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FIXED POINTS OF FUZZY MONOTONE MAPS

Ismat Beg

The existence of fixed points for monotone maps on the fuzzy ordered
sets under suitable conditions is proved.

1. Introduction and preliminaries

In his seminal paper Zadeh [11] introduced the notion of fuzzy set. During
last three decades the fuzzy set theory has rapidly developed into an area which
scientifically as well as from the application point of view, is recognized as a very
valuable contribution to the existing knowledge (see [3, 9, 13]). Recently Heilpern
[7], Hadzic [6], Fang [5], Jung, Cho and Kim [8] and many other authors have
started to study fixed points in fuzzy setting. The aim of this note is to prove the
existence of fixed points of fuzzy monotone maps on fuzzy ordered set.

Let X be a space of points (objects), with a generic element of X denoted by x.
A fuzzy set B of X is characterized by a membership function ‘b‘ which associated
with each element in X a real number in the interval [0,1], with the value of b(x)
at x representing the grade of membership of x in B. For details see Zimmermann
[13].

Zadeh [11] gave the definition of fuzzy ordered relations which was subsequently
used by Vanugopalan [9] and Beg and Islam [2] in their recent papers. Zadeh’s
definition has a binary inspiration. In this paper we follow the following definition
of order relation due to French school lead by Prof. Claude Ponsard (see Billot
[3]).

Definition 1. Let X be a crisp set. A fuzzy ordered relation on X is a fuzzy
subset R of X ×X with the following properties

(i) for all x ∈ X, r(x, x) ∈ [0, 1] (reflexivity);
(ii) for all x, y ∈ X, r(x, y) + r(y, x) > 1 implies x = y (antisymmetry);
(iii) for all (x, y, z) ∈ X3,

[r(x, y) ≥ r(y, x) and r(y, z) ≥ r(z, y)] implying r(x, z) ≥ r(z, x)
(f-transitivity).
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A set with fuzzy order defined on it is called a fuzzy ordered set. A fuzzy
relation is totally reflexive if for all x ∈ X, r(x, x) = 1 and totally non-reflexive if
for all x ∈ X, r(x, x) = 0. Any intermediate situation between these two Boolean
definition derives from the fuzzy reflexivity that describes the shades of reflexivity.
Definition 1, has significant interpretation/applications in economics preference
theory (see Billot [3]).

A fuzzy order is said to be total if for all x 6= y we have either r(x, y) > r(y, x)
or r(y, x) > r(x, y). A fuzzy ordered set on which fuzzy order is total is called
fuzzy chain. For a subset A ⊂ X, an upper bound is an element x ∈ X satisfying
r(y, x) ≥ r(x, y) for all y ∈ A. An element x is called maximal element of A if there
is no y 6= x in A for which r(x, y) ≥ r(y, x). An x ∈ A satisfying r(y, x) ≥ r(x, y)
for all y ∈ A is called greatest element of A. Similarly, we can define lower bound,
minimal and least element of A. We denote

by supA = least element of upper bounds
and inf A = greatest element of lower bounds.

In addition to first order fuzzy theory axioms (Za) (for details see Chapin [4]),
we assume Fuzzy Zorn’s Lemma (see Beg [1]): If every fuzzy chain in a fuzzy
ordered set X has an upper bound, then X has a maximal element.

A mapping f : X → X is called fuzzy monotone if r(y, x) ≥ r(x, y) implies
r(f(y), f(x)) ≥ r(f(x), f(y)). A point x ∈ X is called a fixed point of f if f(x) = x.

2. The results

Theorem 1. Let X be a fuzzy ordered set with the property that every fuzzy
chain in X has a supremum. Let f : X → X be a fuzzy monotone map and assume
that there exists some a ∈ X with r(a, f(a)) ≥ r(f(a), a). Then the set of fixed
points of f is nonempty and has a maximal fixed point.

Proof. Consider the fuzzy ordered subset

P = {x ∈ X : r(x, f(x)) ≥ r(f(x), x)} .

Since a ∈ P , therefore P is nonempty. Let C be a chain in P and b be its
supremum in X. Then r(c, b) ≥ r(b, c) for every c ∈ C. Thus r(f(c), f(b)) ≥
r(f(b), f(c)). As r(c, f(c)) ≥ r(f(c), c). Therefore r(c, f(b)) ≥ r(f(b), c) for c ∈ P .
It follows that f(b) is an upper bound for C. Since b is supremum of C and f(b)
is an upper bound for C, we have r(b, f(b)) ≥ r(f(b), b). Therefore b ∈ P . Thus
supremum of any chain in P belongs to P . Fuzzy Zorn’s Lemma further implies
that P has a maximal element, x0(say). Since x0 ∈ P ,

r(x0, f(x0)) ≥ r(f(xo), x0) .

As f is monotone, r(f(x0), f(f(x0))) ≥ r(f(f(x0)), x0). It further implies that
f(x0) belong to P . Since x0 is a maximal element of P , we see that x0 = f(x0).

Furthermore, if y is a another fixed point of f , then y ∈ P . This shows that x0

is a maximal fixed point of f . �
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Definition 2. A map f : X → X is said to be fuzzy order continuous if for each
countable fuzzy chain {ci} having a supremum, f(sup{ci}) = sup({f(ci)}).

A fuzzy order continuous map is necessarily monotone; for if r(x, y) ≥ r(y, x)
then y = sup{x, y}, so, by continuity, f(y) = sup{f(x), f(y)}. Therefore
r(f(x), f(y)) ≥ r(f(y), f(x)).

Theorem 2. Let X be a fuzzy ordered set and f : X → X be fuzzy order
continuous map. Assume that there is a b ∈ X such that:

(i) r(b, f(b)) ≥ r(f(b), b), and
(ii) every countable fuzzy chain in {x : r(b, x) ≥ r(x, b)} has a supremum.

Then the point c = sup
n
fn(b) is a fixed point of f . Moreover the point c is also

the infimum of the set of fixed points of f in {x : r(b, x) ≥ r(x, b)}.

Proof. Because r(b, f(b)) ≥ r(f(b), b) and f is monotone, we have

r(f(b), f2(b)) ≥ r(f2(b), f(b))

and inductively,
r(fn(b), fn+1(b)) ≥ r(fn+1(b), fn(b))

for each n ≥ 1. Thus {fn(b) : n ≥ 1} is a chain in {x : x ≥ b}; so c = sup
n
fn(b)

exists.
Since f is continuous,

f(c) = f
(

sup
n
fn(b)

)
= sup

n
f
(
fn(b)

)
= sup

n
fn+1(b) = c .

Hence c is a fixed point of f . Let e be another fixed point of f in {x : r(b, x) ≥
r(x, b)}, then r(c, e) ≥ r(e, c). Indeed, since r(b, e) ≥ r(e, b), we have r(f(b), e) =
r(f(b), f(e)) ≥ r(f(e), f(b)) = r(e, f(b)), and by induction, that r(fn(b), e) ≥
r(e, fn(b)) for every n ≥ 1. Thus e is an upper bound for {fn(b) : n ≥ 1},
so r(c, e) ≥ r(e, c). Thus c is the infimum of the set of fixed points of f in
{x : r(b, x) ≥ r(x, b)}. �
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