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THE NATURAL TRANSFORMATIONS TT(r) → TT (r)

W LODZIMIERZ M. MIKULSKI

For natural numbers r ≥ 2 and n a complete classification of natural
transformations A : TT (r) → TT (r) over n-manifolds is given, where T (r) is the
linear r-tangent bundle functor.

0. In [1], Gancarzewicz and Kolář obtained a classification of all natural affi-
nors on the extended linear r-tagent bundle functor E(r)M = (Jr(M,R))∗ over
n-manifolds. From the mentioned classification one can easily deduce that any
natural affinor A : TT (r)M → TT (r)M on the linear r-tangent bundle functor
T (r)M = (Jr(M,R)0)∗ over n-manifolds is a linear combination (with real coeffi-
cients) of the identity affinor idTT (r)M : TT (r)M → TT (r)M and the affinor being
the composition TT (r)M → T (r)M ×M TM ⊂ T (r)M ×M T (r)M=̃V T (r)M ⊂
TT (r)M , where the arrow is the system (πT , Tπ), πT : TT (r)M → T (r)M is
the tangent bundle projection, π : T(r)M → M is the bundle projection and
the inclusion i : TM ⊂ T(r)M is given by the dualization of the jet projection
Jr(M,R)0 → J1(M,R)0.

Clearly, any natural affinor A on T (r)M is a natural transformationA : TT (r)M
→ TT (r)M such that A is a tensor field of type (1, 1) on T(r)M .

If r = 1, the natural transformations TTM → TTM are in bijection with the
Weil algebra homomorphisms TTR→ TTR, see [2].

The purpose of this note is to give a complete classification of natural transfor-
mations A : TT (r)M → TT r)M over n-manifolds in the case where r ≥ 2.

In Item 1, we prove that any natural transformation A : TT (r)M → T (r)M
over n-manifold is a linear combination of πT : TT (r)M → T (r)M and i ◦ Tπ :
TT (r)M → TM ⊂ T (r)M .

In Item 2, as a corollary of the result of Item 1, we prove that if r ≥ 2, then
any natural transformation A : TT (r)M → TM over n-manifolds is proportional
to Tπ : TT (r)M → TM .

If A : TT (r)M → T (r)M is a natural transformation, then a natural transfor-
mationA : TT (r)M → TT (r)M is called to be over A iff πT ◦A = A. In Item 3, we
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define two natural transformations (of vertical type) Aπ
T

:= (A, πT ) : TT (r)M →
T (r)M ×M T (r)M = V T (r)M ⊂ TT (r)M and Ai◦Tπ := (A, i ◦ Tπ) : TT (r)M →
T (r)M ×M T (r)M = V T (r)M ⊂ TT (r)M over A. Then, as a corollary of the result
of Item 1, we prove that any natural transformation A : TT (r)M → V T (r)M ⊂
TT (r)M over A is a linear combination of Aπ

T

and Ai◦Tπ.
In Item 4, if r ≥ 2 and λ, µ ∈ R, we construct a natural transformation A(λ,µ) :

TT (r)M → TT (r)M over A = λπT + µ(i ◦ Tπ) of not vertical type.
In Item 5, applying the result of Items 2 and 3, we prove that if r ≥ 2 and

λ, µ ∈ R, then any natural transformation A : TT (r)M → TT (r)M over A =
λπT + µ(i ◦ Tπ) is a linear combination of Aπ

T

, Ai◦Tπ and A(λ,µ).

Throughout this note the usual coordinates on Rn are denoted by x1, ..., xn and
∂i = ∂

∂xi , i = 1, ..., n.
All manifolds and maps are assumed to be of class C∞.

1. The tangent bundle projection πT : TT (r)M → T (r)M is a simple example of
a natural transformation TT (r)M → T (r)M over n-manifolds. Another example is
i ◦Tπ : TT (r)M → TM ⊂ T (r)M , where π : T (r)M →M is the bundle projection
and the inclusion i : TM=̃T(1)M → T (r)M is the dual map of the jet projection
Jr(M,R)0 → J1(M,R)0.

Proposition 1. Any natural transformation A : TT (r)M → T (r)M over n-
manifolds is a linear combination (with real coefficients) of πT and i ◦ Tπ.

Proof. Any natural transformation A as in the proposition is uniquely deter-
mined by the 〈A(u), jr0γ〉 ∈ R for any γ : Rn → R with γ(0) = 0 and any
u ∈ (TT (r)Rn)0=̃Rn× (V T (r)Rn)0=̃Rn×T (r)

0 Rn×T (r)
0 Rn, where =̃ denotes the

standard trivialization and the canonical identification. By the rank theorem jr0x
1

has dense orbit in Jr0 (Rn,R)0. Then , by the naturality, A is uniquely determined
by the 〈A(u), jr0x

1〉 for any u ∈ (TT (r)Rn)0=̃Rn × T (r)
0 Rn × T (r)

0 Rn.

Any element from T
(r)
0 Rn is a linear combination of the (jr0x

α)∗ for all α ∈
(N∪{0})n with 1 ≤ |α| ≤ r, where the (jr0x

α)∗ form the basis of T (r)
0 Rn dual to the

basis jr0x
α ∈ Jr0 (Rn,R)0. By the naturality of A with respect to the homotheties

at = (t1x1, ..., tnxn), t = (t1, ..., tn) ∈ Rn
+, we have 〈A(TT (r)(at)(u)), jr0x

1〉 =
t1〈A(u), jr0x

1〉 for any t = (t1, ..., tn) ∈ Rn
+. For any t ∈ Rn and any α ∈ (N ∪

{0})n we have T (r)(at)((jr0x
α)∗) = tα(jr0x

α)∗. Then by the homogeneous function
theorem, see [2], we deduce easily that

(∗) 〈A(u), jr0x
1〉 = λu1

1 + µu2,e1 + νu3,e1

for some real numbers λ, µ, ν, where u = (u1, u2, u3) ∈ (T (T (r)Rn))0=̃Rn ×
T

(r)
0 Rn × T

(r)
0 Rn, u1 = (u1

1, ..., u
n
1) ∈ Rn, u2,α is the coefficient (with respect

to the basis) of u2 ∈ T (r)
0 Rn corresponding to (jr0x

α)∗ and u3,α is the coefficient

of u3 ∈ T (r)
0 Rn corresponding to (jr0x

α)∗, e1 = (1, 0, ...,0) ∈ (N ∪ {0})n.
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Replacing A by A − λi ◦ Tπ − µπT we can assume that λ = µ = 0. Then (in
particular)

(**) 〈A(∂C1 |ω), jr0x
1〉 = 〈A(e1, ω, 0), jr0x

1〉 = 0

for any ω ∈ T (r)
0 Rn, where ( )C is the complete lifting of vector fields to T (r).

It remains to show that ν = 0, i.e. that 〈A(0, 0, (jr0x
1)∗), jr0x

1〉 = 0.
For showing this, we prove

0 = 〈A((∂1 + (x1)r∂1)C|ω), jr0x
1〉 = 〈A(((x1)r∂1)C|ω), jr0x

1〉
= 〈A(0, ω, (jr0x

1)∗), jr0x
1〉 = 〈A(0, 0, (jr0x

1)∗), jr0x
1〉 ,

where ω = (jr0(x1)r)∗.
The second and the fourth equalities are clear as in the formula (*) λ = µ = 0.
We can prove the first equality as follows. Vector fields ∂1 + (x1)r∂1 and ∂1

have the same (r − 1)-jets at 0. Then, by the result of Zajtz [3], there exists a
diffeomorphism ϕ : Rn → Rn such that jr0ϕ = id and ϕ∗∂1 = ∂1 + (x1)r∂1 near 0.
Clearly, ϕ preserves jr0x

1 because of the jet argument. Then, using the naturality
of A with respect to ϕ, from (**) it follows the first equality for any ω ∈ T (r)

0 Rn.
It remains to prove the third equality. Let ϕt be the flow of (x1)r∂1. For any

β ∈ (N ∪ {0})n with 1 ≤ |β| ≤ r we have

〈((x1)r∂1)C|ω, j
r
0x
β〉 = 〈 d

dt |t=0
T (r)(ϕt)(ω), jr0x

β〉

=
d

dt |t=0
〈T (r)(ϕt)(ω), jr0x

β〉 =
d

dt |t=0
〈ω, jr0(xβ ◦ ϕt)〉

= 〈ω, jr0(
d

dt |t=0
xβ ◦ ϕt)〉 = 〈ω, jr0(((x1)r∂1)xβ)〉 .

Because of the definition of ω, the last term is equal to 1 if jr0x
β = jr0x

1 and it is
equal to 0 in the other cases. Then ((x1)r∂1)C|ω = (jr0x

1)∗ under the isomorphism

Vω(T (r)Rn)=̃T (r)
0 Rn. It implies the third equality. 2

2. The tangent map Tπ : TT (r)M → TM of the bundle projection π : T(r)M →
M is a natural transformation over n-manifolds.

Proposition 2. If r ≥ 2, then any natural transformation A : TT (r)M → TM
over n-manifolds is proportional (by a real number) to Tπ.

Proof. Applying the inclusion i : TM ⊂ T (r)M , we have A : TT (r)M → TM ⊂
T (r)M . Then, by Proposition 1, A = λπT + µ(i ◦ Tπ). Since r ≥ 2, A is not
surjective. Then λ = 0. 2

3. Let A : TT (r)M → T (r)M be a natural transformation over n-manifolds.
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We say that a natural transformation A : TT (r)M → TT (r)M over n-manifolds
is over A if πT ◦A = A.

If B : TT (r)M → T (r)M is another natural transformation over n-manifolds,
we define a natural transformation

AB := (A,B) : TT (r)M → T (r)M ×M T (r)M=̃V T (r)M ⊂ TT (r)M .

Clearly, AB is over A. We call AB the B-vertical lift of A.
In particular, considering the natural transformations πT : TT (r)M → T (r)M

and i◦Tπ : TT (r)M → T (r)M , we produce natural transformationsAπ
T

: TT (r)M
→ TT (r)M and Ai◦Tπ : TT (r)M → TT (r)M over A.

The above natural transformationsAB are of vertical type, i.e. they have values
in V T (r)M .

If A : TT (r)M → V T (r)M=̃T (r)M ×M T (r)M is a natural transformation of
vertical type over A, then A = (A,B) for natural transformation B = pr2 ◦ A :
TT (r)M → T (r)M , i.e. A = AB for some B.

Then applying Proposition 1 we obtain the following proposition.

Proposition 3. Let A : TT (r)M → T (r)M be a natural transformation over n-
manifolds. Any natural transformation A : TT (r)M → V T (r)M over n-manifolds
of vertical type over A is a linear combination (with real coefficients) of Aπ

T

and
Ai◦Tπ.

In the next item it will be presented an example of a natural transformation
A : TT (r)M → TT (r)M over n-manifolds over A which is not of vertical type.

4. Assume r ≥ 2. Let λ, µ ∈ R. If A = λπT + µ(i ◦ Tπ) : TT (r)M → T (r)M ,
then we define a natural transformation A(λ,µ) : TT (r)M → TT (r)M over n-
manifolds over A as follows.

Let uo ∈ TωoT (r)M , ωo ∈ T (r)
xo M , xo ∈ M . There exists a vector field X and

an element η ∈ T (r)
xo M such that uo = XC

|ωo + (ωo, η) under V T (r)M=̃T (r)M ×M
T (r)M , where ( )C is the complete lifting of vector fields to T (r)M . We put

A(λ,µ)(uo) := XC
|λωo+µi(X|xo ) + (λωo + µi(X|xo), λη − µσX) ,

where i : TM → T(r)M is the inclusion and σX ∈ T (r)
xo M is given by 〈σX , jrxoγ〉

:= X(Xγ)(xo) for any γ : M → R with γ(xo) = 0. (σX is defined as r ≥ 2.)
The definition of A(λ,µ) is correct. For proving this, we consider another X̃ =

X + X′ with X′|xo = 0 and η̃ ∈ T
(r)
xo M such that uo = X̃C

|ωo + (ωo, η̃). Then

(X′)C|ωo = (ωo, η− η̃). We have to show that XC
|λωo+µi(X|xo ) +(λωo+µi(X|xo), λη−

µσX) = X̃C
|λωo+µi(X|xo ) + (λωo + µi(X|xo ), λη̃ − µσX̃).

It is sufficient to show that

(X′)C|λωo+µi(X|xo ) = (λωo + µi(X|xo), λ(η − η̃) − µ(σX − σX̃)) .
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Let ϕt be the flow of X′. Denote (X′)C|λωo+µi(X|xo ) = (λωo + µi(X|xo), θ),

θ ∈ T (r)
xo M . Then for any γ : M → R with γ(xo) = 0 we have

〈θ, jrxoγ = 〈 d
dt |0

T (r)
xo ϕt(λωo + µi(X|xo)), j

r
xoγ〉

= 〈λωo + µi(X|xo), j
r
xo(

d

dt |0
γ ◦ ϕt)〉

= λ〈ωo, jrxo(X
′γ)〉 + µ〈i(X|xo ), jrxo(X

′γ)〉 .
From (X ′)C|ωo = (ωo, η − η̃) we have

〈η − η̃, jrxoγ〉 = 〈 d
dt |0

T (r)
xo ϕt(ωo), j

r
xoγ〉 = 〈ωo, jrxo(X

′γ)〉 .

On the other hand we have

〈σX − σX̃ , jrxoγ〉 = X(Xγ)(xo)− X̃(X̃γ)(xo) = −X(X′γ)(xo)

= −〈X|xo , j1
xo(X

′γ)〉 = −〈i(X|xo ), jrxo(X
′γ)〉

modulo the isomorphism TM = T (1)M .
Then θ = λ(η − η̃) − µ(σX − σX̃). That is why A(λ,µ) is well-defined.

5. We end the paper by the following proposition.

Proposition 4. Let λ, µ ∈ R. Put A := λπT + µ(i ◦ Tπ) : TT (r)M → T (r)M . If
r ≥ 2, then any natural transformation A : TT (r)M → TT (r)M over n-manifolds
over A is a linear combination (with real coefficients) of Aπ

T

, Ai◦Tπ and A(λ,µ).

Proof. Let A : TT (r)M → TT (r)M be a natural transformation over n-manifolds
over A. The composition Tπ ◦ A : TT (r)M → TM is a natural transformation.
By Proposition 2, there exists the real number ρ such that Tπ ◦A = ρTπ. Clearly,
Tπ ◦ A(λ,µ) = Tπ. Then A − ρA(λ,µ) : TT (r)M → TT (r)M is of vertical type.
Then Proposition 3 ends the proof. 2

Remark. Clearly, any natural transformation TT (r)M → TT (r)M is over A =
πT ◦A. Then Proposition 4 together with Proposition 1 gives a complete descrip-
tion of all natural transformations TT (r)M → TT (r)M over n-manifolds in the
case where r ≥ 2.
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