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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 35 (1999), 155 – 164

NONNEGATIVITY OF FUNCTIONALS

CORRESPONDING TO THE SECOND ORDER

HALF–LINEAR DIFFERENTIAL EQUATION

Robert Mař́ik

In this paper we study extremal properties of functional associated
with the half–linear second order differential equation (E p). Necessary and sufficient
condition for nonnegativity of this functional is given in two special cases: the first
case is when both points are regular and the second is the case, when one end point
is singular. The obtained results extend the theory of quadratic functionals.

1. Introduction

We study the second order half-linear differential equation

(Ep)
(
r(t)Φ

(
y′(t)

))′
+ q(t)Φ

(
y(t)

)
= 0,

where Φ(y) = y|y|p−2, p > 1, is a real constant and r(t), q(t) are real-valued
continuous functions defined on a given non-degenerate interval I, r(t) > 0 on I.
The domain of the operator on the left hand side is defined to be the set of
all continuous real-valued functions y defined on I such that y and rΦ(y′) are
continuously differentiable on I. Let I0 be a subinterval of I. Equation (Ep) is
said to be disconjugate on I0 if every non-trivial solution has at most one zero on
I0.

Equation (Ep) has been investigated e.g. by Bihari [1], Elbert [4], Jaroš, Kusano
[6], Li, Yeh [9]. Elbert in [4] proved the existence and uniqueness of solution of
(Ep) with given initial conditions. He also proved that zeros of two nontrivial
solutions of (Ep) either separate each other, or these solutions differ only by a
constant multiple and some another facts, that show, that the equation (Ep) has
some properties similar to those of linear differential equation.
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A point T is said to be singular point of equation (Ep) if r(T ) = 0 or the
one-sided limit limt→T+ q(t) resp. limt→T− q(t) are not bounded.

We will introduce two cases

(1) regular case with I = [a, b]
(2) singular case with I = (0, b], and singular point T = 0.

In the regular case we study the functional

Jp(η)
∣∣b
a

=
∫ b

a

[
r(t)|η′(t)|p − q(t)|η(t)|p

]
dt

on the class of functions

U = {η ∈ AC[a, b]: η(a) = η(b) = 0, η′ ∈ Lp[a, b]}.
In case of singular point zero we study the functional

Jp(η)
∣∣b
0 = lim inf

e→0+

∫ b

e

[
r(t)|η′(t)|p − q(t)|η(t)|p

]
dt

on the class of functions

U = {η ∈ C[0, b] : η(0) = η(b) = 0, η ∈ AC
and η′(t) ∈ Lp on each closed subinterval of (0, b]}.

Any function η of class U resp. U will be termed an admissible function of given
class.

When p = 2 the equation (E2) reduces to the usual Sturm–Liouville linear
equation and the functionals J2(η), J2(η) are quadratic functionals.

Jaroš and Kusano in [6] proved a Picone–type identity for (Ep) and for functional

Jp(η)
∣∣b
a

over the class of functions

Û = {η ∈ C1[a, b] : η(a) = η(b) = 0, η(t) 6= 0 on (a, b)}.
By this identity they proved the following theorem.

Theorem A (Jaroš–Kusano [6], Li-Yeh [9]). If there exists a solution y(t) of (Ep)

on [a, b] such that y(t) 6= 0 on (a, b), then for all η ∈ Û we have Jp(η)
∣∣b
a
≥ 0, where

the equality holds if and only if η is a constant multiple of y.

The aim of this paper is the following:

(i) To generalize Theorem A to the class of functions U and to prove equiva-
lency between disconjugacy of (Ep) and nonnegativity of functional Jp(η).

(ii) To establish the necessary and sufficient condition for nonnegativity of the
singular functional Jp(η).

As concerns claim (i), if q(t) ≥ 0 on [a, b], then the result implicitly follows
from the paper Elbert [4], where a Raleigh quotient for the half-linear differential
equation is investigated.

The linear case and the singular quadratic functionals J2(η) were studied by
Došlá–Došlý [2], Kaňovský [7], Leighton–Morse [8]. The following theorem is due
to Leighton–Morse.
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Theorem B (Leighton–Morse [8]). Singular quadratic functional J2(η)
∣∣b
0

is non-
negative for every admissible function η if and only if equation (E2) is disconjugate
on (0, b) and singularity condition is satisfied, i.e. if w(t) is solution of Riccati
equation

w′(t) + q(t) + r(t)−1w2(t) = 0

on (0, b) such that limt→b− w(t) = −∞, then

lim inf
t→0+

−w(t)η2(t) ≥ 0

holds for every admissible function η, such that J2(η)
∣∣b
0

is finite.

We shall seek for analogy of Leighton–Morse’s singularity condition in the case
of half-linear equation. Next example shows the fact that disconjugacy of (Ep) is
not sufficient for nonnegativity of functional Jp(η). It extends an example given
in the case p = 2, see e.g. Leighton–Morse [8].

Example 1. Let us consider half-linear equation(
Φ(y′)

)′
+
(p− 1

p

)p 1
tp

Φ(y) = 0.

It is disconjugate on (0,∞) and y(t) = t
p−1
p is its positive solution. Functional

Jp(η)
∣∣b
0 takes then the form

Jp(η)
∣∣b
0

= lim inf
e→0+

∫ b

e

[
|η′(t)|p −

(p− 1
p

)p
t−p|η(t)|p

]
dt.

Consider admissible function η(t) = t
p−1
p (1−

(
t
b

)1/p
), whereby p ≥ 2. We have

η′(t) = p−1
p t−1/p

(
1− p

p−1

(
t
b

)1/p)
, and a direct computation shows that

Jp(η)
∣∣b
0

=
(p− 1

p

)p
lim inf
e→0+

∫ 1

e

[∣∣∣1− p

p− 1

( t
b

)1/p∣∣∣p − ∣∣∣1− ( t
b

)1/p∣∣∣p] dt
t
.

Substituting
(
t
b

)1/p
= x we obtain

Jp(η)
∣∣b
0 = p

(p− 1
p

)p
lim inf
e→0+

∫ 1

e

[∣∣∣1− p

p− 1
x
∣∣∣p − ∣∣∣1− x∣∣∣p] dx

x
.

Denote the integrand by f(x). For p ≥ 2 and x ∈ [0, 1] the following inequality
holds

f(x) ≤ g(x) :=


p
p−1

(
xp2

2 − 1
)

x ∈ [0, 2
p2 )

0 x ∈ [ 2
p2 , 1− 1

2p−1)
1
p−1 x ∈ [1− 1

2p−1 , 1].

An easy computation now shows that
∫ 1

0 g(x) dx = − 1
p(2p−1) < 0 and hence the

functional Jp(η)
∣∣b
0

is negative. Note that η′ ≈ t−1/p near zero, and hence it is
not in Lp[0, b], what is the most significant difference between regular and singular
case.
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2. Auxiliary results

Our method is based on Riccati equation and Picone identity. If y(t) is a
solution of (Ep) which has no zero on I, then the function w(t) = r(t)Φ(y′(t)/y(t))
is defined on I and satisfies the Riccati-type equation

(1) w′(t) + q(t) + (p− 1)r(t)1−k|w(t)|k = 0

where k > 0 is such that 1/p+ 1/k = 1 holds. This fact can be proved by a direct
computation.

Following lemmas will be used in proving our main results.

Lemma 2.1. Let (Ep) be disconjugate on (a, b). Then there exists solution y(t) of
(Ep) such that y(b) = 0 and y(t) 6= 0 on (a, b). Function w(t) = r(t)Φ(y′(t)/y(t))
is a solution of (1) defined on (a, b) such that limt→b− w(t) = −∞.

Proof. Let y(t) be the solution given by the initial conditions y(b) = 0 and y′(b) =
1. Suppose that there exist a zero t0 of y(t) in (a, b). Let e ∈ (a, t0). Equation
(Ep) is disconjugate, hence y(e) 6= 0. From the Sturmian theorem it follows, that
the solution y1(t) given by the initial conditions y1(e) = 0 and y′1(e) = 1 has a
zero on (t0, b) (see Elbert [4]), which is a contradiction with disconjugacy of (Ep)
on (a, b). Now the rest of the proof is obvious. �

The following two lemmas play an important role in our later considerations.
The first lemma is due to Á. Elbert [3] and the second one is an integral form of

the Picone identity for the functional Jp(η)
∣∣b
a

over the class of functions U .

Lemma 2.2 (Elbert). Let η ∈ AC[a, b], η′ ∈ Lp[a, b] and let w be a solution of (1)
defined on (a, b). If η(a) = 0 resp. η(b) = 0 then it holds limt→a+ w(t)|η(t)|p = 0
resp. limt→b− w(t)|η(t)|p = 0.

Lemma 2.3 (Picone-type identity). Let (Ep) be disconjugate on (a, b), η be an
admissible function of the class U , y(t) be a solution of (Ep) which has no zero on
(a, b) and w(t) be the corresponding solution of (1). Then

(2) Jp(η)
∣∣b
a

=
∫ b

a

Pp(η, w, r, t) dt

where

(3) Pp(η, w, r, t) = r(t)|η′(t)|p + (p− 1)r1−k(t)|w(t)|k|η(t)|p − pw(t)Φ(η(t))η′(t).

The function Pp(η, w, r, t) satisfies Pp(η, w, r, t) ≥ 0 and Pp(η, w, r, t) = 0 if and
only if η is a constant multiple of y.

Proof. First, from Lemma 2.1 it follows that there exists a solution y(t) such that
y(b) = 0 and y(t) 6= 0 on (a, b). Hence w(t) is defined on (a, b). In the next we
follow method from [3] resp. [5].
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Let us compute (w|η|p)′. Differentiating and using (1) we get(
w(t)|η(t)|p

)′
=
(
−q(t) − (p− 1)r1−k(t)|w(t)|k

)
|η(t)|p + pw(t)Φ(η(t))η′(t).

From here

(4) r(t)|η′(t)|p − q|η(t)|p =
(
w(t)|η(t)|p

)′
+ r(t)|η′(t)|p+

+ (p − 1)r1−k(t)|w(t)|k|η(t)|p − pw(t)Φ(η(t))η′(t) =

=
(
w(t)|η(t)|p

)′
+ Pp(η, w, r, t)

for all t for which η′(t) exists. This is a special case of Picone–type identity from
Jaroš–Kusano [6]. Integrating (4) over the interval [a + ε, b − ε], letting ε → 0+

and using Lemma 2.2 we get (2), where the function Pp(η, w, r, t) is given by (3).
To complete the proof we use the well-known inequality

|X|p/p+ |Y |k/k −XY ≥ 0,

where the equality holds if and only if |X|p = |Y |k and XY ≥ 0. Here p > 1 and
1/p+ 1/k = 1. Remind that r(t) > 0 and let us write Pp in the form

Pp(η, w, r, t) = p r(t)
(
|η′(t)|p
p

+
|Φ(η(t))w(t) r−1(t)|k

k
− η′(t)Φ(η(t))

w(t)
r(t)

)
.

Hence Pp(η, w, r, t) ≥ 0. Moreover Pp = 0 if and only if |η ′|p = |Φ(η)w/r|k and
η′Φ(η)w/r ≥ 0. From here and from relations

∣∣∣Φ(η)
w

r

∣∣∣k =

∣∣∣∣ηp−1 y
′p−1

yp−1

∣∣∣∣
p
p−1

=

∣∣∣∣η y′y
∣∣∣∣p and sgn η

y′

y
= sgn Φ(η)

w

r

it follows that Pp = 0 holds if and only if η′ = η y′/y, or, equivalently, η(t) is a
constant multiple of y(t). The proof of lemma is complete. �
Remark. Relation (2) is not valid in the singular case. In this case, we must
modify method of the proof of Lemma 2.3. Integrating (4) over the interval [e, b−ε]
we see that following lemma is true.

Lemma 2.4. Let (Ep) be disconjugate on (0, b), e ∈ (0, b), η be an admissible
function of class U , y(t) and w(t) be the same functions as in Lemma 2.3. It holds

(5) Jp(η)
∣∣b
e

= −w(e)|η(e)|p +
∫ b

e

Pp(η, w, r, t) dt,

where the function Pp(η, w, r, t) is given by (3).
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3. Main results

In the linear case, if (E2) is disconjugate, then the quadratic functional J2(η)
considered on the class of AC functions with fixed end points attains its minimal
value for the function, which is a solution of (E2). This property can be partially
generalized to the half–linear case. More precisely, the following theorem holds.

Theorem 3.1. Let (Ep) be disconjugate on (t1, t2), t1, t2 ∈ I. Let u be a solution
of (Ep) which has no zero on (t1, t2), η be a function such that η ∈ AC[t1, t2],
η′ ∈ Lp[t1, t2] and η(t1) = u(t1), η(t2) = u(t2). Then

J(η)
∣∣t2
t1
≥ J(u)

∣∣t2
t1
.

Moreover, if (Ep) is disconjugate on [t1, t2], then equality holds if and only if
η(t) = u(t) on [t1, t2].

Proof. Since u(t) 6= 0 on (t1, t2), the solution of Riccati–type equation w(t) =
r(t)Φ

(
u′(t)/u(t)

)
is defined on (t1, t2). Integrating (4) from t1 + ε to t2 − ε we

have

J(η)
∣∣t2−ε
t1+ε = w|η|p

∣∣t2−ε
t1+ε +

∫ t2−ε

t1+ε
Pp(η, w, r, t) dt

J(u)
∣∣t2−ε
t1+ε = w|u|p

∣∣t2−ε
t1+ε +

∫ t2−ε

t1+ε
Pp(u,w, r, t) dt.

Letting ε → 0+, using Lemma 2.2 in case when w(t1) or w(t2) are not bounded,
i.e. u and η have zero t1 or t2, and due to the fact that Pp(u,w, r, t) = 0 we get

J(η)
∣∣t2
t1

= J(u)
∣∣t2
t1

+
∫ t2

t1

Pp(η, w, r, t) dt ≥ J(u)
∣∣t2
t1
.

Here the equality holds if and only if Pp = 0 almost everywhere on (t1, t2) i.e. η
is a constant multiple of u. If (Ep) is disconjugate on [t1, t2] then at least one of
u(t1), u(t2) is nonzero value, hence η(t) = u(t) on [t1, t2]. �
Remark. In the linear case we need not condition u(t) 6= 0 on (t1, t2), see e.g.
Reid [10]. Method from here makes use of some properties of bilinear forms and
have no direct analogy in the half–linear case.

Following theorem is an extension of Theorem A.

Theorem 3.2. Functional Jp(η)
∣∣b
a

is nonnegative for every admissible function
η ∈ U if and only if equation (Ep) is disconjugate on (a, b).

Proof. “⇒”: Let u(t) be a solution of (Ep) given by the initial conditions u(a) =
0, u′(a) = 1. Suppose that there exists a point c ∈ (a, b) conjugate to a. Let
λ ∈ (a, c) be a real number. Define an admissible function

ηλ(t) :=

{
u(t) t ∈ [a, λ]
u(λ)
b−λ (b− t) t ∈ [λ, b].
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and then define the function ϕ(λ) = Jp
(
ηλ(·)

)∣∣b
a
. We shall show that there exists

λ0 such that ϕ(λ0) < 0. It holds

Jp(ηλ)
∣∣b
a

=
∫ λ

a

[
r(t)|u′(t)|p−q(t)|u(t)|p

]
dt+

∣∣∣ u(λ)
b− λ

∣∣∣p ∫ b

λ

[
r(t)−q(t)|b−t|p

]
dt =

=
(
r(t)Φ(u′(t)

)
u(t)

∣∣λ
a
−
∫ λ

a

u(t)
[(
r(t)Φ(u′(t))

)′
+ q(t)Φ(u(t))

]
dt+

+
∣∣∣ u(λ)
b− λ

∣∣∣p ∫ b

λ

[
r(t)− q(t)|b− t|p

]
dt =

= |u(λ)|p
(
r(λ)Φ(u′(λ)/u(λ)) −

∣∣∣ 1
b− λ

∣∣∣p ∫ λ

a

[
r(t)− q(t)|b− t|p dt

])
,

where the first integral was computed by integration by parts.
The first term in the parenthesis tends to −∞ if λ tends to c from the left,

the second one is bounded and y(λ) 6= 0 in some ring neighborhood of c, hence,
there exists λ0 such that ϕ(λ0) < 0, i.e. the functional Jp(ηλ0) is negative, a
contradiction. This means that u have no zero on (a, b). Then by the Sturmian
separation theorem no nontrivial solution of (Ep) can have two zeros on (a, b).

“⇐”: Follows immediately from (2). �
From Theorem 3.2 we have also immediately necessary condition for nonnega-

tivity of the singular functional Jp(η).

Corollary 3.1. If Jp(η)
∣∣b
0

is nonnegative for every admissible function η ∈ U ,
then equation (Ep) is disconjugate on (0, b).

Proof. Suppose that Jp(η)
∣∣b
0 is nonnegative for all η ∈ U and (Ep) is not dis-

conjugate, i.e. there exists a non-trivial solution y(t) with two zeros on (0, b), say

t1, t2. Let e ∈ (0, t1). From the nonnegativity of Jp(η)
∣∣b
0

on the class of functions
U it follows nonnegativity of Jp(η)

∣∣b
e

on the class of functions which are admissible
on the interval [e, b]. From Theorem 3.2, (Ep) is disconjugate on (e, b), which is a
contradiction with properties of y(t). �

The opposite statement to Corollary 3.1 does not hold, as we have shown in
Example 1. The next theorem gives a necessary and sufficient condition for non-
negativity of singular functional Jp(η) and it is a straightforward generalization
of Theorem B.

Theorem 3.3. Singular functional Jp(η)
∣∣b
0

is nonnegative for every admissible
curve η ∈ U if and only if (Ep) is disconjugate on (0, b) and the singularity condition
is satisfied:

lim inf
t→0+

[
−w(t)

∣∣η(t)
∣∣p] ≥ 0

for every admissible curve η for which the functional Jp(η)
∣∣b
0

is finite, where w(t)
is the solution of Riccati-type equation defined on (0, b) such that limt→b− w(t) =
−∞.
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Proof. “⇒”: Our method follows the idea used by Leighton-Morse [8]. Let

Jp(η)
∣∣b
0
≥ 0 for every admissible function of the class U and let η ∈ U be such that

Jp(η)
∣∣b
0
<∞. There exists a decreasing sequence {en}∞n=1 such that en → 0 and

Jp(η)
∣∣b
0 = lim inf

e→0+
Jp(η)

∣∣b
e

= lim
n→∞

Jp(η)
∣∣b
en
.

Let gn denotes the curve defined by

gn(t) =

{
η(t) for t ∈ (0, en]

η(en)y−1(en)y(t) for t ∈ (en, b],

where y(t) is the solution of (Ep) from Lemma 2.1. The function gn is admissible,
so

lim
n→∞

lim
m→∞

Jp(gn)
∣∣b
em
≥ 0.

It holds

lim
n→∞

lim
m→∞

Jp(gn)
∣∣b
em

= lim
n→∞

lim
m→∞

Jp(η)
∣∣en
em

+ lim
n→∞

Jp(gn)
∣∣b
en
.

Here the first term on the right hand side tends to zero, and for the second one
we can use the Picone identity (5). We get

Jp(gn)
∣∣b
en

= −w(en)|η(en)|p,

where w(t) is the solution of (1) corresponding to y(t), i.e. limt→b− w(t) = −∞.
Hence

(8) lim
n→∞

−w(en)|η(en)|p ≥ 0.

To prove that lim inft→0+−w(t)|η(t)|p ≥ 0 we use (5), setting e = en and letting
n tend to infinity. Note that Pp ≥ 0. We find that both limits limn→∞

∫ b
en
Pp dt

and lime→0+

∫ b
e
Pp dt exist, are finite and equal. From (5) we get relations

lim
n→∞

Jp(η)
∣∣b
en

= lim
n→∞

−w(en)|η(en)|p + lim
n→∞

∫ b

en

Pp dt,

lim inf
e→0+

Jp(η)
∣∣b
e

= lim inf
e→0+

−w(e)|η(e)|p + lim
e→0+

∫ b

e

Pp dt.

From here and from (8) it follows that

lim inf
e→0+

−w(e)|η(e)|p = lim
n→∞

−w(en)|η(en)|p ≥ 0.

We have proved that the singular condition is necessary for to be Jp(η)
∣∣b
0
≥ 0.
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“⇐”: Let (Ep) be disconjugate and η ∈ U be an admissible function. If

Jp(η)
∣∣b
0 =∞, then Jp(η)

∣∣b
0 is positive and theorem holds. So assume Jp(η)

∣∣b
0 <∞

and lim infe→0+ −w|η|p ≥ 0. We use formula (5). Hence

lim inf
e→0+

Jp(η)
∣∣b
e
≥ lim inf

e→0+
−w(e)|η(e)|p + lim inf

e→0+

∫ b

e

Pp dt.

Both terms on the right side of the last inequality are nonnegative, hence the
functional is nonnegative too. �
Remark. Theorem 3.3 gives a necessary and sufficient condition in the case when
the left end point T = 0 of I is singular. Using the transformation t = 1/s we can
study the functional Jp(η)

∣∣∞
a

with the singularity at the right end point T = ∞.
Denote

U∞ = {η ∈ C[a,∞] : η(a) = lim
t→∞

η(t) = 0, η ∈ AC

and η′(t) ∈ Lp on each closed subinterval of [a,∞)}.

Next theorem is then corollary of Theorem 3.3.

Corollary 3.2. Let T = ∞ be a singular point of the equation (Ep). Singular
functional Jp(η)

∣∣∞
a

is nonnegative for every admissible curve η ∈ U∞ if and only
if (Ep) is disconjugate on (a,∞) and the singularity condition is satisfied:

lim inf
t→∞

w(t)
∣∣η(t)

∣∣p ≥ 0

for every admissible curve η for which the functionalJp(η)
∣∣∞
a

is finite, where w(t) is
a solution of Riccati-type equation (1) defined on (a,∞) such that limt→a+ w(t) =
∞.
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