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DERIVATION OF THE REYNOLDS EQUATION FOR
LUBRICATION OF A ROTATING SHAFT

ANTONIJA DUVNJAK AND EDUARD MARǓSIĆ-PALOKA

Abstract. In this paper, using the asymptotic expansion, we prove that
the Reynolds lubrication equation is an approximation of the full Navier–

Stokes equations in thin gap between two coaxial cylinders in relative motion.
Boundary layer correctors are computed. The error estimate in terms of

domain thickness for the asymptotic expansion is given. The corrector for
classical Reynolds approximation is computed.

1. Introduction

We study the lubrication process of a slipper bearings. A circular shaft of radius
R and length l rotates on lubricated support with angular velocity ω. Between
the shaft and the support there is a thin domain, of thickness ε � l, completely
filled with a viscous incompressible fluid (lubricant) injected by some prescribed
velocity. Our goal is to find the effective equations governing the flow of that thin
liquid film.
We start from the Navier-Stokes system describing the microscopic flow of a viscous
fluid in thin domain between two coaxial cylinders in relative motion. Unlike in
[7], where the technique of two scale asymptotic expansion has been used only in a
formal way, we derive rigorously the basic equations for hydrodynamic lubrication
with a viscous incompressible fluid. Performing a precise asymptotic analysis of
this singularly perturbed problem we study the behaviour of the flow as ε → 0.
At the limit, we find the classical Reynolds equations governing the 2-dimensional
macroscopic flow, as an approximation of the Navier-Stokes system in thin 3-
dimensional domain. Using the boundary layer correctors we prove, not only the
convergence of the Navier-Stokes velocity and pressure towards their 2-dimensional
approximations, but we also find the order of accuracy for Reynolds model.

The study of lubrication problems goes back to the celebrated work of Reynolds
[13] published in 1886. He studied the thin film flow in a rather heuristic manner
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and did not give any relation between his model and the Navier–Stokes equations.
The formal relation between Navier–Stokes equations in a thin domain and the
Reynolds equations, using asymptotic expansions, was given in Elrod [7], Capriz
[5] and Wannier [14].

The rigorous mathematical justification of the Reynolds equation for a flow be-
tween two plain (and not curved as in our case) surfaces was given in Bayada and
Chambat [2] and Cimatti [6]. However, those authors prove only the weak conver-
gence of the linearized, Stokes, flow to the Reynolds flow. Such weak convergence
on rescaled domain, frequently used for justification of lower-dimensional approx-
imations, justifies the Reynolds model but in a rather weak way. It does not give
the order of accuracy for Reynolds approximation. A precise study of asymptotic
behaviour of the viscous flow in a thin domain was given by Nazarov[12], but in
an infinite 1 thin layer between with two fixed, plain surfaces2. The contribu-
tion of the present paper is that we study the problem with a curved geometry
(corresponding to the real-life situation) and we estimate the difference between
the solution of the Navier-Stokes system in thin domain and the solution of the
Reynolds system in terms of the domain thickness. Furthermore, we give the de-
tailed study of the boundary layer appearing at the ends of cylinders where the
lubricant is being injected. Finally we give the corrector for the Reynolds model
giving the higher order of accuracy.

To finish the introduction we mention some references related to our problem.
An interesting study of weak inertial effects can be found in [1]. A nonlinear model
describing the strong inertial effects for a fast flow through a rough thin domain
was justified in Bourgeat and Marušić-Paloka [3], [4].

Flow through a thin curved domain was treated in Marušić-Paloka [11], with
a special reference to the effects of flexion and torsion of the domain, but only in
the case of tubular domain, leading to the 1-dimensional model.

2. The Problem

To describe the geometry of the film we use the cylindrical coordinates (r, ϕ, z).
We denote by Ξ : R3 → R3 the change of variable Ξ(x1, x2, x3) = (r, ϕ, z) where
(x1, x2, x3) are the cartesian and (r, ϕ, z) are the cylindrical coordinates of a point
x. We suppose that the film thickness is εh, where h = h(ϕ) and ε is a small
parameter. The film is an open set

Cε = {Ξ−1(r, ϕ, z) ∈ R3 ; ϕ ∈]0, 2π[, z ∈]0, l[ , R < r < R+ εh(ϕ)} ,

where the function h :]0, 2π[→R+ is of class C2, 2π-periodic and 0 < β1 ≤ h(ϕ) ≤
β2 , ϕ ∈]0, 2π[. The flow in domain Cε is governed by the Navier–Stokes system

1to avoid the boundary layer effects on the edge of domain
2that are not in relative motion, as in our case
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−µ∆uε + (uε∇)uε +∇pε = 0 in Cε ,
div uε = 0 in Cε ,
uε = 0 for r = R+ εh(ϕ) ,
uε = ω~eϕ for r = R ,
uε = g0( r−R

ε
, ϕ) for z = 0 ,

uε = gl( r−Rε , ϕ) for z = l ,

(1)

where pε and uε are the pressure and the velocity. In order to have a well posed
problem we suppose that the functions gα ∈ C2(S1), α = 0, l, S1 = {(ρ, ϕ); ρ ∈
]0, h(ϕ)[, ϕ ∈]0, 2π[} are 2π-periodic in ϕ and satisfy the hypothesis

(H1): gα(h(ϕ), ϕ) = 0, gα(0, ϕ) = ω~eϕ , α = 0, l,

(H2):
∫ 2π

0

∫ h(ϕ)

0
ρ~ez · g0(ρ, ϕ)dρdϕ =

∫ 2π

0

∫ h(ϕ)

0
ρ~ez · gl(ρ, ϕ)dρdϕ ,

(H3):
∫ 2π

0

∫ h(ϕ)

0 ~ez · g0(ρ, ϕ)dρdϕ =
∫ 2π

0

∫ h(ϕ)

0 ~ez · gl(ρ, ϕ)dρdϕ.

The classical result shows that for each ε > 0 :

Theorem 1. Under the assumptions (H1),(H2) and (H3) the problem (1) has a
solution (uε, pε) ∈ H1(Cε)3 × L2(Cε)/R.

For the proof see e.g. Galdi [8].

3. Asymptotic expansion

Due to the geometry of the domain it is natural to work in the cylindrical
coordinate system. In the cylindrical coordinates the Navier–Stokes equations
read (see e.g. [10]):

−µ(∆uεr −
uεr
r2
− 2
r2

∂uεϕ
∂ϕ ) + uεr

∂uεr
∂r +

uεϕ
r
∂uεr
∂ϕ + uεz

∂uεr
∂z −

(uεϕ)2

r
+ ∂pε

∂r = 0 ,

−µ(∆uεϕ −
uεϕ
r2

+
2
r2

∂uεr
∂ϕ ) + uεr

∂uεϕ
∂r +

uεϕ
r

∂uεϕ
∂ϕ + uεz

∂uεϕ
∂z +

uεru
ε
ϕ

r
+

1
r
∂pε

∂ϕ = 0 ,

−µ∆uεz + uεr
∂uεz
∂r +

uεϕ
r
∂uεz
∂ϕ + uεz

∂uεz
∂z + ∂pε

∂z = 0 ,

∂

∂r
(ruεr) +

∂uεϕ
∂ϕ +

∂

∂z
(ruεz) = 0 ,

where uε = uεr~er + uεϕ~eϕ + uεz~ez and ∆v = 1
r
∂
∂r (r ∂v∂r ) + 1

r2
∂2v
∂ϕ2 + ∂2v

∂z2 .

3.1. Interior expansion. Far from the ends of our cylinder Cε i.e. for z = 0, l we
can neglect the local effects of the boundary conditions uε(r, ϕ, z) = gα(ρ, ϕ) , α =
0, l and try to find an ansatz that fits the system and the boundary condition on
r = R, R+ εh. As in [3], [4], we seek an expansion in the form

uε ∼ u0(ρ, ϕ, z) + εu1(ρ, ϕ, z) + . . .(2)

pε ∼ 1
ε2
p0(ρ, ϕ, z) +

1
ε
p1(ρ, ϕ, z) + . . .(3)
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where ρ = r−R
ε . Substituting these expansions into the Navier–Stokes equations

and collecting equal powers of ε lead to the 1
ε2 term in the form

−µ∂
2u0
r

∂ρ2 + ∂p1

∂ρ = 0 ,

−µ∂
2u0
ϕ

∂ρ2 +
1
R
∂p0

∂ϕ = 0 ,

−µ∂
2u0
z

∂ρ2 + ∂p0

∂z
= 0 .

From the incompressibility equation we get
∂u0

r

∂ρ = 0 ,
∂u0

ϕ

∂ϕ
+R

∂u0
z

∂z
+ u0

r = 0 .(4)

First we conclude that u0
r = 0, p1 = p1(ϕ, z). Then we compute u0

ϕ and u0
z as

u0
ϕ =

1
2µR

(ρ − h)ρ∂p
0

∂ϕ + ω(1− ρ

h
) ,(5)

u0
z =

1
2µ

(ρ− h)ρ∂p
0

∂z .(6)

Equation (4) leads to

R

2
(h− ρ)ρ∂

2p0

∂z2 +
1

2R
∂

∂ϕ
[(h− ρ)ρ∂p

0

∂ϕ ] =
h′

h2
ρµω .

Integrating with respect to ρ over ]0, h(ϕ)[ and using a simple formula

∂

∂ϕ

∫ h(ϕ)

0

F (ρ, ϕ)dρ =
∫ h(ϕ)

0

∂F
∂ϕ

(ρ, ϕ)dρ− F (h(ϕ), ϕ)h′(ϕ)

we get the Reynolds equation

Rh3 ∂2p0

∂z2 +
1
R

∂

∂ϕ
(h3 ∂p0

∂ϕ
) = 6h′µω in Ω =]0, 2π[ × ]0, l[ .(7)

One boundary condition for p0 is 2π–periodicity with respect to ϕ. Second bound-
ary condition should be of the form

∂p0

∂z
= λ0(ϕ) for z = 0 , ∂p0

∂z
= λl(ϕ) for z = l .(8)

The functions λα, α = 0, l are to be determined in the following section.

3.2. Boundary layer. On our interior expansion we did not impose any bound-
ary condition at the ends z = 0, l. Therefore we, in general, have

u0(ρ, ϕ, 0) 6= g0(ρ, ϕ) ,
u0(ρ, ϕ, l) 6= gl(ρ, ϕ) .

We need to correct our expansion in the boundary layer near z = 0 and z = l.
Near z = 0 we seek an expansion in the form

uε ∼ u0(ρ, ϕ, z) +B0(ρ, ϕ, ξ) + ε[u1(ρ, ϕ, z) +B1(ρ, ϕ, ξ)] + . . .

pε ∼ 1
ε2
p0(ϕ, z) +

1
ε

[p1(ϕ, z) + b0(ρ, ϕ, ξ)] + p2(ρ, ϕ, z) + b1(ρ, ϕ, ξ) + . . .
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where ρ = r−R
ε and ξ = z

ε is the new dilated variable used to describe the fast
changes of the solution in the boundary layer. Near z = l we seek the expansion
in the form

uε ∼ u0(ρ, ϕ, z) + H0(ρ, ϕ, τ ) + ε[u1(ρ, ϕ, z) +H1(ρ, ϕ, τ )] + . . .

pε ∼ 1
ε2
p0(ϕ, z) +

1
ε

[p1(ϕ, z) + h0(ρ, ϕ, τ )] + p2(ρ, ϕ, z) + h1(ρ, ϕ, τ ) + . . .

with τ = z−l
ε . For the left boundary layer we get

−µ∆ρξB
0
r + ∂b0

∂ρ
= 0 ,

−µ∆ρξB
0
z + ∂b0

∂ξ
= 0 ,

−µ∆ρξB
0
ϕ = 0 ,

(9)

in the infinite strip G(ϕ) =]0, h(ϕ)[×]0,+∞[, where

∆ρξ =
∂2

∂ρ2
+

∂2

∂ξ2
.

In addition we have
∂B0

r

∂ρ
+ ∂B0

z

∂ξ
= 0 .(10)

The boundary conditions for B0 are
B0(ρ, ϕ, 0) + u0(ρ, ϕ, 0) = g0(ρ, ϕ) ,

B0(0, ϕ, ξ) = B0(h, ϕ, ξ) = 0 ,

limξ→+∞B
0(ρ, ϕ, ξ) = 0 .

(11)

The variable ϕ is only a parameter. By integrating (10) over G(ϕ) we get the
compatibility condition

0 =
∫ h(ϕ)

0

B0
z (ρ, ϕ, 0)dρ =

∫ h(ϕ)

0

~ez · g0(ρ, ϕ)dρ − λ0(ϕ)
∫ h(ϕ)

0

1
2µ

(ρ − h)ρdρ

leading to

λ0(ϕ) = − 12µ
h3(ϕ)

∫ h(ϕ)

0

~ez · g0(ρ, ϕ)dρ.(12)

The following result is well known and may be found for example in [8].

Lemma 1. For every ϕ ∈ ]0, 2π[ system (9), (10), (11) admits a unique solutions
(B0(·, ϕ, ·), b0(·, ϕ, ·)) ∈ H1(G(ϕ))3 × L2(G(ϕ))/R.

Using solutions dependence on boundary condition g0 ∈ H1(S1) and the ge-
ometry of the domain we get that (B0, b0) ∈ H1(G)3 × L2(G)/R where G =
{(ρ, ϕ, ξ);ϕ ∈]0, 2π[, (ρ, ξ) ∈ G(ϕ)}. An analogous calculation gives the problem
for (H0, h0): 

−µ∆ρτH
0
r + ∂h0

∂ρ
= 0 ,

−µ∆ρτH
0
z + ∂h0

∂τ
= 0 ,

∂H0
r

∂ρ + ∂H0
z

∂τ = 0 ,

(13)
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in O(ϕ) =]0, h(ϕ)[×]−∞, 0[ where τ = z−l
ε .

H0(ρ, ϕ, 0) + u0(ρ, ϕ, l) = gl(ρ, ϕ) ,
limτ→−∞H0(ρ, ϕ, τ ) = 0 ,

−µ∆ρτH
0
ϕ = 0 ,

H0(0, ϕ, τ ) = H0(h, ϕ, τ ) = 0 ,

(14)

which leads to

λl(ϕ) = − 12µ
h3(ϕ)

∫ h(ϕ)

0

~ez · gl(ρ, ϕ)dρ .(15)

For functions (B0, b0), (H0, h0) we have the Saint–Venant’s principle:

Theorem 2. There exist C > 0 and α > 0 such that

|B0|H2({(ρ,ξ)∈G(ϕ);ξ>t}) < Ce−αt ,

|b0|H1({(ρ,ξ)∈G(ϕ);ξ>t}) < Ce−αt ,

|H0|H2({(ρ,τ)∈O(ϕ);τ<−t}) < Ce−αt ,

|h0|H1({(ρ,τ)∈O(ϕ);τ<−t}) < Ce−αt .

For exponential decay of solutions of the Stokes equations see for example [8]
and [4] and of the Laplace equation see for example [9].

Remark 1. In fact, it is easy to verify that

B0
ϕ(ρ, ϕ, ξ)(16)

=
+∞∑
k=1

e
− kπ
h(ϕ) ξ

(
2

h(ϕ)

∫ h(ϕ)

0

sin
kπ t

h(ϕ)
(gϕ0 (t, ϕ)− u0

ϕ(t, ϕ, 0))dt

)
sin

kπ

h(ϕ)
ρ

=
+∞∑
k=1

e−
kπ
h(ϕ) ξAk(ϕ) sin

kπ

h(ϕ)
ρ

leading to the asymptotic behaviour

B0
ϕ ∼ exp

(
− π

β1

z

ε

)
.

We get the analogous results for H0
ϕ with the exponent kπ

h(ϕ)
τ instead of − kπ

h(ϕ)
ξ

and the coefficients Bk(ϕ) analogous as Ak(ϕ) but with gϕl instead of gϕ0 .

3.3. Solvability of the Reynolds equation. We can now write our Reynolds
equation (governing the effective flow) in the form

Rh3 ∂
2p0

∂z2 + 1
R

∂
∂ϕ

(h3 ∂p
0

∂ϕ
) = 6h′µω in Ω ,

∂p0

∂z = − 12µ
h3(ϕ)

∫ h(ϕ)

0
~ez · g0(ρ, ϕ)dρ for z = 0 ,

∂p0

∂z
= − 12µ

h3(ϕ)

∫ h(ϕ)

0
~ez · gl(ρ, ϕ)dρ for z = l ,

p0 is 2π–periodic in ϕ .

(17)
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This is a Neumann’s problem for linear elliptic equation and it has a unique (up
to a constant) solution p0 ∈ H3(Ω) ∩ C2(Ω) iff∫ 2π

0

∫ h(ϕ)

0

~ez · g0(ρ, ϕ)dρdϕ =
∫ 2π

0

∫ h(ϕ)

0

~ez · gl(ρ, ϕ)dρdϕ

which is exactly the hypothesis (H3).
The regularity of p0 (due to the fact that h′ ∈ C1(]0, 2π[), gi ∈ C2(S1)) implies

that u0 ∈ H2(C) ∩ C1(C).

3.4. Divergence Corrector. We notice that (4) is not exactly satisfied. We only
have that ∫ h(ϕ)

0

(∂u
0
ϕ

∂ϕ
+R

∂u0
z

∂z
)dρ = 0 .

To fix that we add the divergence corrector in the form εΨ(ρ, ϕ, z)~er with

Ψ(ρ, ϕ, z) =
∫ ρ

0

(∂u
0
ϕ

∂ϕ
+R

∂u0
z

∂z
)(t, ϕ, z)dt .

Now for the approximation

vε =u0((r −R)/ε, ϕ, z)− εΨ((r − R)/ε, ϕ, z)~er +

+ H0((r −R)/ε, ϕ, (z − l)/ε) + B0((r − R)/ε, ϕ, z/ε)(18)

we get

div vε = B0
r +H0

r + ∂H0
ϕ

∂ϕ
+ ∂B0

ϕ

∂ϕ
+ εΦ

where |Φ|L∞(Cε) ≤ C. By a simple change of variables we obtain

|B0
r + H0

r + ∂H0
ϕ

∂ϕ + ∂B0
ϕ

∂ϕ |Lr(Cε) ≤ Cε2/r , 1 ≤ r <∞ .(19)

4. Convergence

Our main result can be formulated as follows:

Theorem 3. Let (uε, pε) be the solution of the Navier-Stokes system (1). Let p0

be the Reynolds pressure, i.e. the solution of the problem (17) and let u0 be the
Reynolds velocity given by (5), (6). Then

1√
|Cε|
|uε − u0

ε|L2(Cε) ≤ C
√
ε ,

1√
|Cε|
|ε2pε − p0|L2(Cε)/R ≤ C

√
ε ,

where u0
ε(r, ϕ, z) = u0((r −R)/ε, ϕ, z) and |Cε| = ε l

2

∫ 2π

0
(2h(ϕ) + εh(ϕ)2)dϕ.

Remark 2. The estimate in thin domain Cε in the norm | |L2(Cε) is worthless
because the domain is shrinking. Convergence in such norm does not justify the
lower-dimensional model since |φ|L2(Cε) → 0 for any bounded φ ∈ C(R3). The
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appropriate norm is ‖φ‖ = |Cε|−1/2|φ|L2(Cε). We notice that ‖1‖ = 1 6→ 0 and that
the convergence ‖φ‖ → 0 implies the convergence of the mean values

1
ε

∫ R+εh

R

φ dr→ 0 in L2(Ω) .

To prove Theorem 3 we need some technical results.

Lemma 2. (Poincare’s inequality) There exist a constant C > 0 such that

|φ|L2(Cε) ≤ Cε|∇φ|L2(Cε)(20)

for any φ ∈ H1(Cε) such that φ = 0 for r = R+ εh.

Proof. Let φ ∈ H1(Cε) such that φ = 0 for r = R+ εh(ϕ). Using the cylindrical
coordinates we have

φ(r, ϕ, z) =
∫ R+εh(ϕ)

r

∂φ
∂r (t, ϕ, z) dt .

An easy application of the Schwartz inequality gives

φ2(r, ϕ, z) ≤
(∫ R+εh(ϕ)

R

(∂φ
∂r

)2(t, ϕ, z)t dt

)(∫ R+εh(ϕ)

r

dt

t

)
.

Integration over Cε leads to∫
Cε
φ2 =

∫ 2π

0

∫ l

0

∫ R+εh(ϕ)

R

φ2(r, ϕ, z)rdrdzdϕ

≤ I(ε)
∫ 2π

0

∫ l

0

∫ R+εh(ϕ)

R

(∂φ∂r )2(t, ϕ, z)t dt dz dϕ

where

I(ε) =
∫ R+εβ2

R

r

∫ R+εβ2

r

dt

t
dr ≤ β2

2

2R
(R+ εβ2)ε2 . 2

Lemma 3. There exists φ ∈ H1(Cε) such that

div φ = F ∈ L2(Cε)
φ = κ~eϕ for r = R, κ = const.
φ = 0 for r = R+ εh

φ = ηε for z = 0 , ηε(r, ϕ) = η(r−Rε , ϕ)
φ = δε for z = l , δε(r, ϕ) = δ(r−R

ε
, ϕ) ,

where η, δ ∈ H1/2(S1), S1 = {(ρ, ϕ); 0 < ρ < h(ϕ), ϕ ∈]0, 2π[}. η, δ = κ for
r = R, η, δ = 0 for r = R+ εh,∫ R+εh

R

∫ 2π

0

r~ez · ηε −
∫ R+εh

R

∫ 2π

0

r~ez · δε =
∫ l

0

∫ R+εh

R

∫ 2π

0

rF ,

and
|φ|H1(Cε) ≤ C{1

ε
|F |L2(Cε) +

1√
ε

(|η|H1/2(S1) + |δ|H1/2(S1) + |κ|)} .
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If, in addition, η, δ ∈W 3/4,4(S1) we have the estimate

|φ|L4(Cε) ≤ C{|F |L4(Cε) + ε1/4(|η|W3/4,4(S1) + |δ|W3/4,4(S1) + |κ|)} .

Proof. Let φ = φ1 + φ2 where φ1 is a solution of the problem

div φ1 = F in Cε ,
φ1 = κ~eϕ for r = R ,

φ1 = 0 for r = R+ εh ,

φ1 = (ηε · ~eϕ)~eϕ + (ηε · ~ez)~ez for z = 0 ,
φ1 = (δε · ~eϕ)~eϕ + (δε · ~ez)~ez for z = l ,

and φ2 is a solution of the problem
div φ2 = 0 in Cε ,
φ2 = 0 for r = R, R+ εh ,

φ2 = (ηε · ~er)~er for z = 0 ,
φ2 = (δε · ~er)~er for z = l .

We first deal with φ1. We define Ψε as a solution of the problem

∂Ψεr
∂ρ +

∂Ψεϕ
∂ϕ + ∂Ψεz

∂z = fε in C ,
Ψε = (0, κ, 0) for ρ = 0 ,
Ψε = 0 for ρ = h ,

Ψε = (0, ηϕ, (R+ ερ)ηz) for z = 0 ,
Ψε = (0, δϕ, (R+ ερ)δz) for z = l ,

Ψε is 2π–periodic in ϕ ,

where

fε(ρ, ϕ, z) = (R+ ερ)F (Ξ−1(R+ ερ, ϕ, z)) ,
ηα(ρ, ϕ) = ηεα(Ξ−1(R+ ερ, ϕ, 0)), α = ϕ, z ,

δα(ρ, ϕ) = δεα(Ξ−1(R + ερ, ϕ, l)), α = ϕ, z ,

Ξ(x1, x2, x3) = (r, ϕ, z) .

The standard a priori estimate (see e.g.[8]) implies

|Ψε|W1,q(C) ≤ C(|fε|Lq(C) + |η|W1−1/q,q(S1) + |δ|W1−1/q,q(S1) + |κ|),

where Lq(C) andW 1,q(C) are the usually defined spaces on C = {(ρ, ϕ, z) ∈ R3;ϕ ∈
]0, 2π[, z ∈]0, l[, 0< ρ < h(ϕ)} with respect to the Lebesque measure dρdϕdz. By
direct integration we obtain

|fε|Lq(C) ≤
C

ε1/q
|F |Lq(Cε) .

Defining

φ1(x1, x2, x3) =
ε

r
Ψε
r(
r − R
ε

, ϕ, z)~er + Ψε
ϕ(
r −R
ε

, ϕ, z)~eϕ +
1
r

Ψε
z(
r −R
ε

, ϕ, z)~ez ,



248 A. DUVNJAK AND E. MARUŠIĆ-PALOKA

we get estimates

|φ1|H1(Cε) ≤ C(
1
ε
|F |L2(Cε) +

1√
ε

(|η|H1/2(S1) + |δ|H1/2(S1) + |κ|)) ,

|φ1|L4(Cε) ≤ Cε1/4|Ψε|L4(C) ≤ C(|F |L4(Cε)+ε1/4(|η|W3/4,4(S1) +|δ|W3/4,4(S1)+|κ|)) .
For φ2 we proceed in a different way. We define the boundary layer–type functions
χL and χR as the solutions of the problems

∂χLr
∂ρ

+ ∂χLz
∂ξ

= 0 in G(ϕ) ,
χL = 0 for ρ = 0, h(ϕ) ,
χL = (ηr, 0) for ξ = 0 ,
χL → 0 as ξ → +∞ ,

∂χRr
∂ρ

+ ∂χRz
∂τ

= 0 in O(ϕ)
χR = 0 for ρ = 0, h(ϕ) ,
χR = (δr , 0) for τ = 0 ,
χR → 0 as τ →−∞ .

Those functions can be chosen such that they exponentially decay as ξ → +∞
and τ → −∞ (see for example [8]). A simple change of variables gives for χLε =
χL( r−Rε , ϕ, zε )

|χLε |Lq(Cε) ≤ Cε
2
q |χL|Lq(ω) ≤ Cε

2
q |η|W1−1/q,q(S1) ,

|∇χLε |Lq(Cε) ≤ Cε
2
q−1|∇χL|Lq(ω) ≤ Cε

2
q−1|η|W1−1/q,q(S1)

with ω = {(ρ, ϕ, ξ);ϕ ∈]0, 2π[, (ρ, ξ) ∈ G(ϕ)}. We have similar estimates for
function χRε = χR( r−Rε , ϕ, z−lε ). Now φ2 = χLε + χRε + ϑ where ϑ is defined by the
problem 

div ϑ = 0 in Cε ,
ϑ = 0 for r = R,R+ εh ,

ϑ = χLε for z = l ,

ϑ = χRε for z = 0 ,

and having a H1(Cε) norm smaller than any power of ε (due to the Saint–Venant’s
principle). Now

|φ2|H1(Cε) ≤ C(|η|H1/2(S1) + |δ|H1/2(S1)) ,

|φ2|L4(Cε) ≤ Cε1/2(|η|W3/4,4(S1) + |δ|W3/4,4(S1)) .

2

For the solution of the problem (1) we prove the following estimates:

Proposition 1. Let (uε, pε) be the solution of the problem (1). Then there exist
N,C > 0, independent on ε, such that

|uε|L2(Cε) ≤ N
√
ε ,

|∇uε|L2(Cε) ≤
N√
ε
,(21)

|pε|L2
0(Cε) ≤

C

ε3/2
.
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Proof. Let φε be the solution of the problem

div φε = 0 in Cε ,
φε = ω~eϕ for r = R ,

φε = 0 for r = R + εh ,

φε = g0( r−R
ε
, ϕ) =: gε0 for z = 0 ,

φε = gl( r−Rε , ϕ) =: gεl for z = l .

Then from Lemma 3 we get estimates

|φε|H1(Cε) ≤ C
1√
ε

(|g0|H1/2(Sε) + |gl|H1/2(Sε) + ω) ≤ C√
ε
, |φε|L4(Cε) ≤ Cε1/4.

Multiplying the equation (1) by uε − φε we get after integration over Cε

µ|∇uε|2L2(Cε) −
∫
Cε

(uε∇)φεuε +
∫
Cε

(uε∇)φεφε =
∫
Cε
∇uε∇φε .

It is easy to verify that the imbedding constant H1(Cε) ↪→ L4(Cε) can be chosen
independently on ε. Then

|
∫
Cε

(uε∇)uεφε| ≤ |uε|L4(Cε)|∇uε|L2(Cε)|φε|L4(Cε) ≤ Cε1/4|∇uε|2L2(Cε) ,

|
∫
Cε

(uε∇)φεφε| ≤ |uε|L4(Cε)|∇φε|L2(Cε)|φε|L4(Cε) ≤ ε−1/4C|∇uε|L2(Cε) .

Consequently we get

µ|∇uε|2L2(Cε) ≤ C(ε1/4|∇uε|2L2(Cε) +
1
ε1/4
|∇uε|L2(Cε) +

1√
ε
|∇uε|L2(Cε))

what leads to

|∇uε|L2(Cε) ≤
C√
ε
.

To estimate the pressure, supposing that
∫
Cε p

ε = 0, we define zε as the solution
of the problem {

div zε = pε in Cε ,
zε = 0 on ∂Cε .

Lemma 3 gives

|zε|H1(Cε) ≤
C

ε
|pε|L2(Cε) .

Using zε as the test function in (1) we obtain

|pε|2L2(Cε) = µ

∫
Cε
∇uε∇zε −

∫
Cε
uε∇)uεzε

≤ µ|∇uε|L2(Cε)|∇zε|L2(Cε) + Cε|∇uε|2L2(Cε)|∇zε|L2(Cε)

≤ C

ε3/2
|pε|L2(Cε) . 2
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We define dε as a solution of the problem{
div dε = div ũε in Cε ,
dε = ũε on ∂Cε ,

where ũε = uε − vε. Due to Lemma 3 dε can be chosen such that

|dε|H1(Cε) ≤ C(
1
ε
|div vε|L2(Cε) +

1√
ε

(|η|H1/2(S1) + |δ|H1/2(S1)))

|dε|L4(Cε) ≤ C(|div vε|L4(Cε) + ε1/4(|η|W3/4,4(S1) + |δ|W3/4,4(S1)))

where η(r, ϕ) = εΨ(r−Rε , ϕ, 0)~er + H0( r−Rε , ϕ,− l
ε ), δ(r, ϕ) = εΨ(r−Rε , ϕ, l)~er +

B0( r−Rε , ϕ, lε). Using (19) we conclude that

|dε|H1(Cε) ≤ C , |dε|L4(Cε) ≤ C
√
ε .

We denote by {
Rε = uε − (vε + dε)

Eε = pε − 1
ε2
p0 − 1

ε
(b0 + h0) + ∂Ψ

∂ρ
.

(22)

the difference between our approximation and the original solution, where vε is
defined by (18). For (Rε, Eε) we have the following estimates:

Proposition 2. Let (Rε, Eε) be defined by (22). Then there exists C > 0 inde-
pendent from ε such that

1√
|Cε|
|Rε|L2(Cε) ≤ C

√
ε(23)

1√
|Cε|
|ε2Eε|L2(Cε)/R ≤ C

√
ε(24)

Proof. (Rε, Eε) satisfy the system
−µ∆Rε + ((vε + dε)∇)Rε + (Rε∇)uε +∇Eε = βε in Cε ,
div Rε = 0 in Cε ,
Rε = 0 on ∂Cε ,

(25)

where, due to the regularity of u0,

|βε|H−1(Cε) ≤ C .

The explicit expression for βε is long and complicated but straightforward. Since
it will not be used in the sequel it can be omitted. Multiplying the equation (25)
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by Rε and integrating over Cε we obtain

µ|∇Rε|2L2(Cε) =
∫
Cε
βεR

ε −
∫
Cε

(Rε∇)uεRε

=
∫
Cε
βεR

ε −
∫
Cε

(Rε∇)vεRε +
∫
Cε

(Rε∇)Rεdε

≤ C(|∇Rε|L2(Cε) + |∇vε|L∞(Cε)|Rε|2L2(Cε)

+|dε|L4(Cε)|Rε|L4(Cε)|∇Rε|L2(Cε))

≤ C(|∇Rε|L2(Cε) +
1
ε
|Rε|2L2(Cε) +

√
ε|∇Rε|2L2(Cε))

≤ C(|∇Rε|L2(Cε) + ε|∇Rε|2L2(Cε) +
√
ε|∇Rε|2L2(Cε)) .

Thus |∇Rε|L2(Cε) ≤ C. Using the Poincare’s inequality we get

|Rε|L2(Cε) ≤ Cε

what leads to (23). To estimate Eε we define φ as the solution of the problem{
div φ = Eε in Cε ,
φ = 0 on ∂Cε ,

Lemma 3 gives that φ can be chosen such that

|φ|H1(Cε) ≤
C

ε
|Eε|L2(Cε).

Using φ as the test function in (25) we obtain

|Eε|L2(Cε) ≤
C

ε

and (24) easily follows. 2

The above proposition proves Theorem 3.

The following estimates are direct consequences of the Proposition 2:

Corollary 1.∣∣∣∣∣1ε
∫ R+εh(ϕ)

R

uεdr +
h3

12µ
(∂p

0

∂z ~ez +
1
R
∂p0

∂ϕ ~eϕ)− ωh

2
~eϕ

∣∣∣∣∣
L2(Ω)

≤ C
√
ε ,

∣∣∣∣∣ ε

h(ϕ)

∫ R+εh(ϕ)

R

pεdr − p0

∣∣∣∣∣
L2(Ω)/R

≤ C
√
ε .

Remark 3. If g0 = gl = 0 and h =const., then the only remaining term is ωh
2
~eϕ

i.e. there is only a uniform rotation of the fluid due to the rotation of the shaft
with angular velocity ω.
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Remark 4. Calculating in a similar way the second term u1 in expansion (2) for
uε, we get the Reynolds equation for the second term p1 in expansion (3) for p.

Rh3 ∂
2p1

∂z2 + 1
R

∂
∂ϕ

(h3 ∂p
1

∂ϕ
) = −2µω

R
hh′ − h4

2
∂2p0

∂z2 + 1
2R2

∂
∂ϕ

(h4 ∂p
0

∂ϕ
) in Ω ,

∂p1

∂z
(ϕ, z) = 12µ

h3R
τz(ϕ) for z = 0, l

p1 is 2π–periodic in ϕ ,

where

τ0(ϕ) =
∫ ∞

0

∫ h(ϕ)

0

(B0
r +

∂B0
ϕ

∂ϕ
)dρdξ = −

∫ h(ϕ)

0

ρ~ez · g0(ρ, ϕ)dρ − h4

24µ
λ0(ϕ)

+2
∞∑
k=0

1
(2k + 1)2π2

∂

∂ϕ
[h2A2k+1(ϕ)],

τl(ϕ) =
∫ ∞

0

∫ h(ϕ)

0

(H0
r +

∂H0
ϕ

∂ϕ
)dρdξ = −

∫ h(ϕ)

0

ρ~ez · gl(ρ, ϕ)dρ − h4

24µ
λl(ϕ)

+2
∞∑
k=0

1
(2k + 1)2π2

∂

∂ϕ
[h2B2k+1(ϕ)] .

Coefficients Ak are defined by

Ak(ϕ) =
∫ h(ϕ)

0

sin
kπ t

h(ϕ)
(gϕ0 (t, ϕ)− u0

ϕ(t, ϕ)) dt ,

i.e. those are the Fourier’s coefficient for B0
ϕ (see (1)). Analogously

Bk(ϕ) =
∫ h(ϕ)

0

sin
kπ t

h(ϕ)
(gϕl (t, ϕ)− u0

ϕ(t, ϕ)) dt

are the coefficients in the Fourier’s expansion for H0
ϕ.

This problem has a unique (up to a constant) solution p1 ∈ H2(Ω) ∩ C1(Ω) iff∫ 2π

0

∫ h(ϕ)

0

ρ~ez · g0(ρ, ϕ)dρdϕ =
∫ 2π

0

∫ h(ϕ)

0

ρ~ez · gl(ρ, ϕ)dρdϕ

which is exactly the hypothesis (H2). The error estimate of order ε
√
ε can be

proved analogously as in Theorem 3.
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