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1. Introduction

The aim of this paper is to present a brief survey of the basic results of the discrete
oscillation theory, to compare these results with their continuous counterparts, and
to formulate some open problems in this area.

Let us start, as a motivation for our investigation, with the very famous second
order linear difference equation, namely the equation

xk+2 = xk+1 + xk(1)

which determines the Fibonacci numbers. The characteristic equation of (1) is
λ2 − λ− 1 = 0, hence

x
[1]
k =

(

1 +
√

5

2

)k

, x
[2]
k =

(

1 −
√

5

2

)k

is a pair of linearly independent solutions of (1). Obviously, the solution x[1] is a
monotonically increasing sequence, whereas x[2] is an oscillatory sequence. From
this point of view, it seems that the Sturmian separation theorem concerning the
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zero points of the linearly independent solutions of the Sturm-Liouville differential
equation

(r(t)x′)′ + c(t)x = 0, r(t) > 0,(2)

has no discrete analogue.

To show that this is not the case, let us return to the motivation for the
investigation of oscillatory properties of (2) (more precisely, distribution of zero
points of its solutions). One of these motivations consists in the investigation of
positivity of the quadratic functional

Fc(y) :=

∫ b

a

[

r(t)y′2 − c(t)y2
]

dt(3)

over the class of (nontrivial, sufficiently smooth) functions y satisfying y(a) = 0 =
y(b). The functional F is (upon a certain transformation) the functional of the
second variation of the fixed end points variational problem

∫ b

a

f(t, x(t), x′(t)) dt→ min, x(a) = A, x(b) = B.(4)

and its positivity is a sufficient condition for an extremal to be a local minimum
of (4), for a more detailed treatment of this topic see [19].

The important role in the investigation of positivity of the functional Fc is
played by the so-called Picone identity. This identity relates the quadratic func-
tional Fc to the Riccati equation

w′ + c(t) +
w2

r(t)
= 0(5)

which is related to (2) by the substitution w := r(t)x′

x . This identity reads as
follows; let w be a solution of (5) which exists on the whole interval [a, b], then

Fc(y) = w(t) y2
∣

∣

b

a
+

∫ b

a

1

r(t)
(r(t)y′ − w(t)y)

2
dt,(6)

in particular, if y(a) = 0 = y(b), this formula shows that the existence of a solution
x of (2) without zero in [a, b] (and hence the existence of w solving (5) on [a, b])
implies that Fc can be “completed to the square” (compare the integral term on
the right-hand-side of (6)) and hence Fc is positive over the class of y satisfying
y(a) = 0 = y(b).

If we replace the integral in (4) by its partial Riemann sum, after some rela-
beling of variables in this extremal problem, its discrete version is

N
∑

k=0

f(k, xk+1,∆xk) → min, x0 = A, xN+1 = B,(7)
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for a more detailed description of this discretization process we refer to [2,22]. The
investigation of sufficient conditions for a local minimum of (7) leads (using essen-
tially the same arguments as in the continuous case) to the problem of positivity
of the discrete quadratic functional

Fd(y) :=
N
∑

k=0

[

rk(∆yk)2 − cky
2
k+1

]

, ∆yk := yk+1 − yk,(8)

in the class of nontrivial sequences y = {yk}N+1
k=0 satisfying y0 = 0 = yN+1. This

functional is connected with the Sturm-Liouville difference equation

∆(rk∆xk) + ckxk+1 = 0, rk 6= 0,(9)

in the same way as (3) and (2) in the continuous case. The discrete analogue of
(5) is the equation

∆wk + ck +
w2

k

rk + wk
= 0(10)

and this equation is related to (9) by the substitution wk = rk∆xk

xk

. Here one can see
already a certain difference between the discrete and continuous case, namely the
presence of w in the denominator of the last expression of (10), we will return to
this phenomenon later in this paper. Following the same idea as in the continuous
case we reveal the discrete Picone identity

Fd(y) = wky
2
k

∣

∣

N+1

0
+

N
∑

k=0

1

rk + wk
(rk∆yk − wkyk)

2
,(11)

where w is a solution of (10) defined for every k ∈ [0, N + 1]. In particular, the
term r+w plays the same role as the term r in the continuous case and hence Fd is
positive (for nontrivial y satisfying y0 = 0 = yN+1) provided there exists a solution
w of (10) defined for k ∈ [0, N + 1] and satisfying wk + rk > 0 for k ∈ [0, N ].
Substituting for w = r∆x

x , the last inequality is equivalent to rkxkxk+1 > 0.
Consequently, this leads to the following definition.

Definition 1. We say that an interval (m,m+ 1], m ∈ Z, contains a generalized
zero of a solution x of (9) if xm 6= 0 and xmxm+1rm ≤ 0.

The Fibonacci equation (1) can be rewritten into the (self-adjoint) form

∆
(

(−1)k∆xk

)

+ (−1)kxk+1 = 0,

see [2, Chap. I]. Applying the above definition (with rk = (−1)k) to this equa-
tion we easily see that both solutions x[1], x[2] are actually oscillatory, they have
infinitely many generalized zeros.

Finally note that the discrepancies between discrete and continuous oscillation
theories are mostly caused by differences between continuous calculus (differential
and integral calculus) and its discrete counterpart (the calculus of differences and
sums).
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2. Oscillation theory of Sturm-Liouville difference equations

Using the definition of a generalized zero from the previous section we can now
formulate the main statement of the oscillation theory of Sturm-Liouville difference
equations (9), the so-called Roundabout theorem, see e.g. [2].

Theorem 1. The following statements are equivalent:

(i) Equation (9) is disconjugate on [0, N ], i.e., the solution x̃ given by the initial
condition x̃0 = 0, r0x̃1 = 1 has no generalized zero in (0, N + 1].

(ii) There exists a solution of (9) having no generalized zero in [0, N + 1].
(iii) There exists a solution w of (10) which is defined for every k ∈ [0, N + 1] and

satisfies rk + wk > 0 for k ∈ [0, N ].
(iv) The quadratic functional Fd(y) is positive for every nontrivial y satisfying

y0 = 0 = yN+1.

This theorems shows that the Sturmian separation and comparison theory does
extend to (9). Indeed, the separation theorem is given by the equivalence (i) ⇐⇒
(ii) and the comparison theorem is “hidden” in the equivalence (i) ⇐⇒ (iv). Let
us also remind the main ideas used in the proof of Theorem 1. The implication
(i) =⇒ (ii) follows from the continuous dependence of solutions of (9) on a
parameter. More precisely, if the solution x̃ given in (i) has no generalized zero in

(0, N + 1], then the solution x[ε] given by the initial condition x
[ε]
0 = ǫ, r0x

[ε]
1 = 1

has no generalized zero in [0, N + 1] if ε > 0 is sufficiently small. The implication
(ii) =⇒ (iii) is just the Riccati substitution and the already mentioned fact that
rk + wk > 0 if and only if rkxkxk+1 > 0. The implication (iii) =⇒ (iv) follows
immediately from Picone’s identity. Finally, the implication (iv) =⇒ (i) is proved
by contradiction. If x̃ would have a generalized zero in (0, N+1], one can construct
a nontrivial y = {yk}N+1

k=0 with y0 = 0 = yN+1 such that Fd(y) ≤ 0. More details
concerning this proof can be found e.g. in [5].

The Roundabout theorem (observe that this name for the theorem comes from
its proof) immediately suggests two main methods of the discrete oscillation theory.
The first one consists in the equivalence (i) ⇐⇒ (iv) and is called the variational
method, whereas the second method, leaned on the equivalence (i) ⇐⇒ (iii), is
usually referred as the Riccati technique. Recall that equation (9) is said to be
nonoscillatory if there exists N ∈ N such that (9) is disconjugate on [N,M ] for
every M > N , in the opposite case (9) is said to be oscillatory.

To prove (via the variational method) that (9) is oscillatory, it suffices to con-
struct for every N ∈ N a sequence y = {yk}∞k=N , such that yN = 0, only finitely
many yk are nonzero (this class of sequence we will denote by D(N)) and

Fd(y;N,∞) :=
∞
∑

k=N

[

rk(∆yk)2 − cky
2
k+1

]

< 0.

On the other hand, to prove nonoscillation of (9) we need to show that there
exists N ∈ N such that for every nontrivial y ∈ D(N) we have Fd(y;N,∞) > 0.
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A typical example of the oscillation criterion proved using the variational method
is the discrete version of the Leighton-Wintner oscillation criterion.

Theorem 2. Suppose that rk > 0 for large k and

∞
∑

r−1
k = ∞ =

∞
∑

ck.(12)

Then equation (9) is oscillatory.

Proof. Let N ∈ N be arbitrary. Define for N < n < m < M (which will be
determined later) a sequence y ∈ D(N) as follows

yk =























(

∑k−1
j=N r−1

j

)(

∑n−1
j=N r−1

j

)−1

, N + 1 ≤ k ≤ n,

1, n+ 1 ≤ k ≤ m− 1,
(

∑M−1
j=k r−1

j

)(

∑M−1
j=m r−1

j

)−1

, m ≤ k ≤M − 1,

0, k ≥M.

Then we have

Fd(y;N,∞) =
∞
∑

k=N

[

rk(∆yk)2 − cky
2
k+1

]

=
M−1
∑

k=N

[

rk(∆yk)2 − cky
2
k+1

]

=

(

n−1
∑

k=N

+
m−1
∑

k=n

+
M−1
∑

k=m

)

[

rk(∆yk)2 − cky
2
k+1

]

=

(

n−1
∑

k=N

r−1
k

)−1

−
n−1
∑

k=N

cky
2
k+1−

m−2
∑

k=n

ck−
M−1
∑

k=m−1

cky
2
k+1+

(

M−1
∑

k=m

r−1
k

)−1

.

Now, using the discrete version of the second mean value theorem of the sum
calculus (see, e.g. [11]), there exists m̃ ∈ [m− 1,M − 1] such that

M−1
∑

k=m−1

cky
2
k+1 ≤

m̃
∑

k=m−1

ck.

Let n > N be fixed. Since (12) holds, for every ε > 0 there exist M > m > n such

that
∑m̃

k=n ck > Fd(y;N,n − 1) + ε whenever m̃ > m and
(

∑M−1
k=m r−1

k

)−1

< ε.

Consequently, we have

Fd(y;N,∞) = Fd(y;N,n− 1) −
m̃
∑

k=n

ck +

(

M−1
∑

k=m

r−1
k

)−1

< 0

what we needed to prove.
A more sophisticated application of the construction of the sequence y leads to

a discrete versions of Nehari-type oscillation criteria, for more details we refer to
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[11], where the variational method is used to derive oscillation criteria for 2n-order
Sturm-Liouville difference equations.

In proving nonoscillation criteria using the variational method, the following
discrete version of the Wirtinger-type inequality is a very useful tool, see [23].

Theorem 3. Let Mk be a positive sequence such that ∆Mk 6= 0 for k ≥ N . Then
for every y ∈ D(N) we have

∞
∑

k=N

|∆Mk|y2
k+1 ≤ ψN

∞
∑

k=N

MkMk+1

|∆Mk|
(∆yk)2,

where

ψN :=

(

sup
k≥N

Mk

Mk+1

)

{

1 +

(

sup
k≥N

|∆Mk|
|∆Mk−1|

)1/2
}2

.(13)

A typical example of the application of the Wirtinger inequality is the next
Nehari-type nonoscillation criterion which is proved for higher order equations in
[23].

Theorem 4. Suppose that there exists a positive sequence Mk such that ∆Mk is
eventually nonzero and satisfies 0 < ψ := lim supN→∞ ψN < ∞, where ψN is
defined by (13). If

lim sup
k→∞

1

Mk

∞
∑

j=k

c+j <
1

ψ
, c+k := max{0, ck},

then equation (9) is nonoscillatory.

We finish this section with a Hille-Nehari type nonoscillation criterion proved
using the Riccati technique. This criterion is presented in [16] for the half-linear
second order difference equation

∆(rkΦ(∆xk)) + ckΦ(xk+1) = 0, Φ(x) := |x|p−2x, p > 1,

but for the sake of simplicity we formulate it for linear equation (9).
Observe that according to the Sturm comparison theorem for (9), to prove

nonoscillation of (9), it actually suffices to find N ∈ N and a sequence wk defined
for k ≥ N, satisfying wk + rk and the inequality

∆wk + ck +
w2

k

wk + rk
≤ 0.(14)

Theorem 5. Suppose that rk > 0 for large k,
∑∞

ck is convergent and

lim
k→∞

r−1
k

∑k−1
r−1
j

= 0.(15)
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If

lim sup
k→∞

(

k−1
∑

r−1
j

)





∞
∑

j=k

cj



 <
1

4
, lim inf

k→∞

(

k−1
∑

r−1
j

)





∞
∑

j=k

cj



 > −3

4
(16)

then (9) is nonoscillatory.

Note that assumption (15) has no analogue in the continuous version of Theo-
rem 5 (see e.g. [12]) and necessity of this assumption in Theorem 5 is caused by the
term rk +wk in the denominator of the last term in (10). We define the sequence

wk :=
1

4

(

k−1
∑

r−1
j

)−1

+
∞
∑

j=k

cj

and in order to show that (16) imply that w is a solution of (14) satisfying wk+rk >
0 we need just assumption (15). In the continuous case, the denominator of the
last term in the Riccati equation (5) is r, i.e. does not contain the function w and
no analogue of (15) is needed in the continuous modification of this proof.

Finally note that the oscillation theory of (9) is now deeply developed and many
oscillation and nonoscillation criteria for (2) have their continuous counterparts,
see e.g. [1, Chap. VI].

3. Transformation and oscillation theory of symplectic
difference systems

Denote uk = rk∆xk in (9). Then we can write this equation as the 2-dimensional
first order system

∆

(

xk

uk

)

=

(

0 r−1
k

−ck 0

)(

xk+1

uk

)

(17)

and expanding the difference operator as recurrence system
(

xk+1

uk+1

)

= Sk

(

xk

uk

)

, Sk :=

(

1 1
rk

− ck

rk

1 − ck

rk

)

.

By a direct computation it is not difficult to verify that the matrix in the last

system is symplectic, i.e., it satisfies the identity ST
k JSk = J , J =

(

0 1
−1 0

)

.

Consider now the general 2n× 2n symplectic difference system

zk+1 = Skzk,(18)

where z =
(

x
u

)

, Sk =

(

Ak Bk

Ck Dk

)

is a symplectic matrix, i.e., it satisfies

ST
k JSk = J , J =

(

0 I

−I 0

)

,
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x, u ∈ Rn and A,B, C,D ∈ Rn×n . Symplectic difference systems cover a large
variety of difference equations and systems. For example, the linear Hamiltonian
difference system

∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 −AT
k uk

with symmetric n×n matrices B,C and the matrix (I −A) invertible is a special
case of (18), see [2]. Since the 2n-order Sturm-Liouville equation

n
∑

ν=0

∆ν
(

r
[ν]
k ∆νyk+n−ν

)

= 0, ∆ν := ∆(∆ν−1)(19)

can be written as (3) with special matrices A,B,C (see, e.g. [2]), symplectic dif-
ference systems cover Sturm-Liouville equations as well.

Let Z =
(

X
U

)

, Z̄ =
(

X̄
Ū

)

be 2n× n solutions of (18), then ∆(ZT
k J Z̄k) = 0, i.e.,

ZT
k J Z̄k = M, where M is a constant n×n matrix. This identity can be regarded

as the extension of the classical Casoratian identity to (18). If Z̄ = Z, M = 0 and
rank Zk = n, then Z is called a conjoined basis of (18). Oscillatory properties of
solutions of (18) are defined using the concept of a focal point in the same way as
oscillatory properties of (9) via the concept of generalized zero.

Recall that an interval (m,m + 1] contains a focal point of a 2n × n solution
Z =

(

X
U

)

of (18) if

KerXm+1 ⊆ KerXm and Dm := XmX
†
m+1Bm 6≥ 0

fail to hold. Here Ker, † and ≥ mean kernel, Moore-Penrose generalized inverse
and nonnegative definiteness of the matrix indicated.

Let Rk =

(

Hk Mk

Kk Nk

)

be symplectic 2n× 2n matrices (H,K,M,N being

n× n matrices) and consider the transformation

zk = Rkz̃k.(20)

This transformation transforms (18) into the system z̃k+1 = S̃kz̃k, S̃k = R−1
k+1SkRk

and this new system is again symplectic as can be verified by a direct computa-
tion. Moreover, if Mk ≡ 0 in Rk, then transformation (20) preserves focal points
of transformed systems and hence also their oscillatory behavior as it is shown in
[6]. In that paper the Roundabout theorem for (18) is presented, in particular, it
is proved that the quadratic functional

F(z) :=
N
∑

k=0

zT
k {ST

k KSk −K}zk, K =

(

0 0
I 0

)

over the class of sequences satisfying Kzk+1 = KSkzk, Kz0 = 0 = KzN+1, and the
Riccati matrix difference equation

Qk+1 = (Ck + DQk)(Ak + BQk)
−1
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play the same role as (8) and (10) in the oscillation theory of (9).
In the remaining part of this section we present two particular transformations

of (18) where the so-called trigonometric difference system appears. A trigono-
metric difference systems (introduced by Anderson [3]) is the symplectic difference
system whose matrix satisfies the additional condition J TSkJ = Sk. This means
that transformation (20) with Rk = J (the so-called reciprocity transformation,
see [6]) transforms system (18) into itself. Hence, trigonometric system can be
written in the form

(

sk+1

ck+1

)

=

(

Pk Qk

−Qk Pk

)(

sk

ck

)

,(21)

where the matrices P ,Q satisfy the identities

PT
k Qk = QT

k Pk, PT
k Pk + QT

k Qk = I.(22)

In particular, if n = 1, then (22) implies the existence of ϕk ∈ [0, 2π) such that

sinϕk = Qk, cosϕk = Pk(23)

and then

(

sk

ck

)

=

(sin
(

∑k−1
ϕj

)

cos
(

∑k−1
ϕj

)

)

,

(

ck

−sk

)

=

(cos
(

∑k−1
ϕj

)

sin
(

∑k−1
ϕj

)

)

form the basis of the solution solution space of (21).

Theorem 6. (Trigonometric transformation, [7]) There exist n × n matrices H
and K such that H is nonsingular, HTK = KTH, and the transformation

(

s

c

)

=

(

H−1 0
−KT HT

)(

x

u

)

(24)

transforms the symplectic system (18) into trigonometric system (21) without
changing the oscillatory behavior. Moreover, the matrices P and Q from (21) may
be explicitly given by

Pk = H−1
k+1(AkHk + BkKk) and Qk = H−1

k+1BkH
T−1
k .(25)

The previous statement is a discrete version of the trigonometric transformation
of linear Hamiltonian differential systems established in [10], where it is proved
that any linear Hamiltonian differential system

x′ = A(t)x+B(t)u, u′ = C(t)x−AT (t)u(26)

with B,C symmetric, can be transformed by a transformation preserving oscilla-
tory nature of transformed systems into the trigonometric differential system

s′ = Q(t)c, c′ = −Q(t)s(27)



338 ONDŘEJ DOŠLÝ

with a symmetric matrix Q. The terminology trigonometric system is again justi-

fied by the scalar case n = 1 since sin
(

∫ t
Q(s) ds

)

, cos
(

∫ t
Q(s) ds

)

is a solution

of this system. It is known (see [26, Chap. VII] that (27) with Q(t) ≥ 0 is os-
cillatory (i.e., there exists a conjoined basis

(

S
C

)

and a sequence tn → ∞ such

that detS(tn) = 0) if and only if
∫∞

TrQ(t) dt = ∞, Tr stands for the trace of
the matrix indicated. In the discrete case a necessary and sufficient condition for
oscillation of (21) is known only in case when Q is nonsingular and reads

∞
∑

arccotgλ[1]
(

Q−1
k Pk

)

= ∞,

λ[1](·) denotes the least eigenvalue of the matrix indicated, see [7]. Since the ma-
trix Q is given by (25), nonsingularity of Q is equivalent to nonsingularity of B.
However, symplectic systems with B nonsingular do not cover many important
cases, e.g. the higher order Sturm-Liouville equation (19). For this reason it would
be very useful to know a necessary and sufficient condition for oscillation of (21)
also in the case when Q is allowed to be singular.

We finish this section with a discrete version of the Prüfer transformation.

Theorem 7. ([8]) Let Z =
(

X
U

)

be a 2n× n matrix conjoined basis of (18). Then

there exist nonsingular n×n matrix H and n×n matrices S,C such that
(

X
U

)

can
be expressed in the form

Xk = ST
k Hk, Uk = CT

k Hk,(28)

where
(

S
C

)

is a solution of the trigonometric system (21) satisfying ST
k Sk+CT

k Ck =
I, ST

k Ck − CT
k Sk = 0. The matrices P ,Q are given by the formulas

P = (HT
k+1)

−1
(

Xk

Uk

)TST
k

(

Xk

Uk

)

H−1
k −∆Hk,

Q = (HT
k+1)

−1
(

Xk

Uk

)TST
k J
(

Xk

Uk

)

H−1
k

and H solves the first order system

∆Hk = (Z̃k+1)
T (SkZ̃k −∆Z̃k)Hk, Z̃ =

(

ST

CT

)

.

In the continuous case, the Prüfer transformation for linear Hamiltonian dif-
ferential systems (26) was established in [4] as a matrix extension of the classical
Prüfer transformation for (2) proved in [25]. If n = 1 in Theorem 7 and (18) is
rewritten Sturm-Liouville equation (9) (compare (17)), then (28) reduces to

xk = Hk sin

(

k−1
∑

ϕj

)

, rk∆xk = Hk cos

(

k−1
∑

ϕj

)

,

where ϕk is given by (23), and Theorem 7 is really a discrete version of the classical
Prüfer transformation.
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4. Higher order linear difference equations

Consider the n-th order linear difference equation

L(y)k := xk+n + a
[n−1]
k xk+n−1 + . . . a

[1]
k xk+1 + a

[0]
k xk = 0.(29)

Basic facts of the qualitative theory of (29) can be found in [1,17]. One of the
motivation for the investigation of oscillatory properties of linear differential and
difference equations is the so-called Polya factorization. In the continuous case
this problem was resolved in [24] (see also [9]) and in the discrete case it is treated
in the fundamental paper of Hartman [21]. Recall now some statements of that
paper. An integer k +m is said to be the generalized zero point of multiplicity m
of a sequence xk if xk 6= 0, xk+1 = · · · = xk+m−1 = 0 and (−1)m−1xk+mxk ≤ 0. If
m = 1 and n = 2 then this definition complies with the definition of the generalized
zero of (9) with rk ≡ 1. Observe also that a nontrivial solution of linear equation
(29) cannot have a generalized zero of multiplicity greater than n − 1 as can
be verified by a direct computation. Equation (29) is said to be disconjugate on
the interval [0, N ] if every nontrivial solution has at most n− 1 generalized zeros
(counting multiplicity) in [0,M+n] and the solutions satisfying x0 = · · · = xj = 0,
xj+1 6= 0, j ∈ {0, . . . , n−2} have at most n−j−2 generalized zeros (again counting
multiplicity) in (j + 1, N + n− j − 1].

Theorem 8. Suppose that (29) is disconjugate on [0, N ]. Then there exists a fun-
damental system of solutions of this equation x[1], . . . , x[n] such that n Casoratians

C(x[1], . . . , x[j])k :=

∣

∣

∣

∣

∣

∣

∣

∣

x
[1]
k . . . x

[j]
k

...
...

x
[1]
k+j−1 . . . x

[j]
k+j−1

∣

∣

∣

∣

∣

∣

∣

∣

> 0

for k ∈ [0, N ] and j = 1, . . . , n. Moreover, the operator L admits Polya’s factor-
ization

L(y)k = α
[0]
k α

[1]
k · · ·α[n−1]

k ∆

{

1

α
[n−1]
k

∆

[

. . .∆

(

yk

α
[0]
k

)

. . .

]}

,(30)

where (for j = 2, . . . , n− 1)

α
[0]
k = x

[1]
k , α

[1]
k = ∆

(

x
[2]
k

x
[1]
k

)

, α
[j]
k =

C(x[1], . . . , x[j−1])k+1C(x[1], . . . , x[j+1])k

C(x[1], . . . , x[j])k+1C(x[1], . . . , x[j])k

(31)

Another important statement concerning Polya’s factorization is the so-called
Trench canonical factorization, see [20].

Theorem 9. Suppose that (29) is eventually disconjugate, i.e., there exists N ∈N such that this equation is disconjugate on [N,M ] for every M > N . Then
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the operator L can be expressed on [N,∞) in the form (30) with the sequences
α[1], . . . , α[n−1] satisfying

∞
∑

α
[j]
k = ∞, j = 1, . . . , n− 1.

Recall that the canonical factorization for disconjugate linear differential op-
erators was established by Trench [27] and that disconjugate linear differential
operators have many properties similar to those of the simple operator of the n-th
derivative L̃(y) := y(n), see e.g. [18]. This book also represent a good motivation
for discretization of continuous results.

Now let us turn out attention to the higher order, two-term, Sturm-Liouville
equation

(−1)n∆n(rk∆
nyk) = qkyk+n(32)

with rk 6= 0. The most of the next results can be extended to the general equation
(19), but to see better the similarity between the second order case (9) and higher
order equations, we consider two-term equation (32) only. Since this equation can
be written as a linear Hamiltonian difference system and hence also as a symplectic
difference system (18), oscillatory properties of (32) are defined via those of the
corresponding symplectic difference system. Denote

Dn(N)={y={yk}∞k=N : yN = . . .=yN+n−1=0, ∃M > N + n− 1, yk =0, k≥M}

(observe that the class of sequences D(N) defined in Section 2 coincides with
D1(N)). The quadratic functional associated with (32) is

F(y;N,∞) =
∞
∑

k=N

[

rk(∆nyk)2 − qky
2
k+n

]

and equation (32) is nonoscillatory if and only if there exists N ∈ N such that
F(y;N,∞) > 0 for every nontrivial y ∈ Dn(N). This statement is a direct exten-
sion of the of the variational oscillation method for second order equations to (32).
Using a modified construction from Section 2, one can prove the following higher
order extension of the Leighton-Wintner criterion given in Theorem 2.

Theorem 10. ([11]) Suppose that rk > 0 for large k,
∑∞

r−1
k = ∞ and there

exists j ∈ {0, . . . , n− 1} such that
∑∞

qkk
(j) = ∞, where k(j) := k(k− 1) · · · (k−

j + 1), k(0) = 1 is the so-called generalized j-th power. Then equation (32) is
oscillatory.

Concerning a higher order extension of the Hille-Nehari-type nonoscillation
criterion given in Theorem 5, the proof of this extension is essentially the same
as those of Theorem 5, only one has to apply the Wirtinger inequality n-times
(instead of once as in Theorem 5). We do not formulate the result explicitly, but
we refer to the recent papers [13,23].
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In Theorem 10 and also in its nonoscillatory counterpart given in [13], equation
(32) is viewed in a certain sense as a perturbation of the one-term (nonoscillatory)
equation (−1)n∆n(rk∆

nyk)(n) = 0 and it is shown that if the sequence qk is
“sufficiently positive”, i.e.,

∑∞
qkk

(j) = ∞, (“not too positive”) then (32) becomes
oscillatory (remains nonoscillatory).

To formulate an open problem connected with (32), consider the 2n-order
Sturm-Liouville differential equation

(−1)n
(

tαy(n)
)(n)

= q(t)y,(33)

where α 6∈ {1, 3, . . . , 2n − 1} is a real constant. A typical approach when inves-
tigating oscillatory properties of (33) used e.g. in [14,15], is that this equation is
not viewed as a perturbation of the one-term equation (−1)n(tαy(n)) = 0, but as
a perturbation of the Euler-type equation

(−1)n(tαy(n)) +
γn,α

t2n−α
y = 0(34)

γn,α = (−4)−n
∏n−1

i=0 (2n− α− 2i− 1)(2n+ α− 2i− 1) being the so-called critical
oscillation constant. In the discrete case we also have in disposal an Euler-type
equation

(−1)n∆2nxk +
γ

(k + 2n− 1)(2n)
xk = 0(35)

whose solutions are of the form xk = Γ (λ+k)
Γ (k) , Γ (t) =

∫∞

0
e−sts−1 ds being the

classical Γ function, and λ is a solution of the characteristic equation (−1)nλ(λ−
1) · · · (λ− 2n+ 1) + γ = 0, see [1, Chap. III]. However, equation (35) (in contrast
to (34)) is not in self-adjoint form, since the second term on left-hand-side of
this equation contains x with index k instead of k + n (compare (32)). Hence the
above mentioned “continuous” idea cannot be directly applied to difference equa-
tions.This suggests the following open problem; to find a two-term self-adjoint
nonoscillatory difference equation which can be solved explicitly (like (34) in the
continuous case) and to use this equation as “perturbation equation” in the oscil-
lation theory of (32).
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