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NATURAL TRANSFORMATIONS OF SEPARATED JETS

Miroslav Doupovec, Ivan Koĺař

Given a map of a product of two manifolds into a third one, one can
define its jets of separated orders r and s. We study the functor J r;s of separated
(r; s)-jets. We determine all natural transformations of J r;s into itself and we
characterize the canonical exchange J r;s → Js;r from the naturality point of view.

Let M , N , Q be manifolds. Given a map f : M × N → Q, M. Kawaguchi
introduced the concept of jet of separated orders r and s, [1], see also [5]. Write
Jr;s(M,N,Q) for the bundle of all such separated (r; s)-jets. In [2] the second
author reformulated the Kawaguchi’s idea in a way that clarifies there is a canonical
exchange diffeomorphism κM,N,Q : Jr;s(M,N,Q) → Js;r(N,M,Q). Let Mf be
the category of all manifolds and all smooth maps andMfm be the category of m-
dimensional manifolds and their local diffeomorphisms. In Section 2 we interpret
Jr;s as a functor on the product category Mfm ×Mfn ×Mf similarly as the
construction of classical r-jets is viewed as a functor on the category Mfm ×Mf
in [3]. Then κ is a natural equivalence Jr;s → Js;r.

Our main problem is that of uniqueness of κ from the viewpoint of the theory
of natural operations, [3]. In Proposition 4 we deduce that for r ≥ 2, s ≥ 2, κ
is the only natural equivalence Jr;s → Js;r over the canonical exchange functor
Mfm×Mfn×Mf →Mfn×Mfm×Mf . For r = 1 or s = 1, the vector bundle
structure of the classical first order jet bundles comes into play in a simple way. In
order to prove Proposition 4, we determine all natural transformations Jr;s → Jr;s

in Section 3. Here we use essentially a result from [4] that describes all natural
transformations of the classical r-jet functor into itself.

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notation from [3].
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1. Separated (r; s)-jets

Consider three manifoldsM,N,Q, two integers r, s and a point (x, y) ∈M×N .
For every map f : M ×N → Q, denote by fu : N → Q or fv : M → Q the partial
map v 7→ f(u, v) or u 7→ f(u, v) respectively, u ∈ M , v ∈ N . If we construct the
r-jet jrxfv for every v ∈ N , we obtain a map N → Jrx(M,Q). Let g : M ×N → Q
be another map.

Definition 1. We say that f and g determine the same jet of separated orders r
and s at (x, y) ∈M ×N , if

(1) jsy(jrxfv) = jsy(jrxgv) ∈ Jry (N, Jrx(M,Q)) .

The equivalence class will be denoted by jr;sx,yf . In short, jr;sx,yf will be called
the separated (r; s)-jet of f at (x, y).

Consider some local coordiates xi on M , yp on N and za on Q, i = 1, . . . ,m =
dimM , p = 1, . . . , n = dimN , a = 1, . . . , q = dimQ. Write α or β for a multiindex
corresponding to xi or yp, respectively. Let fa(xi, yp) be the coordinate expression
of f . Since the coordinate form of jrxfv is determined by Dαf

a, 0 ≤ |α| ≤ r, we
have

Proposition 1. j r;sx,yf = jr;sx,yg is characterized by

(2) Dαβf
a(x, y) = Dαβg

a(x, y) , 0 ≤ |α| ≤ r , 0 ≤ |β| ≤ s .

Write Jr;s(M,N,Q) for the space of all separated (r; s)-jets of M ×N into Q.
This is a fibered manifold over M ×N ×Q with the induced coordinates

(3) zaαβ , |α| ≤ r , |β| ≤ s .

Analogously to the classical case, Jr;sx,y(M,N,Q)z ⊂ Jr;s(M,N,Q) means the sub-
set of all separated (r; s)-jets with source (x, y) and target z, x ∈ M , y ∈ N ,
z ∈ Q.

For every r ≤ r and s ≤ s, we have a canonical projection

πr,sr,s : Jr;s(M,N,Q)→ Jr;s(M,N,Q) .

Write ε : M × N → N ×M for the exchange map ε(x, y) = (y, x). Using (2)
we find that js;ry,x(f ◦ ε) is determined by jr;sx,yf . This defines a canonical exchange
diffeomorphism

(4) κM,N,Q : Jr;s(M,N,Q)→ Js;r(N,M,Q) .

Example 1. For M = N = R, x = y = 0, r = s = 1 we have J 1
0 (R, J 1

0(R,Q)) =
T (TQ). In this case, the restriction of κR,R,Q coincides with the well known
canonical involution on TTQ.
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2. The functor Jr;s

Consider another manifold Q.

Lemma 1. Let g : Q → Q be a map and X = jr;sx,yf ∈ Jr;s(M,N,Q). Then
jr;sx,y(g ◦ f) ∈ Jr,s(M,N,Q) depends on jr+sf(x,y)g and X only.

Proof. In coordinates, the derivatives in question of g◦f depend on the derivatives
of g up to order r + s and on X only. �

Thus, for every W ∈ Jr+sz (Q,Q)w and every X ∈ Jr;sx,y(M,N,Q)z, we have
defined a composition

(5) W ◦X ∈ Jr;sx,y(M,N,Q)w .

In the same way, we deduce

Lemma 2. Let g : M →M and h : N → N be two maps, g(x) = x, h(y) = y, x ∈
M , y ∈ N and X = jr;sx,yf ∈ Jr;s(M,N,Q). Then jr;sx,y(f ◦ (g×h)) ∈ Jr;sx,y(M,N,Q)
depends on jrxg, j

s
yh and X only. �

Thus, for Y ∈ Jrx(M,M )x, Z ∈ Jsy (N,N )y and X ∈ Jr;sx,y(M,N,Q)z we have
defined the composition

(6) X ◦ (Y, Z) ∈ Jr;sx,y(M,N,Q)z .

If we combine both (5) and (6), we obtain

(7) W ◦X ◦ (Y, Z) ∈ Jr;sx,y(M,N,Q)w .

The associativity properties of (7) follow directly from the associativity of the
composition of maps.

Consider two local diffeomorphisms g : M → M , h : N → N and a map
f : Q→ Q. Then we define

(8) Jr;s(g, h, f) : Jr;s(M,N,Q)→ Jr;s(M,N,Q)

by setting, for every X ∈ Jr;sx,y(M,N,Q)z, g(x) = x, h(y) = y,

(9) Jr;s(g, h, f)(X) = (jr+sz f) ◦X ◦ ((jrxg
−1, jsyh

−1)) ,

where g−1 and h−1 are constructed locally.
Clearly, using the terminology of [3], we obtain

Proposition 2. J r;s is a bundle functor on Mfm ×Mfn ×Mf . �
Remark 1. It is interesting to discuss the order of Jr;s. In general, a bundle
functor F on the product C1×· · ·×Ck of k categories over manifolds will be called
of order (r1, . . . , rk), if for every two k-tuples of Ci-morphisms fi, gi : Ai → Bi,
i = 1, . . . , k, the conditions jrixifi = jrixigi, xi ∈ Ai, imply

(10) F (f1, . . . , fk)|Fx1,...,xk(A1, . . .Ak) = F (g1, . . . , gk)|Fx1,...,xk(A1, . . . , Ak) .

In our case, the order of Jr;s is (r, s, r+ s).
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3. Natural transformations Jr;s → Jr;s

In the case of the classical r-jet functor Jr, which is a bundle functor onMfm×
Mf , the following list of all natural transformations J r → Jr is deduced in [4].
For a map f : M → N , let f0

x , x ∈ M , denote the constant map f0
x(u) = x. The

so-called contraction σM,N : Jr(M,N )→ Jr(M,N ) is defined by

σM,N (jrxf) = jrx(f0
x ) .

For r ≥ 2, all natural transformations J r → Jr are

(11) idJr(M,N) and σM,N .

For r = 1, J1(M,N ) = T∗M ⊗ TN is a vector bundle and all natural transforma-
tions J1 → J1 are the homotheties

(12) k idJ1(M,N) , k ∈ R .
Having a map f : M ×N → Q, we define fix,y : M ×N → Q, x ∈ M , y ∈ N ,

i = 0, 1, 2, by

f0
x,y(u, v) = f(x, y) , f1

x,y(u, v) = f(x, v) , f2
x,y(u, v) = f(u, y) .

Then we introduce the following three natural transformations
%iM,N,Q : Jr;s(M,N,Q)→ Jr;s(M,N,Q)

%0
M,N,Q(jr;sx,yf) = jr;sx,yf

0
x,y (the total contraction),(13)

%1
M,N,Q(jr;sx,yf) = jr;sx,yf

1
x,y (the first contraction),(14)

%2
M,N,Q(jr;sx,yf) = jr;sx,yf

2
x,y (the second contraction).(15)

For s = 1 (the case r = 1 is quite similar), we can construct further natural
transformations as follows. We recall

Jr;1(M,N,Q) =
⋃
x∈M

J1(N, Jrx(M,Q)) .

Take any natural transformation τM,Q : Jr(M,Q) → Jr(M,Q), see (11) or (12).
Consider the restriction

(τM,Q)x : Jrx(M,Q)→ Jrx(M,Q) , x ∈M ,

and construct the induced jet map

J1(idN , (τM,Q)x) : J1(N, Jrx(M,Q))→ J1(N, Jrx(M,Q)) .

Taking into account all x ∈M , we obtain a map

J 1
NτM,Q : Jr;1(M,N,Q)→ Jr;1(M,N,Q) .

Applying further a homothety with coefficient k ∈ R on each vector bundle
J1(N, Jrx(M,Q)), we obtain a natural transformation

kJ 1
N τM,Q : Jr;1(M,N,Q)→ Jr;1(M,N,Q) .

For r ≥ 2, the only two possibilities are (11). For r = 1, we have τM,Q =
k idJ1(M,Q), k ∈ R.

From the technical point of view, our main result is the following assertion.
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Proposition 3. All natural transformations J r;s → Jr;s are
(i) for r ≥ 2, s ≥ 2

(16) %0, %1, %2, id ,

(ii) for s = 1, r ≥ 2 (and analogously for r = 1, s ≥ 2)

(17) kJ 1σ , kJ 1 id , k ∈ R ,

(iii) for r = 1, s = 1

(18) kJ 1k id , k, k ∈ R .

Proof. First of all we discuss the subcategory Mfq ⊂ Mf . Applying Lemma
14.11 from [3] to each factor ofMfm×Mfn×Mfq , we deduce that every natural
transformation of J r;s into itself is over the identities on bases. Write G = Grm ×
Gsn ×Gr+sq and Lr;sm,n,q = Jr;s0,0(Rm,Rn,Rq)0. According to the general theory, [3],
we are looking for G-equivariant maps of Lr;sm,n,q into itself. By (3), the canonical
coordinates on Lr;sm,n,q are

(19) zaαβ , |α| ≤ r , |β| ≤ s , (α, β) 6= (0, 0) .

The action of G1
m ×G1

n ×G1
q ⊂ G on (19) is tensorial.

Any smooth map f : Lr;sm,n,q → Lr;sm,n,q is of the form

(20) zaαβ = faαβ(zbγδ) ,

where γ or δ is a multiindex corresponding to xi or yp, respectively, and b =
1, . . . , q. By the homogeneous function theorem, [3], p. 213, the homotheties in
G1
q yield faαβ is linear in zbγδ. Then the homotheties in G1

m and G1
n imply that

faαβ depends on zbγδ with |α| = |γ|, |β| = |δ| only. Using the generalized invariant
tensor theorem, [3], p. 230, we obtain

(21) zaαβ = k|α|,|β|z
a
αβ , k|α|,|β| ∈ R .

Now we proceed by induction with respect to r + s. For r + s = 1, (21) reads

(22) zai = k1,0z
a
i , zap = k0,1z

a
p .

Consider the kernel K of the jet projection Gr+sq → Gr+s−1
q together with the

units of Grm and Gsn. Hence the canonical coordinates on K are

Aab1...br+s
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symmetric in all subscripts. Since the action of G on Lr;sm,n,q is given by the
jet composition, we have, provided we write explicitely α = (i1, . . . , ir), β =
(p1, . . . , ps),

(23) zai1...irp1...ps = zai1...irp1...ps + Aab1...brbr+1...br+sz
b1
i1
. . . zbrir z

br+1
p1

. . . zbr+sps ,

while the other coordinates on Lr;sm,n,q are unchanged. The equivariancy of (21)
with |α| = r, |β| = s with respect to (23) reads

(24)
kr,sz

a
i1...ps + kr1,0k

s
0,1A

a
b1...br+sz

b1
i1
. . . zbr+sps =

= kr,s(zai1...ps +Aab1...br+sz
b1
i1
. . . zbr+sps ) .

This implies

(25) kr,s = kr1,0k
s
0,1 .

The action ofG on the subspace (zaα) or (zaβ), i.e. |β| = 0 or |α| = 0, respectively,
corresponds to the classical jet case. Thus, for r ≥ 2, s ≥ 2, (11) yields the
following four possibilities

(26) k1,0 = 0, 1 , k0,1 = 0, 1 .

Then (25) leads to the coordinate form of the four possibilities of (i). For r ≥ 2
and s = 1, (11) and (12) yield k1,0 = 0, 1, k0,1 = k ∈ R. Then (25) implies (ii).
For r = 1 and s = 1, (12) yields k1,0 = k, k0,1 = k. Then (25) implies (iii).

To extend our result from the subcategory Mfq to the whole category Mf , it
suffices to consider naturality with respect to the canonical injections Rq→ Rq+1

for all q. �

4. The uniqueness of κ

In general, consider three categories C, D, E and a functor ϕ : C → D. A natural
transformation over ϕ of two functors F : C → E and G : D → E means a natural
transformation F → G ◦ ϕ.

In our case, Jr;s is a functor onMfm×Mfn×Mf . Denote by E the exchange
functor E :Mfm×Mfn×Mf →Mfn×Mfm×Mf , E(M,N,Q) = (N,M,Q),
E(g, h, f) = (h, g, f). Then the canonical exchange κ : Jr;s → Js;r, see (4), is a
natural equivalence over E.

Let τ : Jr;s → Js;r be a natural transformation over E. Then κ−1 ◦ τ is
a natural transformation J r;s → Jr;s over the identity of Mfm ×Mfn ×Mf .
These are listed in Proposition 3. Thus, we have deduced

Proposition 4. All natural transformations J r;s → Js;r over E are
(i) κ, κ ◦ %0, κ ◦ %1, κ ◦ %2 for r ≥ 2, s ≥ 2,
(ii) κ ◦ kJ 1σ, κ ◦ kJ 1 id, k ∈ R for r ≥ 2, s = 1,
(iii) κ ◦ kJ 1k id, k, k ∈ R for r = 1, s = 1.
In particular, for r ≥ 2, s ≥ 2, κ is the only natural equivalence Jr;s → Js;r

over E. �
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[3] Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag,

1993.
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