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A VARIANT OF THE COMPLEX
LIOUVILLE-GREEN APPROXIMATION THEOREM

RENATO SPIGLER AND MARCO VIANELLO

Abstract. We propose a variant of the classical Liouville-Green approxima-
tion theorem for linear complex differential equations of the second order.

We obtain rigorous error bounds for the asymptotics at infinity , in the spirit
of F. W. J. Olver’s formulation, by using rather arbitrary ξ-progressive paths.

This approach can provide higher flexibility in practical applications of the
method.

Within the well-known Liouville-Green (or WKB) approximation theory for
linear second-order differential equations, asymptotic results equipped with rig-
orous error bounds have been proved by F. W. J. Olver [1, Ch. 6], on both the
real and the complex domain. The key theorem in the complex case, concerning
asymptotics at infinity, can be formulated as

Theorem 1. (Olver, [1, Ch. 6, Thm. 11.1]). Consider the differential equation

y′′ + [f(z) + g(z)] y = 0 , z ∈ Ω ,(1)

Ω ⊆ C being a simply connected unbounded region, where f and g are holomorphic,
and f(z) 6= 0. Assume that there exist two subsets of Ω, H1 and H2, having the
following properties:

(i) for j = 1, 2, there is a family of paths, {`j(z)}, indexed by z ∈ Hj, such that
each `j(z) connects z to ∞ in Ω, j̀(z) being a finite chain of regular arcs,
and ξ-progressive, i.e., defining

ξ(z) :=
∫
f1/2 dz ,(2)

Im ξ(z) turns out to be nondecreasing along 1̀(z) and nonincreasing along
`2(z);

2000 Mathematics Subject Classification: 34E20, 34M60.
Key words and phrases: complex Liouville-Green, WKB, asymptotic approximations.

Work supported, in part, by the Italian MURST, and by the GNFM-CNR.
Received September 14, 1999.



214 R. SPIGLER, M. VIANELLO

(ii) each `j(z) coincides with a given z-independent curve Lj in a neighborhood
of ∞;

(iii) the variation V`j(z)(F ) of

F (z) :=
∫ {

f−1/4 d
2

dz2
(f−1/4) + f−1/2g

}
dz(3)

on `j(z) is finite for every z ∈ Hj. Here the branches of the fractional powers
of f(z) must be continuous in Ω, that of f1/2(z) being the square of f1/4(z).

Then there exist two solutions of (1)

yj(z) = f−1/4(z) exp {i(−1)j−1ξ(z)} [1 + εj(z)] ,(4)

holomorphic in Ω, with the error terms estimated as

|εj(z)|, |f−1/2(z)ε′j(z)| ≤ exp {V`j(z)(F )} − 1 , z ∈ Hj , j = 1, 2 .(5)

The curves j̀(z) in (i) are required to satisfy two main properties, to be ξ-
progressive, and to coincide with the fixed curve Lj in a neighborhood of infinity
(in general depending on z). Both these properties represent an essential ingredient
of Olver’s proof. While the former seems to be difficult to weaken, being decisive
in deriving the estimates (5), we propose to modify the latter, which plays a role
mainly in proving uniqueness for the integral equations satisfied by the error terms
(cf. [1, Ch. 6, §11.2]). Such a modification consists in allowing to connect z to
infinity using rather arbitrary ξ-progressive paths in Ω (still satisfying (iii)), which
fact confers a higher flexibility in practical applications of the Liouville-Green
approximation, as it will be made clear in the examples below. Here is the variant
of Olver’s theorem, whose a preliminary version has been sketched in [5].

Theorem 2. The thesis of Theorem 1 remains valid when (ii) is replaced with
(ii’) if two paths of the family above, `j(z) and j̀(w), meet at some point, then

they must coincide from that point to ∞,
and the following is required: H1 and H2 have a nonempty interior, each path
`j(z) lies in Hj, and the variation V`j(z)(F ) is bounded (as a function of z) on the
compact subsets of H◦j , j = 1, 2.

Before proving the theorem, some observations are in order. First of all, note
that in (ii’), others than in (ii), only when two paths of the family {`j(z)} meet,
then they must coincide from the merging point up to∞, and so all paths of such
a family do not need to lie asymptotically on a given fixed curve. In particular,
condition (ii’) implies that if u ∈ `j(z), then `j(u) ≡ `j(z) from u up to ∞. In a
(annular) sector, for instance, the bundle of rays could be a natural candidate as
family of paths. Property (ii’) plays a key role also in other asymptotic results for
linear differential equations on the complex domain, cf. [3].

Differently from Olver’s theorem, we require explicitly that H◦j , the interior of
Hj, be nonempty. This property is verified in many applications. On the other
hand, it can be guaranteed a priori when the monotonicity on the ξ-progressive
paths is strict, and the ξ-map of `j(z) is a polygonal arc (we omit the proof
for brevity). Indeed, the same is true for Olver’s theorem, cf. Ex. 11.2 in [1,
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Ch. 6], which goes back to [4]. There, in addition, using the reference curve Lj ,
connectdness of Hj can be immediately shown, while it is not guaranteed within
the present formulation.

Finally, we observe that the “error control function”, V̀
j(z)(F ), in general is

not a continuous function of z (in both Theorem 1 and Theorem 2), and thus its
boundedness on compact subsets of H◦j must be explicitly required. Boundedness
is trivially verified, for instance, in the frequent case when V̀

j(z)(F ) = O(z−p),
p > 0, and z = 0 is not in Ω. We stress, however, that in general Theorem 2 (as
well as Theorem 1) only provides pathwise asymptotics at ∞. We do not enter
into the delicate matter of uniform asymptotics. For a rather detailed discussion
on the latter topics in a similar context, we refer to [3].

Proof of Theorem 2. Recall first that, for any given parametrization of the path
`j(z), η ≡ ηj,z : [tz, t∞) → Hj, where η(tz) = z ∈ Hj, η(t∞) = ∞, j = 1, 2, the
variation of F on `j(z) is defined as

Vj(z) ≡ V`j(z)(F ) :=
∫ t∞

tz

|F ′(η(t))| |η′(t)| dt ;(6)

clearly, such a definition does not depend on the specific parametrization. Choos-
ing j = 1 in (4) and inserting in (1), the “error equation”,

ε′′1 +
[
−1

2
f−1f ′ + 2if1/2

]
ε′1(7)

+
[
−1

4
f−1f ′′ +

5
16

(f−1f ′)2 + g

]
(1 + ε1) = 0

is obtained by easy calculations. Then, the integral equation

ε1(z) = − i
2

∫
`1(z)

[1− e−2i(ξ(z)−ξ(u))]ψ(u) [1 + ε1(u)] du ,(8)

where

ψ := f−1/2(z)
[
−1

4
f−1f ′′ +

5
16

(f−1f ′)2 + g

]
= f−1/4(f−1/4)′′ + f−1/2g

(9)

is promptly derived (by the method of variation of parameters, [1, Ch. 6, §11.2]),
whose holomorphic solutions also satisfy (7). Note that ψ(z) ≡ F ′(z) (cf. (3)).
We now set

(10) hs+1(z) = − i
2

∫
`1(z)

[1− e−2i(ξ(z)−ξ(u))]ψ(u) [1 + hs(u)] du ,

s = 0, 1, 2, . . . ,

where h0 ≡ 0, and it is easy to show (by induction on s) that all functions hs(z)
are well-defined and holomorphic in H◦1 . Then, defining

ε1(z) :=
∞∑
s=0

[hs+1(z)− hs(z)] ,(11)
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we can derive the estimate (again by induction on s)

|hs+1(z)− hs(z)| ≤ [V1(z)]s+1

(s + 1)!
,(12)

valid in H1. In fact, the estimate holds trivially for s = 0; assuming that it holds
for s − 1, we obtain

|hs+1(z)− hs(z)| ≤
∫ t∞

tz

|ψ(η(t))| |η′(t)| [V1(η(t))]s

s!
dt ,(13)

as | exp {−2i[ξ(z)− ξ(η(t))]}| ≤ 1 for every t ∈ [tz, t∞), in view of the ξ-progressi-
vity of `1(z). The result then follows from (6), since

V1(η(t)) =
∫ t∞

t

|ψ(η(τ ))| |η′(τ )| dτ t ∈ [tz, t∞) ,(14)

owing to property (ii’).
It follows that the series in (11) converges pointwise in H1, and by the bound-

edness of V1 it converges also uniformly on every compact subset of H◦1 . Therefore
ε1(z) is holomorphic in H◦1 (by Weierstrass’ theorem). It is easy to show (by the
dominated convergence theorem) that ε1(z) solves the integral equation (8), and
hence the error equation (7) in H◦1 . From (11) and (12) the estimate for ε1(z)
in (5) follows immediately. Finally, y 1(z) solves the original equation (1) in H◦1 ,
and hence it can be continued holomorphically into the whole Ω (which is simply
connected). The estimate in (5) concerning ε′1(z) can be obtained differentiating
in (11) and estimating |h′s+1(z) − h′s(z)|, proceeding as above. The part of the
proof regarding j = 2 is completely analogous.

For the purpose of illustration, we work out in detail an application to the
simple case of the “perturbed Airy equation”,

y′′ + [z + g(z)]y = 0 , g(z) = O(zα) , α < −1/2 , z ∈ Ω ,

Ω = {z ∈ C : −π < arg z < π, |z| > r ≥ 0} ,(15)

where the higher flexibility and the ensuing advantage of the present formulation
from an operative standpoint will be shown. It is worth noting that the present
variant has already been used in [2], as a matter of fact, in the special case when
f(z) ≡ a > 0, and g(z) = O(zα), α < −1.

Now, choosing the principal branch of the powers involved, we have

F ′(z) =
5
16
z−5/2 + z−1/2g(z) = O

(
z−β

)
, β = min{5/2,−α+ 1/2} .

(16)

When F ′(z) = O(z−β), with β > 1, and Ω is a (annular) sector, choosing circular
arcs (centered at the origin) and rays to obtain paths on which the variation is
finite, is particularly attractive since the whole construction and the calculations
become extremely simple. On the other hand, being here ξ(z) = 2

3
z3/2, it is

immediately seen that such paths are ξ-progressive in suitable subsectors of Ω.
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To be more precise, in applying Theorem 2, we divide Ω into the six pairwise
disjoint (annular) subsectors

Sk =
{
z ∈ Ω : −π + k

π

3
< arg z ≤ −2π

3
+ k

π

3

}
, k = 0, . . . , 5 .(17)

Here, each ray separating any two of these subsectors, is either a Stokes line, i.e.
a line where Re ξ(z) = 0, or an anti-Stokes (also termed principal) line, where
Imξ(z) = 0, cf. [1, Ch. 13]. Indeed, the relevant principal lines are given by
arg z = −2π

3 + j 2π
3 , j = 0, 1, 2, and the Stokes lines by arg z = −π3 and arg z = π

3
(the other one being the negative real axis, which has been deleted from Ω and
hence from S5). Considering sign and monotonicity of sin

(
3
2 arg z

)
, it is easily seen

that, in each Sk, one can choose as ξ-progressive paths the portion of ray joining
z to ∞, and the circular arc (centered at the origin) from z to the principal line
bordering Sk, followed by the line itself. For instance, in S0, S3, and S4, `1(z) is
the ray, and `2(z) is the circular arc followed by the principal line, while in the
remaining subsectors the roles of the two paths have to be interchanged. Trivial
calculations give the bound

Vj(z) ≤ K1

(
π

3
+

1
β − 1

)
|z|1−β , j = 1, 2 , K1 = K +

5
16
,(18)

for every z ∈ H1 ∩ H2 = Ω; here K is the constant implied by the O-symbol
in (15), cf. (16). The bound above provides immediately the asymptotic result
εj(z) = O(z1−β), z ∈ Ω, where the constant implied can be easily estimated via
(18) in any fixed neighborhood of∞, exploiting the basic inequality ev − 1 ≤ v ev,
v ≥ 0.

On the other hand, constructing the paths by means of arcs and rays in applying
Theorem 1 to (15), causes a severe restriction of the subset H1 ∩H2. In fact, even
with the best choice for the reference rays, Lj, that is the Stokes lines arg z = −π

3
and arg z = π

3
as L1 and L2, respectively, Ω differs from H1 ∩ H2 by the union

of three subsectors of angle π/3. In other words, the estimates in (5) cannot be
used simultaneously in an angular region with overall range of at least π; the easy
but tedious check is left to the reader. This drawback could be circumvented
by choosing different families of paths, at the price of a much more cumbersome
analysis which goes through the ξ-plane, cf. [1, Ch. 13]).

The procedure sketched above can be extended to treat the perturbed “gener-
alized” Airy equation

y′′ + [zm + g(z)] y = 0 , z ∈ Ω ,

where m ∈ N , g(z) = O(zα) , α < −m/2 ,(19)

and Ω is as above. This embodies a wide class of equations with polynomial
coefficients. Again, we easily get by Theorem 2 that εj(z) = O(z1−β) in H1∩H2 =
Ω, j = 1, 2, where β = min{m/2 + 2,m/2− α}. Clearly, the difficulties inherent
Theorem 1 (using arcs and rays) still arise in the generalized Airy case; details are
omitted for short. In closing, we stress that the main advantage of the variant in
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these applications is given, essentially, by the possibility of using different principal
lines to construct ξ-progressive paths having the two types of monotonicity.
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