1.Proof. Suppose, by contradiction, that the statement does not hold. Then sincec(t) � 0, the integral t

Ra c(r) dr is monotonically increasing. This means that it mustconverge to some positive number as t! b�.Let t0 2 [a; b). If we choose the solution u given by the initial condition u(t0) = 0,u0(t0) > 0, then u(t) > 0 for t 2 (t0; b) and0 � [�(u0(t))]0 = (p� 1)ju0(t)jp�2u00(t) ; t 2 [t0; b) ;hence u00(t) � 0 for t 2 [t0; b). This impliesu(t) � u0(t0)(t� t0) � u0(t0)(b� t0) for t 2 [t0; b)and hence �(u0(t)) = ju0(t)jp�1 sgnu0(t) = �(u0(t0)) � Z tt0 c(r)u(r)p�1 dr� (u0(t0))p�1 � 1� (b� t0)p�1 Z tt0 c(r) dr � :



6 SIM�ON PE�NASince limt!b� u(t) = 0, u0(t) and hence also �(u0(t)) must vanish for some t 2 [t0; b).However, by choosing t0 to be su�ciently close to b we can prevent this if theintegral converges. Thus limt!b� t
Ra c(r) dr must diverge. �Theorem 5. Let c(t) be continuous and c(t) � 0 on the �nite interval I = [a; b)and suppose limt!b� Z ta �

Z sa c(r) dr �

1p�1 ds = +1 :Then either (1.1) is oscillatory on [a; b) or else all solutions u(t) satisfy limt!b� u(t) = 0or both.Proof. From hypothesis we havelims!b� Z sa c(t) dt = +1 :Suppose, by contradiction, that there exists a solution u(t) such that u(t) > 0 in[m; b) for some m, a � m < b, and limt!b� u(t) � d > 0 .Let M = min[ infm�t<bu(t); d] > 0. If u0 � 0 in [m; b), from (1.1) we obtain:
� [u0(t)]p�1 � 0 + c(t)up�1(t) = 0 ; t 2 [m; b) ;u0(s)p�1 � u0(m)p�1 = � Z sm c(t)up�1dt ; m � s < b ;u0(s)p�1 = � Z sm c(t)up�1(t) dt+ u0(m)p�1and the above equality will become negative as s! b�. This implies that u0(s0) < 0for some s0 in [m; b) and from (1.1) we obtain:(ju0(t)jp�1)0 � c(t)up�1(t) = 0 ; s0 � t < s0 + "; " > 0 ;ju0(s)jp�1 � ju0(s0)jp�1 � Z ss0 c(t)up�1(t) dt ; s0 � s < b ;ju0(s)jp�1 �Mp�1 Z ss0 c(t) dt :Hence ju0(s)j � M �

Z ss0 c(r) dr �

1p�1and thus u(t) � u(s0)� Z ts0 M �

Z ss0 c(r) dr �

1p�1 ds :This inequality together with hypothesis implies that u(t) has a zero in [s0; b),contrary to the assumption. �



CONJUGACY CRITERIA FOR HALF{LINEAR DIFFERENTIAL EQUATIONS 7Remarks.(i) Consider a more general half-linear equation(2.4) [r(t)�(u0)]0 + c(t)�(u) = 0 ;where r is a positive function. By a direct computation one can verify that thetransformation of the independent variable(2.5) s = Z t[r(s)]� 1p�1 dstransforms (2.4) into the equationdds � � � ddsu� � + [r(t(s))] 1p�1 c(t(s))�(u) = 0 ;where t = t(s) is the inverse function of s = s(t) given by (2.5). Consequently,using this transformation we have the following statement.Theorem 6. Suppose that r(t) > 0 for t 2 (a; b) � R and
Z a[r(s)]� 1p�1 ds =1 = Z b[r(s)]� 1p�1 ds : �If b

Ra c(t) dt > 0 then (2.4) possesses a nontrivial solution with at least two zeros in(a; b).(ii) A closer examination of the proof of Theorem 2 reveals the fact that thisstatement remains valid if we replace (2.2) by a weaker requirementlim inft1!1;t2!1 Z t2t1 c(t) dt > 0 :(iii) Observe that conjugacy criterion from Theorem 2 is really a focal pointcriterion. Indeed, the proof of this theorem establishes that there is a right focalpoint of t0 in (t0;1) and similarly may be proved that t0
R�1 c(t) dt > 0 implies theexistence of a left focal point in (�1; t0).Recall that a point t2 > t1 is said to be the (right) focal point t1 if there existsa solution u of (1.1) such that u0(t1) = 0, u(t2) = 0. If an interval [t1; b) containsno focal point of t1, then (1.1) is said to be disfocal in this interval.3. Distance between consecutive zerosIn this section we extend the result of B. J.Harris and Q.Kong [3].



8 SIM�ON PE�NATheorem 7. If u is a solution of (1.1) satisfying u0(d) = 0, u(b) = 0 with u(t) > 0and u0(t) � 0 for t 2 (d; b), thensupd�t�b Z td c(s) ds > 0 :Proof. Suppose the contrary. Let Q(t) := t
Rd c(s) ds � 0, t 2 [d; b] and de�ne theRiccati variable r(t) := �ju0(t)jp�2u0(t)ju(t)jp�2u(t) ;(3.1)we thus have: r0(t) = c(t) + (p� 1)jr(t)jq ; t 2 [d; b)(3.2)(3.3) r(d) = 0 ; limt!b� r(t) =1 ; r(t) = (p� 1) Z td jr(s)jq ds+Q(t)t 2 [d; b); r(t) � 0 :Since Q(t) � 0 for t 2 [d; b] and r(t) � 0 for t 2 [d; b], we have r(t) �(p�1) t

Rd (r(s))q ds, and so r(t) = 0, t 2 [d; b) as a simple consequence of the generaltheory of integral inequalities (we recall that q > 1), contrary to limt!b� r(t) = 1.The proof is now complete. �Theorem 7a. If u is a solution of (1.1) satisfying u(a) = 0, u0(b) = 0 with u(t) > 0and u0(t) � 0 for t 2 (a; b), thensupa�t�b Z bt c(s) ds > 0 :The proof is omitted.Theorem 8. Let d < b and let u be a non-trivial solution of (1.1) satisfyingu0(d) = 0, u(b) = 0, and suppose that u(t) 6= 0 for t 2 [d; b). Then we have(3.4) (b� d) (q � 1) (p� 1) � supd�t�b �

�

�

�

Z td c(s) ds�

�

�

�

� q�1 > 1 :Moreover, if there are no extreme values of u in (d; b), then(3.5) (b� d) (q � 1) (p� 1) � supd�t�b Z td c(s) ds� q�1 > 1 :



CONJUGACY CRITERIA FOR HALF{LINEAR DIFFERENTIAL EQUATIONS 9Proof. We assume, without loss of generality, that u(t) > 0 for t 2 [d; b). Let r bede�ned by r(t) := �ju0(t)jp�2u0(t)ju(t)jp�2u(t) ; t 2 [d; b)and let w(t) := (p� 1) Z td jr(s)jq ds ; t 2 [d; b)(3.6)with r(t) satisfyingr0(t) � c(t)� (p� 1)jr(t)jq = 0 ; t 2 [d; b) ;or equivalently , r(t) = (p� 1) Z td jr(�)jq d�+ Z td c(�) d� :(3.7)Thus, r(d) = 0, w(d) = 0, limt!b� r(t) =1, limt!b�w(t) =1 and(3.8) r(t) = w(t) + Z td c(s) ds :We set Q� := supd�t�b �

�

�

�

t
Rd c(s) ds�

�

�

�

and observe that jr(t)j � Q� + w(t) andw0(t) = (p � 1)jr(t)jq � (p� 1)(Q� +w(t))qhence w0(t)(p� 1)(Q� +w(t))q � 1 ;thus lims!b� 1�(q � 1)(p� 1)[Q� + w(t)]q�1 �

�

�

st=d � (s� d)and 1(q � 1)(p� 1)[Q�]q�1 � b� d :We remark that equality cannot hold, for otherwisejQ(t)j := �

�

�

�

Z td c(s) ds�

�

�

�

= Q� ; t 2 [d; b)which contradicts the fact that Q is continuous and Q(d) = 0.If d is the largest extreme point of u in [d; b), then u0(t) � 0 and thus r(t) � 0for t 2 [d; b). We set Q� := supd�t�b t
Rd c(s) ds. By Theorem 7, Q� > 0; and from (3.8)0 � r(t) � Q� + w(t) :The proof of the second part of the theorem now follows in a way similar to thatof the �rst one. �



10 SIM�ON PE�NATheorem 8a. Let u denote a non-trivial solution of (1.1) satisfying u(a) = 0,u0(c) = 0, and u(t) 6= 0 for t 2 (a; c]. Then(c� a) (p� 1) (q � 1) supa�t�c �

�

�

�

Z ct c(s) ds�

�

�

�

q�1 > 1 :Moreover, if there are no extreme values of u in (a; c), then(c � a) (p� 1) (q � 1) � supa�t�c Z ct c(s) ds� q�1 > 1 : �The proof of this result is similar to the proof of Theorem 8 and is omitted.Theorem 9. Let a and b denote two consecutive zeros of a non-trivial solution uof (1.1) and q � 2. Then there exist two disjoint subintervals of [a; b], I1 and I2,satisfying both (b� a) (p� 1) (q � 1) �

Z I1[I2 c(s) ds� q�1 > 4 ;(3.9)
Z [a;b]r(I1[I2) c(s) ds � 0 :(3.10)Proof. Let c and d denote the least and greatest extreme points of u on [a; b],respectively. If there is only one zero of u0 in (a; b), then c and d coincide. Thenu0(d) = 0, u(b) = 0, and u(t) 6= 0 for t 2 [d; b). By Theorem 8 the inequality (3.5)holds. There thus exists b1 2 (d; b] such that(p � 1) (q � 1)  

Z b1d c(s) ds! q�1 > 1b� d and Z b1d c(s) ds � Z bd c(s) ds :Similarly, by Theorem 8a we can choose a1 2 [a; c) such that(p � 1) (q � 1) �

Z ca1 c(s) ds� q�1 > 1c� a and Z ca1 c(s) ds � Z ca c(s) ds :Let I1 := [d; b1], I2 := [a1; c], and q � 2. We have(p � 1) (q � 1) (b� a) �

Z I1[I2 c(s) ds� q�1= (p� 1) (q � 1) (b� a) �

Z I1 c(s) ds + Z I2 c(s) ds� q�1� (p� 1) (q � 1) (b� a) "

�

Z I1 c(s) ds� q�1 + �

Z I2 c(s) ds� q�1 #



CONJUGACY CRITERIA FOR HALF{LINEAR DIFFERENTIAL EQUATIONS 11> (p� 1) (q � 1) (b� a) � 1(c� a) (p� 1) (q � 1) + 1(b� d) (p� 1) (q � 1) �� b� ab� d + b� ac � a� [(b � d) + (c� a)] � 1b� d + 1c� a �� 2 + c� ab� d + b� dc� a � 4and (3.9) is veri�ed. It is also easy to see that b
Rb1 c(s) ds � 0 and a1

Ra c(s) ds � 0.To verify (3.10) it is su�cient to show that d
Rc c(s) ds � 0. Let r(t) be de�nedas in Theorem 8. Since u0(c) = u0(d) = 0, we have r(c) = r(d) = 0 and 0 =r(d) � r(c) = d

Rc c(s) ds + (p � 1) d
Rc jr(s)jqds. This means that d

Rc c(s) ds � 0 andhence that (3.10) holds. �References[1] Do�sl�y, O., Conjugacy criteria for second order di�erential equations, Rocky Mountain, J.Math. 23(1993), 849-861.[2] Elbert, �A., A half-linear second order di�erential equation, ColloquiaMath. Soc. Janos Bolyai,30, Qualitative theory of di�erential equation, Szeged (1979), 153-180.[3] Harris, B. J., Kong, Q., On the oscillation of di�erential equations with an oscillatory coe�-cient, Trans. Amer. Math. Soc. 347(1995), 1831-1839.[4] Li, H. J., Yeh, C. Ch.,Oscillations of half-linear second order di�erential equations, HiroshimaMath. J. 25(1995), 585-594.[5] M�uller-Pfei�er, E., Existence of conjugate points for second and fourth order di�erential equa-tions, Proc. Roy. Soc. Edinburgh Sect. A 89(1981), 281-291.[6] Tipler, F. J., General relativity and conjugate ordinary di�erential equations, J. Di�. Equa-tions 30(1978), 165-174.Masaryk University, Faculty of ScienceDepartment of Mathematics, Jan�a�ckovo n�am. 2a662 95 Brno, Czech Republic
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