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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 35 (1999), 229 – 244

SOME GENERIC PROPERTIES OF NONLINEAR

SECOND ORDER DIFFUSIONAL TYPE PROBLEM

Vladiḿir Ďurikovič and Mária Ďurikovičová

We are interested of the Newton type mixed problem for the general
second order semilinear evolution equation. Applying Nikolskij’s decomposition
theorem and general Fredholm operator theory results, the present paper yields
sufficient conditions for generic properties, surjectivity and bifurcation sets of the
given problem.

Introduction

Different problems describing dynamics of mechanical processes (bendding, vi-
bration), physical-heating processes, reaction-diffusion processes in chemical and
biological technologies or in the ecology are modelled by nonstationary parabolic or
general evolution equations. The study of qualitative and quantitative properties
of these models has a significant importance for the analysis of these processes.

In the present paper we deal with the set structure of classic solutions, bifur-
cation properties and surjectivity of operators associated to the given nonlinear
evolution problems.

Recently such questions were studied by the authors L. Brüll and J. Mawhin
in [1] and [5] and V. Šeda in [6] for ordinary differential equations and operator
equations.

In the first part of this paper we formulate the Newton mixed problem for a
semilinear evolution equation and there are presented general Fredholm operator
results which will be applied in the other parts. The second part contains three
fundamental lemmas proving that a linear operator is a Fredholm one, a Nemitskij
operator is completely continuous and the Fredholm nonlinear operator is coercive.
These lemmas are substantially employed for the investigation of the set structure
and bifurcations of solutions of the given problem in the last section.
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1. The formulation of problem and basic results

Throughout this paper we assume that the set Ω ⊂ Rn for n ∈ N is a bounded
domain with the sufficiently smooth boundary ∂Ω =: S. The real number T is
positive and Q := (0, T ]× Ω,Γ := [0, T ]× S.

We use the notation Dt for ∂/∂t and Di for ∂/∂xi and Dij for ∂2/∂xi∂xj where
i, j = 1, . . . , n and D0u for u. The symbol clM means closure of the set M in Rn.

We consider the nonlinear differential equation (it does not need to be of a
parabolic type)

(1.1) Dtu−A(t, x,Dx)u+ f(t, x, u,D1u, . . . , Dnu) = g(t, x)

for (t, x) ∈ Q, where the coefficients aij , ai, a0 for i, j = 1, . . . , n of the second
order linear operator

A(t, x,Dx)u =
n∑

i,j=1

aij(t, x)Diju+
n∑
i=1

ai(t, x)Diu+ a0(t, x)u

are continuous functions from the space C(clQ,R). The function f is from the
space C(clQ×Rn+1, R) and g ∈ C(clQ,R).

Together with the equation (1.1) we consider the following homogeneous second
boundary condition (Newton or for b0 = 0 Neumann condition)

(1.2) B2(t, x,Dx)u|Γ := ∂u/∂ν + b0(t, x)u|Γ = 0 ,

where ν := (0, ν1, . . . , νn) : cl Γ → Rn+1 is a vector function for which the value
ν(t, x) means the inner normal vector to cl Γ at the point (t, x) ∈ cl Γ and ∂/∂ν
means derivative with respect to the normal ν. Here the coefficient b0 is a function
from C(cl Γ, R).

Together with the boundary condition we require for the solution of (1.1) to
satisfy the homogeneous initial condition

(1.3) u|t=0 = 0 on cl Ω .

We shall use the notation

(1.4) < u >st,µ,Q:= sup
(t,x)∈clQ

t6=s

|u(t, x)− u(s, x)|
|t− s|µ ,

(1.5) < u >yx,ν,Q:= sup
(t,x)∈clQ

t6=s

|u(t, x)− u(t, y)|
|x− y|ν .

where x = (x1, . . . , xn), y = (y1, . . . , yn) are fromRn, |x−y| =
[∑n

i=1(xi − yi)2
]1/2

and µ, ν ∈ R.
In our considerations we need the uniform parabolicity of a operator of the type

Dt − A(t, x,Dx) (see S.D. Ivasisen [4], p. 12).
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Definition 1.1. (The uniform parabolicity condition (P).) We say that the dif-
ferential operator

Dt − A(t, x,Dx)

is uniform parabolic on clQ in the sense of I.G.Petrovskij with the constant δ or
shortly, the operator satisfies the parabolicity condition (P) if there is a constant
δ > 0 such that for all (t, x) ∈ cl Q and each σ = (σ1, . . . , σn) ∈ Rn the inequality

n∑
i,j=1

aij(t, x)σiσj ≥ δ
[
n∑
i=1

σ2
i

]

holds.

The concept of a locally smooth boundary of domain is given in the following
definition.

Definition 1.2. Let r ∈ (1,∞) and Ω ⊂ Rn be a bounded domain. We say that
the boundary ∂Ω belongs to the class Cr, r > 1 if:

(i) There exists a tangential space to ∂Ω in any point from boundary ∂Ω.
(ii) Assume y ∈ ∂Ω and let (y, z1, . . . , zn) be a local orthonormal coordinate

system with the center y and with the axis zn oriented like the inner
normal to ∂Ω at the point y. Then there exists a number b > 0 such that
for every y ∈ ∂Ω there exists a neighbourhood O(y) ⊂ Rn of the point y
and a function F ∈ Cr(clB,R) such that the part of boundary

∂Ω ∩O(y) = {(z′, F (z′)) ∈ Rn, z′ = (z1, . . . , zn−1) ∈ B} =: S(y) ,

where B = {z′ ∈ Rn−1; |z′| < b}.

Here Cr(clB,R) is a vector space of the functions u ∈ Cl(clB,R) for l = [r]
with the finite norm

||u||l+α =
∑

0≤k≤l
sup
x∈clB

∣∣Dk
xu(x)

∣∣+
∑
k=l

〈
Dk
xu
〉y
x,α,B

,

whereby α = r − [r] ∈ [0, 1) and r = l + α.
Further, we shall need the following Hölder spaces (see [2], p. 147).

Definition 1.3. Let α ∈ (0, 1)
1. By the symbolC(1+α)/2,1+α

t,x (clQ,R) we denote the vector space of continuous
functions u : clQ → R which have continuous derivatives Diu for i = 1, . . . , n on
clQ and the norm

||u||(1+α)/2,1+α,Q :=
n∑
i=0

sup
clQ
|Diu(t, x)|+ < u >st,(1+α)/2,Q(1.6)

+
n∑
i=1

〈Diu〉st,α/2,Q +
n∑
i=1

〈Diu〉yx,α/2,Q
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is finite.
2. The symbol C (2+α)/2,2+α

(t,x) (cl Q,R) means the space of continuous functions
u : cl Q → R for which there exist continuous derivatives Dtu,Diu,Diju on
clQ, i, j = 1, . . .n and the norm

(1.7)

||u||(2+α)/2,2+α,Q =
n∑
i=0

sup
clQ
|Diu(t, x)|+ sup

clQ
|Dtu(t, x)|

+
n∑

i,j=1

sup
clQ
|Diju(t, x)|+

n∑
i=1

< Diu >
s
t,(1+α)/2,Q + < Dtu >

s
t,α/2,Q

+
n∑

i,j=1

< Diju >
s
t,α/2.Q + < Dtu >

y
x,α,Q +

n∑
i,j=1

< Diju >
y
x,α,Q

is finite.
3. The symbol C (3+α)/2,3+α

t,x (clQ,R) means the vector space of continuous func-
tions u : clQ→ R for which the derivatives Dt, Diu,DtDiu,Diju,Dijku, i, j, k =
1, . . . , n are continuous on clQ and the norm

(1.8)

||u||(3+α)/2,3+α,Q :=
n∑
i=0

sup
clQ
|Diu(t, x)|+

n∑
i,j=1

sup
clQ
|Diju(t, x)|

+
n∑
i=0

sup
clQ
|DtDiu(t, x)|+

n∑
i,j,k=1

sup
clQ
|Dijku(t, x)|

+ 〈Dtu〉st,(1+α)/2,Q +
n∑

i,j=1

〈Diju〉st,(1+α)/2,Q

+
n∑
i=1

〈DtDiu〉st,α/2,Q +
n∑

i,j,k=1

〈Dijku〉st,α/2,Q

+
n∑
i=1

〈DtDiu〉yx,α,Q +
n∑

i,j,k=1

〈Dijku〉yx,α,Q

is finite.
The previous norm spaces are Banach ones.

Also we need the Hőlder space of functions defined on the manifold cl Γ (see [4],
p. 10).

Definition 1.4. Let the boundary ∂Ω =: S of a domain Ω ⊂ Rn belong to Cr

for r > 1 (see Definition 1.2). We put Sy := ∂Ω ∩O(y) and Γy = (0, T ]× Sy for
y ∈ ∂Ω, where O(y) is a neighbourhood of the point y from Definition 1.2.

The symbol C(2+α)/2,2+α
t,x (cl Γ, R) means the vector space of functions u : cl Γ→

R with the norm

||u||(2+α)/2,2+α,Γ = sup
y∈S
||u||(2+α)/2,2+α,Γy ,
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where the norm on the right hand side of the last equality is defined by the formula
(1.7) in which we write Γy instead of Q.

Definition 1.5. (The smoothness condition (S1+α
2 ).) Let α ∈ (0, 1). We say

that the differential operator A(t, x,Dx) from (1.1) and B2(t, x,Dx) from (1.2),
respectively satisfies the smoothness condition (S1+α

2 ) if
(i) the coefficients aij, ai, a0 from (3.1) for i, j = 1, . . . , n belong to the space

C
(1+α)/2,1+α
t,x (clQ,R) and ∂Ω ∈ C3+α and

(ii) the coefficient b0 from (1.2) belongs to the space C(2+α)/2,2+α
t,x (cl Γ, R).

The classical and fundamental result for the solution of the second mixed prob-
lem (1.1), (1.2), (1.3) represents the following proposition (see [4], p. 21).

Proposition 1.1. Let the assumptions (P), and (S1+α
2 ) be satisfied. The nec-

essary and sufficient condition for the existence and uniqueness of the solution
u ∈ C(3+α)/2,3+α

t,x (clQ,R) of the linear parabolic equation

Dtu−A(t, x,Dx)u = f(t, x) on Ω ,

where the operator A is from the equation (1.1) with the data (1.2), (1.3) is

f ∈ C(1+α)/2,1+α
t,x (clQ,R) and

∂f

∂ν
(t, x) + b0(t, x)f(t, x)|t=0,x∈S = 0

Moreover, if this condition is satisfied then there exists a constant K > 0
independent of f such that

K−1||f ||(1+α)/2,1+α,Q ≤ ||u||(3+α)/2,3+α,Q ≤ K||f ||(1+α)/2,1+α,Q .

Proposition 1.2. (S.M. Nikolskij [9], p. 233.) Let X and Y be Banach spaces
either both real or complex. A linear bounded operator A : X → Y is Fredholm
of the zero index if and only if A = C + T , where C : X → Y is a linear
homeomorphism and T : X → Y is a linear completely continuous operator.

Some frequent properties of the Fredholm operator are collected in the following
propositions.

Proposition 1.3. (V. Šeda [6], Theorem 3.1.) Let X and Y be Banach spaces
over the same field of the real or complex numbers. If the assumptions

(i) A : X → Y is a linear bounded Fredholm operator of zero index and
(ii) B : X → Y is a completely continuous operator and
(iii) F = A +B : X → Y is a coercive operator

hold, then:

(a) For every g ∈ Y the argument set F−1({g}) is compact (possibly empty);
(b) The range R(F ) of F is closed and connected in Y ;
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(c) The set Σ of all points u ∈ X at which F is not locally invertible and the
set of images F (Σ) are closed subsets of X and Y , respectively and the
set F (X −Σ) is open in Y ;

(d) The cardinal number cardF−1({g}) is constant and finite (it may be zero)
on each connected component of the open set Y − F (Σ);

(e) If Σ = 0, then F is homeomorphism of X onto Y .

Proposition 1.4. (V. Šeda [6], Corollary 3.1, Corollary 3.3, Remark 3.1.) Let
the assumptions (i), (ii), (iii) from Proposition 1.3. be fulfilled. Then each of the
following conditions is sufficient for the surjectivity of F = A +B : X → Y :

(iv) F (Σ) ⊂ F (X −Σ);
(v) Y − F (Σ) is a connected set and F (X − Σ)− F (Σ) 6= 0;
(vi) There exists a strict solvable field G = I − g : X → X and R > 0 such

that each solution u ∈ X of the equation

F (u) = kC ◦G(x) for all k < 0

satisfies the estimation ||u||X < R.

Here A = C + T : X → Y , where C is a linear homeomorphism of X onto Y
and T : X → Y is a linear completely continuous operator.

Also we say that G = I−g : X → X is a strict solvable field if it is a condensing
field and there is a sequence rk → ∞ as k → ∞ such that the degree of the
mapping G deg(G,U (0, rk), 0) 6= 0, where U (0, rk) ⊂ X is the sphere with the
center 0 and the radius rk for k = 1, 2, . . .

Proposition 1.5. (V. Šeda [6], Corollary 3.3) Let X and Y be real Banach spaces
and let F = A + B : X → Y . Suppose that the hypotheses (i), (ii), (iii) from
Proposition 1.3 and (vi) from Proposition 1.4 are satisfied. Here A = C+T : X →
Y whereby C is a linear homeomorphism of X onto Y and T : X → Y is a linear
completely continuous operator. Then

(f) The card F−1({g}) is constant, finite and different from zero on each com-
ponent of the open set Y − F (Σ).

2. The fundamental lemmas

In the first lemma we establish sufficient conditions under which a linear differ-
ential operator will be the Fredholm type with the zero index.

Lemma 2.1. Suppose
(1.i) α ∈ (0, 1).
(1.ii) Define the Hölder vector subspaces

D(A2) :=

{u ∈ C(3+α)/2,3+α
t,x (clQ,R); B2(t, x,Dx)u|Γ = 0, u|t=0(x) = 0 for x ∈ clQ}
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and

H(A2) := {v ∈ C(1+α)/2,1+α
t,x (clQ,R); B2(t, x,Dx)v(t, x)|t=0,x∈S = 0}

and associated Banach spaces provided with the corresponding Hölder norms:

X2 =
(
D(A2), ||.||(3+α)/2,3+α,Q

)
and

Y2 =
(
H(A2), ||.||(1+α)/2,1+α,Q

)
.

Assume that the operator A2 : X2 → Y2, where

A2u = Dtu−A(t, x,Dx), u ∈ X2

and the operator B2(t, x,Dx) satisfy the smoothness condition (S1+α
2 ).

(1.iii) There is a second order linear differential operator C2 : X2 → Y2 with

C2u = Dtu− C(t, x,Dx)u, u ∈ X2 ,

where

C(t, x,Dx)u =
n∑

i,j=1

cij(t, x)Diju+
n∑
i=1

ci(t, x)Diu+ c0(t, x)u

satisfying the conditions of the parabolicity (P) and the smoothness (S1+α
2 ).

Then
(j) dimX2 = +∞.
(jj) The operator A2 : X2 → Y2 is a linear bounded Fredholm operator of the

zero index.

Proof. (j) To prove the first part of this lemma we use the decomposition theorem
from [8], p. 139:

Let X be linear space and x∗ : X → R be a linear functional on X such that
x∗ 6= 0. Further put M = {x ∈ X;x∗(x) = 0} and x0 ∈ X −M . Then every
element x ∈ X can be expressed by the formula

x =
[
x∗(x)
x∗(x0)

]
x0 +m, m ∈M ,

i.e. there is a one-dimensional subspace L1 of X such that X = L1 ⊕M .
If we put now

M1 :=
{
u ∈ C(3+α)/2,3+α

t,x (clQ,R) =: H3+α;B2(t, x,Dx)|Γ = 0
}
,

which is the linear subspace of H3+α, then there exists a linear subspace L1 of
H3+α with dimL1 = 1 such that H3+α = L1 ⊕M1. Similar, if we take M2 :=
{u ∈ M1;u|t=0 = 0 on clQ}, then there is a subspace L2 of M1 with dimL2 = 1
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such that M1 = L2 ⊕ M2. Hence, we have H3+α = L1 ⊕ L2 ⊕ D(A2). Since
dimH3+α = +∞ we get that dimX2 = +∞.

(jj) 1. In the first step we prove the boundedness of the linear operator A2.
For this aim we observe the norm ‖A2u‖(1+α)/2,1+α,Q for u ∈ D(A2). From the
assumption (S1+α

2 ) we get for k = 0, 1, . . . , n

(2.1) sup
clQ
|DkA2u(t, x)| ≤ K1‖u‖(3+α)/2,3+α,Q, K1 > 0 .

Applying again the smoothness assumption (S1+α
2 ), the mean value theorem

for the function u and Diu and the boundedness of Q we obtain for the second
member of the above mentioned norm the following estimation:

(2.2)
〈A2u〉st,(1+α)/2,Q = sup

clQ,t6=s

|A2u(t, x)−A2u(s, x)|
|t− s|(1+α)/2

≤ K2‖u‖(3+α)/2,3+α,Q, K2 > 0 .

The third member of the norm (1.6) we estimate for k = 1, . . . , n as follows:

(2.3)
〈DkA2u〉st,α/2,Q = sup

clQ,t6=s

|DkA2u(t, x)−DkA2u(s, x)|
|t− s|α/2

≤ K3‖u‖(3+α)/2,3+α,Q , K3 > 0 .

An estimation of the last member in (1.6) for A2u is given by the following
inequality for k = 1, . . . , n

(2.4)
〈DkA2u〉yx,α/2,Q = sup

clQ,x6=y

|DkA2u(t, x)−DkA2u(t, y)|
|x− y|α/2

≤ K4‖u‖(3+α)/2,3+α,Q, K4 > 0 .

From the estimations (2.1), (2.2), (2.3) and (2.4) we can conclude that

‖A2u‖Y2 = ‖A2u‖(1+α)/2,1+α,Q ≤ K(n, T, α,Ω, aij, ai, a0)‖u‖X2 .

2. To prove that A2 is a Fredholm operator with the zero index we express it
in the form

A2u = C2u+ [C(t, x,Dx) −A(t, x,Dx)]u =: C2u+ Tu .

By the decomposition Nikolskij theorem from [9], p. 233, it is sufficient to show
that C2 : X2 → Y2 is linear homeomorphism and T : X2 → Y2 is the linear
completely continuous operator.

The first requirement is a consequence of Proposition 1.1.
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The complete continuity of T can be proved by the Ascoli-Arzela theorem (see
[7], p. 141).

From (S1+α
2 ) the uniform boundedness of the operator

Tu =
n∑

i,j=1

[cij(t, x)−aij(t, x)]Diju+
n∑
i=1

[ci(t, x)−ai(t, x)]Diu+[c0(t, x)−a0(t, x)]u

follows by the same way as the boundedness of operator A2 in the part 1. Thus
for all u ∈M ⊂ X2, where M is a set bounded by the constant K1 > 0, we obtain
the estimate

‖Tu‖Y2 ≤ K(n, αT,Ω, aij, cij, ai, ci, a0, c0)‖u‖X2 ≤ KK1 .

Using the smoothness condition of the operators A and C we get inequality:

|Tu(t, x)− Tu(s, y)| ≤
n∑

i,j=1

|[cij − aij](t, x)− [cij − aij ](s, y)| |Diju(t, x)|

+
n∑

i,j=1

|cij(s, y) − aij(s, y)| |Diju(t, x)−Diju(s, y)|

+
n∑
i=1

|[ci − ai](t, x)− [ci − ai](s, y)| |Diu(t, x)|

+
n∑
i=1

|ci(s, y) − ai(s, y)| |Diu(t, x)−Diu(s, y)|

+ |[c0 − a0](t, x)− [c0 − a0](s, y)| |u(t, x)|

+ |c0(s, y) − a0(s, y)| |u(t, x)− u(s, y)|

≤4K1Kn
2
[
|t− s|α/2 + |x− y|α

]
+ 2K1Kn

[(
|t− s|α/2 + |x− y|α

)
+
(
|t− s|(1+α)/2 + |x− y|

)]
+ 2K1K

[(
|t− s|α/2 + |x− y|α

)
+ (|t− s|+ |x− y|)

]
,

where K1,K are positive constants. Hence the equicontinuity of TM ⊂ Y2 follows.
This finishes the proof of Lemma 2.1.

The Lemma 2.1 implies the following alternative.

Corollary 2.1. Let L be the set of all second order linear differential operators

A2 = Dt − A(t, x,Dx) : X2 → C
(1+α)/2,1+α
t,x (clQ,R)

satifying the condition (S1+α
2 ). Then for all A2 ∈ L the mixed homogeneous

problem A2u = 0 on Q, (1.2), (1.3) has a nontrivial solution or any A2 ∈ L is a
linear bounded Fredholm operator of the zero index mapping X2 onto Y2.
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Remark 2.1. The assumption (1.iii) of Lemma 2.1 is satisfied for the diffusion
operator C2 : X2 → Y2, where

C2u = Dtu−∆u, u ∈ X2 .

Hence, we have very simple corollary of Lemma 2.1.

Corollary 2.2. Every linear second order differential operator
A2 : X2 → C

(1+α)/2,1+α
t,x (clQ,R) satisfying the smoothness condition (S1+α

2 ) is a
linear bounded Fredholm operator with the zero index.

The following lemma establishes the complete continuity of the Nemitskij op-
erator from the nonlinear part of the equation (1.1).

Lemma 2.2. Let α ∈ (0, 1] and
(2.i) the function

f := f(t, x, u0, u1, . . . , un) : (clQ)× Rn+1 → R

is locally Hőlder continuous on (clQ)×Rn+1 in the variables t, i.e. for any compact
set D ⊂ (clQ)×Rn+1 there exists nonnegative constant p such that

(2.5) |f(t, x, u0, u1, . . . , un) − f(s, x, u0, u1, . . . , un)| ≤ p|t− s|(1+α)/2

for all (t, x, u0, u1, . . . , un) and (s, x, u0, u1, . . . , un) from D.
(2.ii) The derivatives ∂f/∂xi : (clQ) × Rn+1 → R for i = 1, . . . , n and

∂f/∂uj : (clQ)× Rn+1 → R for j = 0, 1, . . . , n are locally Hőlder continuous on
(clQ)× Rn+1 i.e. the inequalities

(2.6)

|∂f/∂xi(t, x, u0, u1, . . . , un) − ∂f/∂xi(s, y, v0, v1, . . . , vn)|

≤ p|t− s|α/2 + q|x− y|α +
n∑
j=0

pj|uj − vj|

for i = 1, . . . , n and

(2.7)

|∂f/∂uj(t, x, u0, u1, . . . , un) − ∂f/∂uj (s, y, v0, v1, . . . , vn)|

≤ p|t− s|α/2 + q|x− y|α +
n∑
l=0

pl|ul − vl|

for j = 1, . . . , n hold on any compact subset of (clQ)×Rn+1 with the nonnegative
constants p, q, pj, j = 0, . . . , n.

(2.iii) The equality

(2.8)
∂

∂ν
f(t, x, 0, . . . , 0) + b0(t, x)f(t, x, 0, . . . , 0)|t=0,x∈S = 0
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holds.
Then the Nemitskij operator N2 : X2 → Y2 defined by

(N2u)(t, x) = f [t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]

for u ∈ X2 and (t, x) ∈ clQ, where X2 and Y2 are the Banach spaces from Lemma
2.1, is completely continuous.

Proof. Let M2 ⊂ X2 be a bounded set. By the Ascoli-Arzela theorem it is
sufficient to show that the set N2(M2) is uniform bounded and equicontinuous.

Take u ∈ M2. According to the assumption (2.5) and (2.6) we obtain the
locally boundedness of the function f and its derivatives ∂f/∂xi on (clQ)×Rn+1

for i = 1, . . . , n. Hence and from the equation

Di(N2u)(t, x) =

{
Dif [.] +

n∑
l=0

Dlf [.]DiDlu

}
[., ., u,D1u, . . . , Dnu] (t, x)

we have the estimation
sup
clQ
|Di(N2u)(t, x)| ≤ K1

for i = 0, 1, . . ., n with a positive sufficiently large constant K1 not depending of
u ∈M2.

Using the inequality (2.5) and the mean value theorem in the variable t for the
difference of the derivatives of u we can write with respect to (1.8)

〈N2u〉st,(1+α)/2,Q ≤ K1.

Similarly by (2.6) and (2.7) we have

〈DiN2u〉st,α/2,Q ≤ K1

and
〈DiN2u〉yx,α,Q ≤ K1

for i = 1, . . . , n for u ∈M2. The previous estimations yield the inequality

||N2u||Y2 ≤ K2, K2 > 0

for all u ∈M2.
With respect to (2.5) for any u ∈M2 and (t, x), (s, y) ∈ clQ such that |t− s|2 +

|x− y|2 < δ2 with a sufficiently small δ > 0 we have

|N2u(t, x)−N2u(s, y)| < ε , ε > 0 ,

which is the equicontinuity of N2(M2). This finishes the proof of Lemma 2.2.

Remark 2.2. With respect to the local Hölder continuity the function f can have
an arbitrarily strong growth, for example exponential one.

The following lemma deals with the coercivity of nonlinear problem (1.1), (1.2),
(1.3).
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Lemma 2.3. Let

(3.i) the operator A2 : X2 → Y2 satisfy the assumptions of Lemma 1.1 and let
(3.ii) the Nemitskij operator N2 : X2 → Y2 keeps the hypotheses of Lemma 2.2.

(3.iii) For any bounded set M2 ⊂ Y2 there exists a positive constant K such that
for every solution u of the problem (1.1), (1.2), (1.3) with g ∈M2, one of
the following conditions holds:

‖u‖(1+α)/2,1+α,Q ≤ K,(a)

f := f(t, x, u0) : (clQ) ×R→ R

and coefficients of the operators A2 and C2 from Lemma 1.1 satisfy the
relations

aij = cij, ai = ci for i, j = 1, . . . , n, a0 6= c0 on clQ

or

‖u‖(2+α)/2,2+α,Q ≤ K, and(b)

f : f(t, x, u0, u1, . . . , un) : (clQ)×Rn+1 → R

and the coefficients of operators A2 and C2 satisfy the relations: aij = cij
for i, j = 1, . . . , n and ai 6= ci for at least one i = 1, . . .n on clQ.

Then the operator F2 := A2 +N2 : X2 → Y2 is coercive.

Proof. We need prove that if the set M2 ⊂ Y2 is bounded in Y2, then the set of
arguments F−1(M2) ⊂ X2 is bounded in X2.

In the both cases (a) and (b) we get for all u ∈ F−1(M2)

||N2u||(1+α)/2,1+α,Q ≤ K1 ,

where K1 > 0 is a sufficiently large constant. Hence and from inequality

‖F2u‖Y2 ≥ ‖A2u‖Y2 − ‖N2u‖Y2

we have
||A2u||Y2 ≤ K2 , K2 > 0

for u ∈ F−1(M2).
The hypothesis (1.iii) of Lemma 1.1 ensures the existence and uniqueness of the

solution u ∈ X2 of the linear parabolic problem with the conditions (1.2), (1.3)
for the equation

C2u = y

and for any y ∈ Y2 the estimation

(2.9) ||u||X2 ≤ K3||y||Y2, K3 > 0 .
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If we write

C2u = A2u+
n∑

i,j=1

[aij(t, x)− cij(t, x)]Diju

+
n∑
i=1

[ai(t, x)− ci(t, x)]Diu+ [a0(t, x)− c0(t, x)]u

then in the both cases and for each u ∈ F−1(M2) we obtain

||y||Y2 ≤ ||C2u||Y2 ≤ K2 + K4‖u‖X2 ≤ K2 +K4K, K4 > 0

whence by the inequality (2.9) we can conclude that the operator F2 is coercive.

3. The generic properties

The assertions from the second section are three basic hypotheses required in
our following considerations.

Let us start with the definition of bifurcation point.

Definition 3.1. 1. A couple (u, g) ∈ X2 × Y2 will be called the bifurcation
point of the mixed problem (1.1), (1.2), (1.3) if u is a solution of that mixed
problem and there exists a sequence {gk} ⊂ Y2 such that gk → g in Y2 as k→∞
and the problem (1.1), (1.2), (1.3) for g = gk has at least two different solutions
uk, vk for each k ∈ N and uk → u, vk → u in X2 as k→∞.

2. The set of all solutions u ∈ X2 of (1.1), (1.2), (1.3) (or the set of all functions
g ∈ Y2) such that (u, g) is a bifurcation point of the mixed problem (1,1), (1,2),
(1,3) will be called the domain of bifurcation (the bifurcation range) of
that mixed problem.

Using the notations of the previous part we immediately obtain the following
equivalence lemma:

Lemma 3.1. Let A2 : X2 → Y2 be the linear operator from Lemma 2.1 and let
N2 : X2 → Y2 be the Nemitskij operator from Lemma 2.2 and F2 = A2 + N2 :
X2 → Y2. Then

(j) the function u ∈ X2 is a solution of the mixed problem (1.1), (1.2), (1.3)
for g ∈ Y2 if and only if F2u = g.

(jj) The couple (u, g) ∈ X2×Y2 is the bifurcation point of the mixed problem
(1.1), (1.2), (1.3) if and only if F2(u) = g and u ∈

∑
, where

∑
means the

set of all points of X2 at which F2 is not locally invertible.

Proof. (j) The first equivalence directly follows from the definition of operator
F2 and the mixed problem (1.1), (1.2), (1.3).

(jj) If (u, g) is a bifurcation point of the mixed problem (1.1), (1.2), (1.3) and
uk, vk and gk for k = 1, 2, . . . have the same meaning as in Definition 3.1 then
with respect to (j) we have F (u) = g, F (uk) = gk = F (vk). Thus F2 is not locally
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injective at u. Hence, F2 is not locally invertible at u, i.e. u ∈
∑

. Conversely,
if F2 is not locally invertible at u and F2(u) = g, then F2 is not locally injective
at u. Indirectly, from Definition 3.1 we see that the couple (u, g) is a bifurcation
point of (1.1), (1.2), (1.3).

Theorem 3.1. Let the hypotheses of Lemmas 2.1, 2.2 and 2.3 be satisfied.
Then for the mixed problem (1.1), (1.2), (1.3) the following statements hold:

(j) For each g ∈ Y2 the set S2g of all solutions is compact (possibly empty).
(jj) The set R(F2) = {g ∈ Y2; there exists at least one solution of the given

problem } is closed and connected in Y2.
(jjj) The domain of bifurcation D2b is closed in X2 and the bifurcation range

R2b is closed in Y2.
(jv) If Y2 −R2b 6= ∅, then each component of Y2 −R2b is a nonempty open set

(i.e. a domain).
The number n2g of solutions is finite, constant (it may be zero) on each
component of the set Y2 − R2b, i.e. for every g belonging to the same
component of Y2 −R2b.

(v) If R2b = 0, then the given problem has a unique solution u ∈ X2 for each
g ∈ Y2 and this solution continuously depends on g as a mapping from Y2

onto X2.

Proof. Consider the operator F2 = A2 + N2 : X2 → Y2, where A2 and N2 are
defined in the section 2. The mutual equivalence of the operator equation F2u = g
with the problem (1.1), (1.2), (1.3)(see Lemma 3.1) ensures that a property of F2

imply the corresponding property of the mixed problem. The operator A2 is a
Fredholm operator with the zero index, N2 is a completely continuous operator
and F2 is a coercive one.

Then the parts (a), (b) of Proposition 1.3 imply the assertions (j), (jj), respec-
tively.

(jjj) Since D2b is the set of all points u ∈ X2 for which F2 is not locally
invertible and R2b = F2(D2b), the part (c) of Proposition 1.3 implies the
statement (jjj).

(jv) The set Y2−R2b 6= ∅ is an open subset of the Banach space Y2. Then each
its component is nonempty and open. The second part of (jv) follows by
the assertion (d) of Proposition 1.3.
The assertion (v) is a corollary of (e) from Proposition 1.3.

Theorem 3.2. Let the operators A2 : X2 → Y2, N2 : X2 → Y2 and F2 : A2 +N2 :
X2 → Y2 satisfy hypotheses of Lemmas 2.1, 2.2, 2.3, respectively.

Then each of the following conditions is sufficient for the surjectivity of the
operator F2 (we use the notation of Theorem 3.1):

(vi) For each g ∈ R2b there is a solution u of (1.1), (1.2), (1.3) such that
u ∈ X2 −D2b.

(vii) The set Y2 −R2b is connected and there is a g ∈ R(F2)− R2b.
(viii) There exists a constat K > 0 such that all solutions u of the mixed problem

for the equation
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(3.1) C2u+ µ[A2u− C2u+N2u] = 0 , µ ∈ (0, 1)

with data (1.2), (1.3) fulfil one of the following conditions:
(a1) The condition (a) of Lemma 2.3.
(b1) The condition (b) of Lemma 2.3.

Proof. In the case (vi) the assertion follows from (iv) and in the case (vii) from
(v) of Proposition 1.4.

(viii) Here we show that the condition (viii) implies (vi) of Proposition 1.4 for
G(u) = u, u ∈ X2.

It is sufficient to prove that each solution u of the operator equation F2u = kC2u
for all k < 0 satisfies the estimation

(3.2) ‖u‖X2 < K1, K1 > 0.

The equation F2u = kC2u, k < 0 can be written in the form

C2u+ (1− k)−1[A2u− C2u+ N2u] = 0 ,

where (1− k)−1 ∈ (0, 1) and thus each solution of

F2u = kC2u , k < 0

satisfies the equation (3.1) with the conditions (1.2), (1.3).
In the case (a1) there is a constant K > 0 such that

||u||(1+α)/2,1+α,Q ≤ K.

In the case (b1)
||u||(2+α)/2,2+α,Q ≤ K .

Further, by the same method as in Lemma 2.3 we get the estimation (3.2) and
hence the surjectivity of the operator F2. This completes the proof of the given
theorem.

The following theorem says on the nonzero number of solutions of (1.1), (1.2),
(1.3). It follows directly from Proposition 1.5.

Theorem 3.3. Assume that operators A2 : X2 → Y2, N2 : X2 → Y2 and F2 =
A2 + N2 : X2 → Y2 satisfy the hypothesis of Lemma 2.1, Lemma 2.2 and Lemma
2.3, respectively and the condition (viii) of Theorem 3.2. Then

(jv’) the number n2g of solutions of (1.1), (1.2), (1.3) is finite, constant and
different from zero on each component of the open set Y2−R2b (for all g belonging
to the same component of Y2 −R2b).

Remark 3.1. The results of this section can be interpreted and applied to the
different diffusion and heat problems for the nonlinear parabolic equations of the
type (1.1). The reaction-diffusion problems modelled by the equation

ut = D∆u+ f(u), t > 0, x ∈ Ω ⊂ Rn
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where D is a real (positive or negative) constant and f is a sufficient smooth
function (it may be with a strong growth), also, shock waves and entropy models
as

ut + [f(u)]x = 0 , t > 0 , x ∈ (a, b)

can be studied together with other physical and technical models by this method.
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