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PARTHA GUHA

Abstract. The Ito equation is shown to be a geodesic flow of L 2 metric on

the semidirect product space Diff s(S1)
⊙

C∞(S1), where Diff s(S1) is the

group of orientation preserving SobolevH s diffeomorphisms of the circle. We
also study a geodesic flow of a H 1 metric.

1. Introduction

It is known that the periodic Korteweg-de Vries (KdV) equation can be inter-
preted as geodesic flow of the right invariant metric on the Bott-Virasoro group,
which at the identity is given by the L2- inner product [15,18].

Recently Misiolek [14] and others [7,12,17] showed that an analogous corre-
spondence can be established for the Camassa-Holm equation [4]. It gives rise to a
geodesic flow of a certain right invariant Sobolev metric H1 on the Bott-Virasoro
group.

Thus we see the KdV and the Camassa-Holm equations arise in a unified geo-
metric construction, both are integrable systems which describe geodesic flows
on the Bott-Virasoro group. Earlier it was known that both the KdV and the
Camassa-Holm are obtained from different regularisations of the Euler equation
for a one dimensional compressible fluid. The Euler equation, of course, describes
geodesic motion on the group of orientation preserving diffeomorphisms of the
circle Diff (S1) with respect to L2 metric [6].

Following Ebin-Marsden [6] we enlarge Diff (S1) to a Hilbert manifold Diff s(S1),
the diffeomorphism of Sobolev class Hs. This is a topological space. If s > n/2, it
makes sense to talk about an Hs map from one manifold to another. Using local
charts, one can check whether the derivation of order ≤ s are square integrable.

The Lie algebra of Diff s(S1)
⊙
C∞(S1) has a three dimensional extension (ex-

plained in the next section)

Vects(S1)
⊙

C∞(S1)⊕R3 .

2000 Mathematics Subject Classification: 58D05, Secondary 35Q53.

Key words and phrases: Bott-Virasoro Group, Ito equation.
Received February 11, 2000.



306 P. GUHA

Then a typical element of this algebra would be

(f
d

dx
, u(x), α) where f

d

dx
∈ Vect(S1), u(x) ∈ C∞(S1) α ∈ R3 .

The ̂Diff s(S1)
⊙
C∞(S1) is the non-trivial extension of Diff s(S1)

⊙
C∞(S1).

In this paper we study a geodesic flow on the ̂Diff s(S1)
⊙
C∞(S1), which at

the identity is given by the L2 inner product, is a completely integrable coupled
nonlinear third order partial differential equation introduced by M. Ito [9]. Hence
the Ito equation arises as a geodesic flow, in general of course, these flows are not
integrable.

Then we study a geodesic flow of the right invariant inner metric on the
̂Diff s(S1)
⊙
C∞(S1), which at the identity is given by the H1 inner product.

Thus we obtain a new coupled nonlinear integrable system. The relation between
the Ito and this new system is the same as the relation between the KdV and the
Camassa-Holm equations.

Now we state our main result:

Theorem 1. Let t 7→ ĉ be a curve in the ̂Diff s(S1)
⊙
C∞(S1). Let ĉ = (e, e, 0) be

the initial point, directing to the vector ĉ(0) = (u(x) ddx , v(x), γ0), where γ0 ∈ R3.
Then ĉ(t) is a geodesic of the
(A) L2 metric if and only if (u(x, t) ddx , v(x, t), γ) satisfies the Ito equation

ut + uxxx + 6uux + 2vvx = 0 ,

vt + 2(uv)x = 0 ,
γt = 0 .

(B) H1 metric if and only if (u(x, t) ddx , v(x, t), γ) satisfies

ut − uxxt + uuxxx + 2uxuxx − uxxx + vxvxx − 5uux − vvx = 0 ,

vt − vxxt + uvxxx − uvx + uxvxx − uxv = 0 .

The Ito system [9] admits a bi-Hamiltonian structure

D2δHn = D1δHn+1 ,

where

D2 =
(
D3 + 4uD + 2ux 2vD

2vx + 2vD 0

)
D1 =

(
D 0
0 D

)
with the Hamiltonian functionals

H1[u, v] =
1
2

∫
(u2 + v2)dx(1)

H2[u, v] =
1
2

∫
(u3 − 1

2
ux

2 + uv2)dx .(2)
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The recursion operator arising from a Hamiltonian pair

R = D2D1
−1 =(

D2 + 4u+ 2uxD−1 2v
2vxD−1 + 2v 0

)
is a hereditory operator yields infinitely many conserved quantities [1].

Acknowledgement: The author is grateful to Mathematische Physik- Tech-
nische Universität Clausthal, where the part of the work has been done. This work
is partially supported by S. Chandrasekhar Memorial ICSC-World Laboratory fel-
lowship.

2. Ito equation and L2 metric

Let Diff s(S1) be the group of orientation preserving Sobolev Hs diffeomor-
phisms of the circle. It is known that the group Diff s(S1) as well as its Lie algebra
of vector fields on S1, TidDiff s(S1) = Vects(S1), have non-trivial one-dimensional
central extensions, the Bott-Virasoro group D̂iff

s
(S1) and the Virasoro algebra

Vir respectively [10,11,18].
The Lie algebra Vects(S1) is the algebra of smooth vector fields on S1. This

satisfies the commutation relations

[f
d

dx
, g

d

dx
] := (f(x)g′(x) − f ′(x)g(x))

d

dx
.(3)

One parameter family of Vects(S1) acts on the space of smooth functions
C∞(S1) by

(4) L
(µ)

f(x) ddx
a(x) = f(x)a′(x)− µf′(x)a(x) ,

where

L
(µ)

f(x) d
dx

= f(x)
d

dx
− µf ′(x)

is the derivative with respect to the vector field f(x) d
dx

.
The Lie algebra of Diff s(S1)

⊙
C∞(S1) is the semidirect product Lie algebra

G = Vects(S1)
⊙

C∞(S1) .

An element of G is a pair (f(x) d
dx , a(x)), where f(x) ddx ∈ Vects(S1) and a(x) ∈

C∞(S1).
It is known that this algebra has a three dimensional central extension given

by the non-trivial cocycles

ω1((f
d

dx
, a), (g

d

dx
, b)) =

∫
S1
f ′(x)g′′(x)dx(5)

ω2((f
d

dx
, a), (g

d

dx
, b)) =

∫
S1
f ′′(x)b(x)− g′′a(x))dx(6)

ω3((f
d

dx
, a), (g

d

dx
, b)) = 2

∫
S1
a(x)b′(x)dx .(7)
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The first cocycle ω1 is the well known Gelfand-Fuchs cocycle. The Virasoro
algebra is the unique non-trivial central extension of Vect(S1) via this ω1 cocycle.
Hence we define the Virasoro algebra

Vir = Vects(S1)⊕R .

The space C∞(S1)⊕R is identified with a part of the dual space to the Virasoro
algebra. It is called the regular part, and the pairing between this space and the
Virasoro algebra is given by:

〈(u(x), a), (f(x)
d

dx
, α)〉 =

∫
S1
u(x)f(x)dx+ aα .

Similarly we consider an extension of G. This extended algebra is given by

(8) Ĝ = Vects(S1)
⊙

C∞(S1)⊕R3 .

The Lie algebra Ĝ has been considered in various places [2,8,13]. It was shown
in [16] that the cocycles define the universal central extension the Lie algebra
Vects(S1)

⊙
C∞(S1). This means H2(Vect(S1)

⊙
C∞(S1)) = R3.

Definition 1. The commutation relation in Ĝ is given by

(9) [(f
d

dx
, a, α), (g

d

dx
, b, β)] := ((fg′ − f ′g) d

dx
, fb′ − ga′, ω)

where α = (α1, α2, α3), β = (β1, β2, β3) ∈ R3, ω = (ω1, ω2, ω3) are the two
cocycles.

The dual space of smooth functions C∞(S1) is the space of distributions (gen-
eralized functions) on S1. Of particular interest are the orbits in Ĝ∗reg. In the
case of current group, Gelfand, Vershik and Graev have constructed some of the
corresponding representations.

Definition 2. The regular part of the dual space Ĝ∗ to the Lie algebra Ĝ as
follows: Consider

Ĝ∗reg = C∞(S1) ⊕ C∞(S1)⊕R3 .

and fix the pairing between this space and Ĝ, 〈·, ·〉 : Ĝ∗reg ⊗ Ĝ → R:

(10) 〈û, f̂〉 =
∫
S1
f(x)u(x)dx+

∫
S1
a(x)v(x)dx+ α · γ ,

where û = (u(x), v, γ), f̂ = (f d
dx , a, α).

Extend (8) to a right invariant metric on the semi-direct product space
̂Diff s(S1)
⊙
C∞(S1) by setting

(11) 〈û, f̂〉ξ̂ = 〈dξ̂Rξ̂−1û, dξ̂Rξ̂−1 f̂ 〉L2

for any ξ̂ ∈ Ĝ and û, f̂ ∈ Tξ̂Ĝ, where

Rξ̂ : Ĝ −→ Ĝ
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is the right translation by ξ̂.

We shall show that the Ito equation is precisely the Euler-Arnold equation on
the dual space of Ĝ associated with the L2 inner product.

Given any three elements

f̂ = (f
d

dx
, a, α), ĝ = (g

d

dx
, b, β) û = (u

d

dx
, v, γ)

in Ĝ.

Lemma 1.

ad∗
f̂
û = (2f ′(x)u(x) + f(x)u′(x) + a′v(x) − c1f ′′′ + c2a

′′

f ′v(x) + f(x)v′(x) − c2f ′′ + 2c3a′(x)
0


Proof. This follows from

〈ad∗
f̂
û, ĝ〉L2 =〈û, [f̂ , ĝ]〉L2

=〈(u(x)
d

dx
, v(x), c), [(fg′ − f ′g) d

dx
, fb′ − ga′, ω)〉L2

=−
∫
S1

(fg′ − f ′g)u(x)dx−
∫
S1

(fb′ − ga′)vdx− c1
∫
S1
f ′(x)g′′(x)dx

− c2
∫
S1

(f ′′(x)b(x)− g′′(x)a(x))dx− 2c3
∫
S1
a(x)b′(x)dx .

Since f, g, u are periodic functions, hence integrating by parts we obtain

R.H.S. =〈(2f ′(x)u(x) + f(x)u′(x) + a′(x)v(x) − c1f ′′′(x)

+ c2a
′′(x),f ′(x)v(x) + f(x)v′(x) − c2f ′′b(x) + 2c3a′(x),0)

2

The coadjoint action leaves the parameter space invariant. Let us consider a
hyperplane c1 = −1, c2 = c3 = 0.

Corollary 1.

ad∗
f̂
û = (2f ′(x)u(x) + f(x)u′(x) + a′v(x) + f′′′

f ′v(x) + f(x)v′(x)
0


The Euler-Arnold equation is the Hamiltonian flow on the coadjoint orbit in Ĝ∗

[3], generated by the Hamiltonian

(12) H(û) ≡ H(u, v) = 〈(u(x), v(x)), (u(x), v(x))〉 ,
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given by

(13)
dû

dt
= −ad∗û(t)u(t) .

Let V be a vector space and assume that the Lie group G acts on the left by
linear maps on V , thus G acts on the left on its dual space V ∗ [ for details, see for
example, 5].

Proposition 1. Let G
⊙
V be a semidirect product space ( possibly infinite di-

mensional), equipped with a metric 〈·, ·〉 which is right translation. A curve t →
c(t) in G

⊙
V is a geodesic of this metric if and only if u(t) = dc(t)Rc(t)−1 ċ(t)

satisfies the Euler-Arnold equation.

Thus we prove the first part of our theorem.

3. H1 metric and integrable equation

Let us introduce H1 norm on the algebra Ĝ
〈f̂ , ĝ〉H1

=
∫
S1
f(x)g(x)dx+

∫
S1
a(x)b(x)dx

∫
S1
∂xf(x)∂xg(x)dx

+
∫
S1
∂xa(x)∂xb(x)dx+ α · β ,(14)

where ĝ and f̂ are as above.
Now we compute:

Lemma 2. The coadjoint operator for H1 norm is given by

ad∗
f̂
û = 2f ′(x)(1− ∂2

x)u(x) + f(x)(1 − ∂2
x)u′(x) + a′(1− ∂2

x)v(x) − c1f ′′′ + c2a
′′

f ′(1 − ∂2
x)v(x) + f(x)(1− ∂2

x)v′(x) − c2f ′′ + 2c3a′(x)
0


Proof. From the definition it follows that

〈ad∗
f̂
û,ĝ〉H1

= −
∫
S1

(fg′ − f ′g)u(x)dx−
∫
S1

(fb′ − ga′)vdx− c1
∫
S1
f ′(x)g′′(x)dx

− c2
∫
S1

(f ′′(x)b(x)− g′′(x)a(x))dx− 2c3
∫
S1
a(x)b′(x)dx

−
∫
S1
∂x(fg′ − f ′g)u(x)dx−

∫
S1
∂x(fb′ − ga′)vdx .

In the preceding section we have already computed the first five terms. After
computing the last two terms by integrating by parts and using the fact that the
functions f(x), g(x), u(x) and a(x), b(x), v(x) are periodic, this expression can be
expressed as above.
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Let us compute now the left hand side:

L.H.S. =
∫
S1

(ad∗
ξ̂
q̂)ηdx+

∫
S1

(ad∗
ξ̂
q̂)′η′dx

=
∫
S1

[(1− ∂2)ad∗
ξ̂
q̂]ηdx .

Thus by equating the R.H.S. and L.H.S. we obtain the above formula. 2

Corollary 2.

ad∗
f̂
û = 2f ′(x)(1 − ∂2

x)u(x) + f(x)(1 − ∂2
x)u′(x) + a′(1− ∂2

x)v(x) + f′′′

f ′(1− ∂2
x)v(x) + f(x)(1 − ∂2

x)v′(x)
0


Hence by applying the proposition 1 , we obtain the second part of our theorem.
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