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THE NATURAL OPERATORS

LIFTING VECTOR FIELDS TO (JrT ∗)∗

W LODZIMIERZ M. MIKULSKI

For integers r ≥ 2 and n ≥ 2 a complete classification of all natural
operators A : T|Mn

T (JrT ∗)∗ lifting vector fields to vector fields on the natural
bundle (J rT ∗)∗ dual to r-jet prolongation J rT ∗ of the cotangent bundle over n-
manifolds is given.

0. The r-jet prolongation JrT ∗M of the cotangent bundle T∗M of an n-manifold
M is the space of all r-jets of 1-forms on M , i.e. JrT ∗M = {jrxω | ω is a
1-form on M , x ∈M}. It is a vector bundle over M with respect to the source

projection. Let π : (JrT ∗)∗M = (JrT ∗M )∗ → M be the dual vector bundle.
Clearly, every embedding ϕ : M → N of two n-manifolds induces functorially (in
obvious way) a vector bundle mapping (JrT ∗)∗ϕ : (JrT ∗)∗M → (JrT ∗)∗N over
ϕ, and we obtain a natural vector bundle (JrT ∗)∗ :Mn → VB ⊂ FM.

In this paper, we study the problem how a vector field X on an n-manifold M
induces canonically a vector field A(X) on (JrT ∗)∗M . This problem is reflected
in the concept of natural operators A : T|Mn

 T (JrT ∗)∗ in the sense of Kolář,
Michor and Slovák [5]. We prove that if n ≥ 2 and r ≥ 2 are integers, then the
set of all natural operators A : T|Mn

 T (JrT ∗)∗ is a vector space over R of
dimension r + 3. We construct explicitly a basis of this vector space.

Various natural operators lifting vector fields are used practically in all papers in
which problems of prolongations of geometric structures have been studied. That
is why classifications of all natural operators lifting vector fields to some natural
bundles have been studied in papers [1]-[9] and many others.

Throughout this note the usual coordinates on Rn are denoted by x1, . . . , xn

and ∂i = ∂
∂xi , i = 1, . . . , n.

All manifolds and maps are assumed to be of class C∞.

1. Let X be a vector field on an n-manifold M .

Example 1. We have the complete lift (JrT ∗)∗X of X to (JrT ∗)∗M .
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Example 2. We have the Liouville vector field L on (JrT ∗)∗M .

Example 3. If s ∈ {1, . . . , r + 1}, we define a vertical vector field A(s)(X) on
(JrT ∗)∗M , A(s)(X)|u := (u, Ã(s)(X)(x)) ∈ {u} × (JrT ∗)∗xM=̃Vu((JrT ∗)∗M ),
u ∈ (JrT ∗)∗xM , x ∈M , where Ã(s)(X)(x) : (JrT ∗)xM → R is a linear map given
by Ã(s)(X)(x)(jrxω) := Xs−1ω(X)(x), Xs−1 = X ◦ · · · ◦X ((s− 1)-times of X), ω
is a 1-form on M .

Thus for natural numbers r and n we have r + 3 natural operators T|Mn
 

T (JrT ∗)∗. Namely, we have (JrT ∗)∗, L and A(s) for s = 1, . . . , r+ 1.

Clearly, given natural numbers r and n the set of all natural operators T|Mn
 

T (JrT ∗)∗ is a vector space over R with respect to the obvious operations.

The main result of this paper is the following classification theorem.

Theorem 1. If n ≥ 2 and r ≥ 2 are integers, then the natural operators (JrT ∗)∗,
L and A(s) for s = 1, . . . , r+1 form a basis over R of the vector space of all natural
operators T|Mn

 T (JrT ∗)∗.

The proof of Theorem 1 will occupy the rest of this paper.

2. In this item we study natural transformations B : (JrT ∗)∗ → (JrT ∗)∗ over
n-manifolds.

Proposition 1. For integers n ≥ 2 and r ≥ 2 any natural transformation B :
(JrT ∗)∗ → (JrT ∗)∗ over n-manifolds is proportional (by a real number) to the
identity natural transformation id : (JrT ∗)∗ → (JrT ∗)∗.

Proof. Clearly, any element from the fibre (JrT ∗)∗0Rn is a linear combination of
the (jr0(xαdxi))∗ for all α ∈ (N ∪ {0})n with |α| ≤ r and i = 1, . . . , n, where the
(jr0(xαdxi))∗ form the basis dual to the jr0(xαdxi) ∈ (JrT ∗)0Rn for α and i as
beside.

Any natural transformation B as in the proposition is uniquely determined by
the values 〈B(u), jr0(xαdxi)〉 ∈ R for u ∈ (JrT ∗)∗0Rn , α ∈ (N∪{0})n with |α| ≤ r
and i = 1, . . . , n. Since B is invariant with respect to the coordinate permutations,
it is uniquely determined by the 〈B(u), jr0(xαdx1)〉 for any u and α as above. If
|α| ≥ 1, then the local diffeomorphisms ϕα = (x1, x2 + xα, x3, . . . , xn)−1 sends
jr0(x2dx1) into jr0(x2dx1) + jr0(xαdx1). Then (using the invariancy of B with
respect to the ϕ’s) B is uniquely determined by the 〈B(u), jr0(x2dx1)〉 ∈ R and
the 〈B(u), jr0(dx1)〉 ∈ R for any u ∈ (JrT ∗)∗0Rn.

At first we study the 〈B(u), jr0 (dx1)〉 ∈ R for u as above.
By the naturality of B with respect to the homotheties at = (t1x1, . . . , tnxn) for

t = (t1, . . . , tn) ∈ Rn
+, 〈B((JrT ∗)∗(at)(u)), jr0(dx1)〉 = t1〈B(u), jr0(dx1)〉 for any

t = (t1, . . . , tn) ∈ Rn
+. For any t ∈ Rn, any i = 1, . . . , n and any α ∈ (N∪{0})n we

have (JrT ∗)∗(at)((jr0 (xαdxi))∗) = tα+ei(jr0(xαdxi))∗. Then by the homogeneous
function theorem, see [5], we have 〈B(u), jr0(dx1)〉 = λu(0),1 for some λ ∈ R,
where uα,i is the coefficient of u ∈ (JrT ∗)∗0Rn corresponding to (jr0(xαdxi))∗,
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(0) = (0, . . . , 0) ∈ (N∪{0})n. Replacing B by B−λid, we can assume that λ = 0,
i.e.

(2.1) 〈B(u), jr0(dx1)〉 = 0 for any u ∈ (JrT ∗)∗0Rn .

It remains to show that 〈B(u), jr0(x2dx1)〉 = 0 for any u ∈ (JrT ∗)∗0Rn.
By the naturality of B with respect to the homotheties at = (t1x1, . . . , tnxn)

for t = (t1, . . . , tn) ∈ Rn
+ and by the homogeneous function theorem, we have

(2.2) 〈B(u), jr0(x2dx1)〉 = λu(0),1u(0),2 + µue1,2 + νue2,1

for some λ, µ, ν ∈ R, ei = (0, . . . , 0, 1, 0, . . ., 0) ∈ (N ∪ {0})n, 1 in i-th position.
It remains to show that λ = µ = ν = 0.
Firstly we prove λ = 0, i.e. 〈B((jr0 (dx1))∗ + (jr0(dx2))∗), jr0(x2dx1)〉 = 0. For,

we prove

(2.3)

〈B((jr0 (dx1))∗ + (jr0(dx2))∗), jr0(x2dx1)〉

= 〈B((jr0 (dx1))∗ + (jr0(dx2))∗ − 1
r + 1

(jr0(x1)rdx1)∗), jr0(x2dx1)〉

= 〈B((jr0 (dx2))∗ − 1
r + 1

(jr0(x1)rdx1)∗), jr0(x2dx1)〉 = 0 .

The first and the third equalities of (2.3) are consequences of formula (2.2).
We prove the second equality of (2.3). We observe that the local diffeomorphism
ϕ = (x1 + (x1)r+1, x2, . . . , xn) preserves jr0(x1dx2), (jr0(dx1))∗ and (jr0(dx2)∗, and
it sends (jr0((x1)rdx1)∗ into (r+ 1)(jr0(dx1))∗+ (jr0((x1)rdx1))∗. (For example, we
prove the last fact. Given α ∈ (N∪{0})n with |α| ≤ r and i = 1, . . . , nwe have l :=
〈(JrT ∗)∗(ϕ)((jr0 ((x1)rdx1))∗), jr0(xαdxi)〉 = 〈(jr0((x1)rdx1))∗, jr0(ϕ−1

∗ (xαdxi))〉 =
〈(jr0((x1)rdx1))∗, jr0(xαdxi) + (r + 1)δi1j

r
0(xα(x1)rdxi)〉. Then l is equal to 1 if

jr0(xαdxi) = jr0((x1)rdx1), l is equal to r+ 1 if jr0(xαdxi) = jr0(dx1), and l is equal
to 0 in the other cases.) Now, using the naturality of B with respect to ϕ we end
the proof of the second equality of (2.3).

Now, we show µ = 0, i.e. 〈B((jr0 (x1dx2))∗), jr0(x2dx1)〉 = 0. For, we prove if
r ≥ 2, then

(2.4)

〈B((jr0 (x1dx2))∗), jr0(x2dx1)〉
= 〈B((jr0 (x1dx2))∗ + 2(jr0((x1)2dx2))∗), jr0(x2dx1)〉
= 〈B(2(jr0 ((x1)2dx2))∗ + (jr0(dx2))∗), jr0(x2dx1)〉 = 0 .

The first and the third equalities of (2.4) are consequences of formula (2.2).
We prove the second equality of (2.4). It is not difficult to verify that the lo-
cal diffeomorphism ψ = (x1 + 1

2(x1)2, x2

1+x1 , x
3, . . . , xn) preserves jr0(x2dx1), it

sends (jr0(x1dx2))∗ into (jr0(x1dx2))∗ − (jr0(dx2))∗, and it sends (jr0((x1)2dx2))∗

into (jr0((x1)2dx2))∗− 1
2 (jr0(x1dx2))∗+ (jr0(dx2))∗. Now, using the naturality of B

with respect to ψ we end the proof of the second equality of (2.4).
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It remains to show ν = 0, i.e. 〈B((jr0 (x2dx1))∗), jr0(x2dx1)〉 = 0. We see

(2.5)

0 =〈B((jr0 (x1dx2))∗), jr0(dx1)〉
= 〈B((jr0 (x1dx2))∗ − (jr0(dx1))∗), jr0(dx1) + jr0(x1dx2) + jr0(x2dx1)〉
= 〈B((jr0 (x1dx2))∗ − (jr0(dx1))∗), jr0(x1dx2)〉
= 〈B((jr0 (x2dx1))∗ − (jr0(dx2))∗), jr0(x2dx1)〉
= 〈B((jr0 (x2dx1))∗), jr0(x2dx1)〉 .

The first equality of (2.5) is a consequence of formula (2.1). The fifth one is a
consequence of formula (2.2). The fourth one is a consequence of the naturality
of B with respect to the diffeomorphism (x2, x1, x3, . . . , xn) permuting x1 and x2.
The third one is a consequence of formulas (2.1), (2.2) and (2.4). We prove the
second equality of (2.5). It is not difficult to verify that the local diffeomorphism
θ = (x1 + x1x2, x2, . . . , xn)−1 sends jr0(dx1) into jr0(dx1) + jr0(x1dx2) + jr0(x2dx1)
and it sends (jr0(x1dx2))∗ into (jr0(x1dx2))∗−(jr0 (dx1))∗. Now, using the naturality
of B with respect to θ we end the proof of the second equality of (2.5).

The proof of Proposition 1 is complete. 2

3. We are now in position to prove Theorem 1. Clearly, the natural op-
erators (JrT ∗)∗, L and A(s) for s = 1, . . . , r + 1 are linearly independent. So,
it is sufficient to show that for integers n ≥ 2 and r ≥ 2 any natural operator
A : T|Mn

 T (JrT ∗)∗ is a linear combination with real coefficients of the natural
operators (JrT ∗)∗, L and A(s) for s = 1, . . . , r + 1

Let A : T|Mn
 T (JrT ∗)∗ be a natural operator, where r ≥ 2 and n ≥ 2 are

integers.
The Gr+1

n -space S = (JrT ∗)∗0Rn corresponding to (JrT ∗)∗ is naturally con-
tracttible to q = 0 ∈ S in the sense of Def.1 in [4]. Then by Proposition 1 in [4]
there exists a number λA ∈ R such that A − λA(JrT ∗)∗ : T|Mn

 T (JrT ∗)∗ is a
vertical operator. Then replacing A by A− λA(JrT ∗)∗ we can assume that

(3.1) A is a vertical operator.

Define a natural thansformationBA := pr2 ◦A(0) : (JrT ∗)∗M → (JrT ∗)∗M for
any n-manifold M , where 0 is the zero vector field on M and pr2 : V (JrT ∗)∗M =̃
(JrT ∗)∗M ×M (JrT ∗)∗M → (JrT ∗)∗M is the projection onto second factor. By
Proposition 1, there exists µA ∈ R such that BA = µAid. Then replacing A by
A− µAL we can assume that

(3.2) A(0) = 0 ∈ X ((JrT ∗)∗M ) for any n-manifold M .

We define Ã : R × (JrT ∗)∗0Rn → (JrT ∗)∗0Rn, Ã(λ, u) = pr2 ◦ A(λ∂1)(u),
λ ∈ R, u ∈ (JrT ∗)∗0Rn, where pr2 is as above. It is well-known that A is uniquely
determined by Ã(1, .) = pr2 ◦A(∂1)|(JrT∗)∗0Rn . So, we will study Ã.
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Let P (r) be the set of all pairs (α, i), where α ∈ (N∪{0})n is such that |α| ≤ r
and i = 1, . . . , n. For any (α, i) ∈ P (r) we define Ãα,i : R × (JrT ∗)∗0Rn → R
such that Ã =

∑
(α,i)∈P (r) Ãα,i · (jr0(xαdxi))∗. By the naturality of A with respect

to the homotheties at = tidRn for t ∈ R+ we have the homogeneity condition
Ãα,i(tλ, (JrT ∗)∗0(at)(u)) = t|α|+1Ãα,i(λ, u) for any λ ∈ R, any u ∈ (JrT ∗)∗0Rn

and any (α, i) ∈ P (r). By (3.2), Ãα,i(0, .) = 0 for any (α, i) ∈ P (r). Now, by the
homogeneous function theorem, Ãα,i(λ, u) is a linear combination of monomials in
λ and the uβ,j for (β, j) ∈ P (r) with |β| ≤ |α| − 1, where given u the uβ,j are the
coordinates of u as in Item 2. Hence for all µβ,j ∈ R we have

(3.3) Ã(1,
∑

(β,j)∈P (r)

µβ,j · (jr0(xβdxj))∗) = Ã(1,
∑

(β,j)∈P (r−1)

µβ,j · (jr0(xβdxj))∗) .

We prove that Ã(1, u) = Ã(1, 0) for all u ∈ (J rT ∗)∗0Rn.
Assume the contrary. Let k be the minimal number such that there exists

(βo, jo) ∈ P (r) with |βo| = k such that Φ((µβ,j)(β,j)∈P (r)) := Ã(1,
∑

(β,j)∈P (r) µβ,j ·
(jr0(xβdxj))∗) depends essentially on µβo,jo, i.e. ∂

∂µβo,jo
Φ 6= 0. (Then r − k ≥ 1.)

We fix some (βo , jo) as above such that βon is minimal, where βo = (βo1 , . . . , β
o
n).

We produce a contradiction.
We say that (jr0(xβdxj))∗, where (β, j) ∈ P (r), is not essential if |β| < k or

|β| = r or (|β| = k and βn < βon). Let ϕ = (x1, . . . , xj
o

+ (xn)r−k+1, . . . , xn) (only
the jo-position is exceptional) be a local diffeomorphism. Denote ϕ̃ := (JrT ∗)∗0(ϕ)
and Ã1 = Ã(1, .). It will be proved below that

Φ((µβ,j)(β,j)∈P (r)) = Ã1(
∑

(β,j)∈P (r−1),|β|≥k

µβ,j · (jr0(xβdxj))∗)

= Ã1(
∑

(β,j)∈P (r−1),|β|≥k
µβ,j · (jr0(xβdxj))∗ − µβo,jo

a
(jr0(xβ

o

(xn)r−kdxn))∗)

= ϕ̃−1◦Ã1(ϕ̃(
∑

(β,j)∈P (r−1),|β|≥k

µβ,j · (jr0(xβdxj))∗− µβo,jo

a
(jr0(xβ

o

(xn)r−kdxn))∗))

= ϕ̃−1 ◦ Ã1(
∑

(β,j)∈P (r−1),|β|≥k

µβ,j · (jr0(xβdxj))∗ − µβo,jo · (jr0(xβ
o

dxn))∗ + . . . )

= ϕ̃−1 ◦ Ã1(
∑

(β,j)∈P (r−1),|β|≥k

µβ,j · (jr0(xβdxj))∗ − µβo,jo · (jr0(xβ
o

dxn))∗) ,

where the dots is the linear combination of the not essential (jr0(xβdxj))∗’s and
a 6= 0 is some real number which will be defined bellow. Then Φ is independent
of µβo,jo, i.e. we have a contradiction.

Let us explain the above equalities.
The first, the second and the last equalities are consequences of the formula

(3.3), the definition of k, the definition of (βo , jo), the definition of not essential
(jr0(xβdxj))∗’s and the equality |βo|+r−k = r. The third equality is a consequence
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of the invariancy of A and ∂1 with respect to ϕ. The fourth equality is a conse-
quence of the following (not difficult to verify) two facts. For any (β, j) ∈ P (r−1)
with |β| ≥ k the local diffeomorphismϕ sends (jr0(xβdxj))∗ into (jr0(xβdxj))∗+. . . ,
where the dots denote the linear combination of the (jr0(xαdxi))∗ for |α| < k. The
local diffeomorphism ϕ sends (jr0(xβ

o

(xn)r−kdxn))∗ into a · (jr0(xβ
o

dxj
o

))∗ + . . .
for some real number a 6= 0, where the dots denote the linear combination of
(jr0(xβ

o

(xn)r−kdxn))∗, (jr0(xβ
o+ejo−endxn))∗ (only in the case jo 6= n and βon 6= 0)

and the (jr0(xαdxi))∗ for |α| < k.

We have proved that Ã(1, u) = Ã(1, 0) for any u ∈ (JrT ∗)∗0Rn. Now, using
the invariancy of A and ∂1 with respect to the bt = (x1, tx2, . . . , txn) for t ∈ R+

and next putting t → 0 we deduce that Ã(1, u) =
∑r
i=0 λi · (jr0(x1)idx1))∗ for

any u ∈ (JrT ∗)∗0Rn, where λi for i = 0, . . . , r are some real numbers. Hence the
vector space of all natural operators A : T|Mn

 T (JrT ∗)∗ satisfying conditions
(3.1) and (3.2) has dimension ≤ r + 1. On the other hand the operators A(s)

for s = 1, . . . , r + 1 satisfy (3.1) and (3.2), and they are linearly independent.
Therefore our A is a linear combination of the A(s) for s = 1, . . . , r+ 1.

The proof of Theorem 1 is complete. 2
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