Archivum Mathematicum

Miroslav Bartušek

On existence of singular solutions of n-th order differential equations

Archivum Mathematicum, Vol. 36 (2000), No. 5, 395--404

Persistent URL: http://dml.cz/dmlcz/107752

Terms of use:

© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON EXISTENCE OF SINGULAR SOLUTIONS OF N-TH ORDER DIFFERENTIAL EQUATIONS

Miroslav Bartušek*
Department of Mathematics, Faculty of Science, Masaryk University Janáčkovo nám 2a, 66295 Brno, Czech Republic
Email: bartusek@math.muni.cz

Abstract

In the paper sufficient conditions are given under which the equation $y^{(n)}=f\left(t, y, \ldots, y^{(n-2)}\right) g\left(y^{(n-1)}\right)$ has a singular solution y : $[T, \tau) \rightarrow \mathbb{R}, \tau<\infty$ fulfilling $\lim _{t \rightarrow \tau_{-}} y^{(i)}(t)=c_{i} \in \mathbb{R}, i=0,1,2, \ldots, n-2$ and $\lim _{t \rightarrow \tau_{-}}\left|y^{(n-1)}(t)\right|=\infty$.

AMS Subject Classification. 34C11

Keywords. singular solutions, black hole solutions

Consider the n-th order differential equation

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-2)}\right) g\left(y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

where $n \geq 2, f \in C^{o}\left(\mathbb{R}_{+} \times \mathbb{R}^{n-1}\right), g \in C^{o}(\mathbb{R}), \mathbb{R}_{+}=[0, \infty), \mathbb{R}=(-\infty, \infty)$, there exists $\alpha \in\{-1,1\}$ such that

$$
\begin{equation*}
\alpha f\left(t, x_{1}, \ldots, x_{n-1}\right) x_{1}>0 \quad \text { for } \quad x_{1} \neq 0 \quad \text { and } \quad g(x) \geq 0 \quad \text { for } \quad x \in \mathbb{R} . \tag{2}
\end{equation*}
$$

Hence, (1) fulfills the sign condition.
A solution y defined on $[T, \tau) \subset \mathbb{R}_{+}$is called singular if $\tau<\infty$ and y cannot be defined for $t=\tau$. A singular solution y is called nonoscillatory if $y \neq 0$ in a left neighbourhood of τ, otherwise it is called oscillatory.

The problem of the existence of a nonoscillatory singular solution y of (1) fulfilling

$$
\begin{equation*}
y^{(i)}(t) y(t)>0, i=0,1, \ldots, n-1 \tag{3}
\end{equation*}
$$

[^0]in a left neighbourhood of τ is posed and studied in [5,6] (in case $\alpha=1$) for Emden-Fowler equation
\[

$$
\begin{equation*}
y^{(n)}=r(t)|y|^{\lambda} \operatorname{sgn} y, \quad r \neq 0, \tag{4}
\end{equation*}
$$

\]

see [1] and [2], too. For Eq. (1) the results are generalized in [7,8]. The existence of oscillatory singular solution is proved only for Eq. (4) in [3]. Note that singular solutions of (4) (with all derivatives) are unbounded, see e.q. [9].

On the other hand singular solutions with different asymptotic behaviour than (3) may exist. Jaroš and Kusano announced that in [4] they studied a special case of (1), the second order equation

$$
y^{\prime \prime}=r(t)|y|^{\sigma}\left|y^{\prime}\right|^{\lambda} \operatorname{sgn} y, \quad \sigma>0, r<0 \quad \text { on } \quad \mathbb{R}_{+} .
$$

They proved that the necessary and sufficient condition for the existence of a singular solution y fulfilling

$$
\begin{equation*}
\lim _{t \rightarrow \tau_{-}} y(t)=c \in[0, \infty), \lim _{t \rightarrow \tau_{-}} y^{\prime}(t)=-\infty \tag{5}
\end{equation*}
$$

is $\lambda>2$; solutions fulfilling (5) are called black hole solutions.
In our paper we generalize this result for (1).
We will study the existence of a singular solution y fulfilling the conditions:

$$
\begin{gather*}
\tau \in(0, \infty), \lim _{t \rightarrow \tau_{-}} y^{(i)}(t)=c_{i} \in \mathbb{R}, \quad i=0,1, \ldots, n-2 \tag{6}\\
\lim _{t \rightarrow \tau_{-}}\left|y^{(n-1)}(t)\right|=\infty
\end{gather*}
$$

This solution is nonoscillatory. Moreover the sign of $y^{(n-1)}, \alpha$ and c_{0} cannot be arbitrary.

Lemma 1. Let y be a solution of (1) fulfilling (6).
(a) If $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$ then $\alpha c_{0} \geq 0$.
(b) If $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=-\infty$ then $\alpha c_{0} \leq 0$.

Proof. (a) Let $\alpha=1$ for simplicity and suppose $c_{0}<0$. Then according to (1) and (2) $y^{(n)}(t) \leq 0$ for large t that contradicts $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$. Hence $c_{0} \geq 0$.
(b) The proof is similar.

Denote by $[[x]]$ the entire part of x.
Theorem 1. Let $\tau \in(0, \infty), \lambda>2, c_{0} \neq 0, c_{i} \in \mathbb{R}$ for $i=1, \ldots, n-2$ and $M \in(0, \infty)$. Let $\beta=\alpha \operatorname{sgn} c_{0}$ and

$$
\begin{equation*}
g(x) \geq|x|^{\lambda} \quad \text { for } \quad \beta x \geq M \tag{7}
\end{equation*}
$$

Then there exists a singular solution y of (1) fulfilling (6) that is defined in a left neighbourhood of τ.

If, moreover, $\varepsilon>0$,

$$
\begin{equation*}
n+\frac{1-\alpha}{2} \quad \text { is odd, } \quad(-1)^{i} c_{i} c_{0} \geq 0 \quad \text { for } \quad i=1,2, \ldots, n-2 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{0}^{\beta \varepsilon} \frac{d s}{g(s)}\right|=\infty \tag{9}
\end{equation*}
$$

then y is defined on $[0, \tau)$.
Proof. We prove the statement for $\alpha=1$ and $c_{0}>0$ (thus $\beta=1$). For the other cases the proof is similar.

Let $N>2 \max \left(c_{0},\left|c_{1}\right|, \ldots,\left|c_{n-2}\right|\right)$. Consider the auxilliary problem

$$
\begin{align*}
y^{(n)} & =f\left(t, \chi_{0},(y), \chi\left(y^{\prime}\right), \ldots, \chi\left(y^{(n-2)}\right)\right) g\left(y^{(n-1)}\right), \\
y^{(i)}(\tau) & =c_{i}, i=0,1, \ldots, n-2, \quad y^{(n-1)}(\tau)=k \tag{10}
\end{align*}
$$

where $k \in\left\{k_{0}, k_{0}+1, \ldots\right\}, k_{0} \geq[[2 M]]$,

$$
\begin{array}{rlrl}
\chi_{0}(s) & =s \quad \text { for } \quad l & \quad \frac{c_{0}}{2} \leq s \leq N \\
& =N \quad \text { for } \quad s>N \\
& =c_{0} / 2 \text { for } \quad s<c_{0} / 2 \\
\chi(s) & =s \quad \text { for } \quad|s| \leq N \tag{11}\\
& =N \quad \text { for } \quad s>N, \\
& =-N \quad \text { for } \quad s<-N
\end{array}
$$

Denote by y_{k} a solution of (10) and by J_{1} the penetration of its definition interval and $[0, \tau]$. Note, that (2), (10) and (11) yield

$$
\begin{equation*}
y_{k}^{(n)}(t) \geq 0 \quad \text { on } \quad J_{1} . \tag{12}
\end{equation*}
$$

Put

$$
\begin{aligned}
M_{1}= & \min \left\{f\left(t, x_{1}, \ldots, x_{n-1}\right): t \in[0, \tau], \frac{c_{0}}{2} \leq x_{1} \leq N,\right. \\
& \left.\left|x_{j}\right| \leq N, j=2, \ldots, n-1\right\}>0, \\
M_{2}= & \max \left\{f\left(t, x_{1}, \ldots, x_{n-1}\right): t \in[0, \tau], \frac{c_{0}}{2} \leq x_{1} \leq N,\right. \\
& \left.\left|x_{j}\right| \leq N, j=2, \ldots, n-1\right\}, \\
M_{3}= & {\left[(\lambda-1) M_{1}\right]^{-\frac{1}{\lambda-1}} . }
\end{aligned}
$$

Further, let $J=[T, \tau] \subset J_{1}$ be such that $T<\tau$,

$$
\begin{align*}
& \sum_{j=i}^{n-2} \frac{\left|c_{j}\right|}{(j-i)!}(\tau-T)^{j-i}+\frac{\lambda-1}{\lambda-2} M_{3}(\tau-T)^{n-i-1-\frac{1}{\lambda-1} \leq N, \quad i=0,1, \ldots, n-2} \tag{13}\\
& \tag{14}\\
& \quad \sum_{j=1}^{n-2} \frac{\left|c_{j}\right|}{j!}(\tau-T)^{j}+\frac{\lambda-1}{\lambda-2} M_{3}(\tau-T)^{n-1-\frac{1}{\lambda-1}} \leq \frac{c_{0}}{2}
\end{align*}
$$

and

$$
\begin{equation*}
M_{2}(\tau-T)<\int_{M}^{2 M} \frac{d s}{g(s)} \tag{15}
\end{equation*}
$$

As (7), $\lambda>2$ and $n \geq 2, J$ exists.
We prove that

$$
\begin{equation*}
y_{k}^{(n-1)}(t) \geq M, t \in J . \tag{16}
\end{equation*}
$$

Suppose, contrarily, that $T_{1} \in[T, \tau)$ exists such that $y_{k}^{(n-1)}\left(T_{1}\right)=M$. Then with respect to (10) and (12) $y_{k}^{(n-1)}(t) \geq M$ for $t \in\left[T_{1}, \tau\right]$. From this and from (10) and (11)

$$
y_{k}^{(n)}(t) \leq M_{2} g\left(y_{k}^{(n-1)}(t)\right), t \in\left[T_{1}, \tau\right]
$$

and hence, by the integration on $\left[T_{1}, \tau\right]$,

$$
\int_{M}^{2 M} \frac{d s}{g(s)} \leq \int_{M}^{k} \frac{d s}{g(s)} \leq M_{2}\left(\tau-T_{1}\right) \leq M_{2}(\tau-T)
$$

The contradiction with (15) proves that $y^{(n-1)} \neq M$ for $t \in J$. From this, from (12) and $y_{k}^{(n-1)}(\tau)=k>M$ (16) holds.

Further, (7), (10), (11) and (16) yield

$$
y_{k}^{(n)}(t) \geq M_{1} g\left(y^{(n-1)}(t)\right) \geq M_{1}\left(y^{(n-1)}(t)\right)^{\lambda}, t \in J
$$

and by the integration on $[t, \tau] \subset J$ we have

$$
\begin{gather*}
\left(y_{k}^{(n-1)}(t)\right)^{1-\lambda}-k^{1-\lambda} \geq M_{1}(\lambda-1)(\tau-t) \\
y_{k}^{(n-1)}(t) \leq M_{3}(\tau-t)^{-\frac{1}{\lambda-1}}, t \in[T, \tau), k \geq k_{0} \tag{17}
\end{gather*}
$$

Hence, using the Taylor series formula at $\tau,(13),(17)$ and $\lambda>2$, we have

$$
\begin{aligned}
\left|y_{k}^{(i)}(t)\right| & \leq \sum_{j=i}^{n-2} \frac{\left|c_{j}\right|}{(j-i)!}(\tau-t)^{j-i}+\left|\int_{\tau}^{t} \frac{(t-s)^{n-i-2}}{(n-i-2)!} y_{k}^{(n-1)}(s) d s\right| \leq \\
& \leq \sum_{j=i}^{n-2} \frac{\left|c_{j}\right|}{(j-i)!}(\tau-T)^{j-i}+\frac{M_{3}(\tau-t)^{n-i-2}}{(n-i-2)!}\left|\int_{\tau}^{t}(\tau-s)^{-\frac{1}{\lambda-1}} d s\right| \\
& \leq N \quad, i=0,1, \ldots, n-2, t \in[T, \tau), k \geq k_{0} .
\end{aligned}
$$

Similarly, using (14) and (17)

$$
\begin{gathered}
y_{k}(t) \geq c_{0}-\sum_{j=1}^{n-2} \frac{\left|c_{j}\right|}{j!}(\tau-T)^{j}-\frac{\lambda-1}{\lambda-2} M_{3}(\tau-T)^{n-1-\frac{1}{\lambda-1}} \geq \frac{c_{0}}{2} \\
t \in[T, \tau), \quad k \geq k_{0}
\end{gathered}
$$

From these estimations and (11) we can see that y_{k} is the solution of Eq. (1), too. Moreover, the sequences $\left\{y_{k}^{(i)}\right\}_{k_{0}}^{\infty}, i=0, \ldots, n-1$ are uniformly bounded and equipotentially continuous on every segment of $[T, \tau)$. Hence according to ArzelAscoli Theorem there exists a subsequence that converges uniformly to a solution y of (1). Evidently, the conditions (6) are fulfilled with $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$.

Let (8) and (9) be valid. Let the above given solution y be defined on $(\bar{\tau}, \tau) \subset$ $[0, \tau)$ and cannot be extended to $t=\bar{\tau}$. Then

$$
\begin{equation*}
\limsup _{t \rightarrow \bar{\tau}_{+}}\left|y^{(n-1)}(t)\right|=\infty \tag{18}
\end{equation*}
$$

First, we prove that

$$
\begin{equation*}
y^{(n-1)}(t)>0 \quad \text { on } \quad(\bar{\tau}, \tau) \tag{19}
\end{equation*}
$$

Thus, suppose that there exists $\tau_{1} \in(\bar{\tau}, \tau)$ such that $y^{(n-1)}\left(\tau_{1}\right)=0$ and $y^{(n-1)}(t)>$ 0 on $\left(\tau_{1}, \tau\right)$. It follows from this and from (6) that $y^{(j)}, j=0,1, \ldots, n-2$ are bounded, $\left|y^{(j)}(t)\right| \leq K, j=0,1, \ldots, n-2, t \in\left[\tau_{1}, \tau\right)$. Let $\tau_{2} \in\left(\tau_{1}, \tau\right)$ be such that $y^{(n-1)}\left(\tau_{2}\right)=\varepsilon$. Then by the integration of (1) and by (9)

$$
\infty=\int_{0}^{\varepsilon} \frac{d s}{g(s)}=\int_{\tau_{1}}^{\tau_{2}} f\left(t, y(t), \ldots, y^{(n-2)}(t)\right) d t<\infty
$$

Hence, (19) is valid, and (8) and (19) yield $y(t)>0$ on $(\bar{\tau}, \tau)$. From this and from (1) $y^{(n)}(t)>0$ on $(\bar{\tau}, \tau)$, that, together with (19), contradicts (18). Thus y is defined at $t=\bar{\tau}$ and $\bar{\tau}=0$.

Corollary 1. Let $\lambda>2$ and $M \in \mathbb{R}_{+}$be such that

$$
g(x) \geq x^{\lambda} \quad \text { for } \quad x \geq M
$$

Then (1) has a singular solution.
Remark 1. For $\alpha=1$ the conclusion of Corollary 1 is known, see, e.g., [9, Theorem 11.3].

The following result shows that for the existence of a singular solution with (6) λ cannot be equal to 2 .

Theorem 2. Let $M \in(0, \infty)$ be such that $g(x) \leq x^{2}$ for $|x| \geq M$. Then Eq. (1) has no singular solution y fulfilling (6).

Proof. Let y be singular and fulfil (6). Suppose, for simplicity, $\alpha=1$ and $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$. From this there exists a left neighbourhood $\left[\tau_{1}, \tau\right)$ of τ such that $\left|y^{(i)}(t)\right| \leq M_{1}<\infty$ for $i=0,1, \ldots, n-2$ and $y^{(n-1)}(t) \geq M$ on $\left[\tau_{1}, \tau\right)$
where M_{1} is a suitable constant. Hence, using the assumptions of the theorem we have

$$
\begin{aligned}
\infty & =\ln \frac{y^{(n-1)}(\tau)}{y^{(n-1)}\left(\tau_{1}\right)}=\int_{\tau_{1}}^{\tau} \frac{y^{(n)}(s)}{y^{(n-1)}(s)} d s \leq \int_{\tau_{1}}^{\tau}\left|f\left(s, y(s), \ldots, y^{(n-2)}(s)\right)\right| y^{(n-1)}(s) d s \\
& \leq\left(c_{n-2}-y^{(n-2)}\left(\tau_{1}\right)\right) \max \left|f\left(s, x_{1}, \ldots, x_{n-1}\right)\right|<\infty
\end{aligned}
$$

where the maximum is taken for $s \in\left[\tau_{1}, \tau\right],\left|x_{i}\right| \leq M_{1}, i=1, \ldots, n-1$. The contradiction proves the conclusion.

Corollary 2. Let $c_{0} \neq 0, M \in(0, \infty)$ and $g(x)=|x|^{\lambda}$ for $|x| \geq M$. Then (1) has a singular solution y fulfilling (6) if and only if $\lambda>2$.

Proof. It follows from Theorems 1 and 2.
Remark 2. Note, that, especially, eq.

$$
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-2)}\right)
$$

has no singular solutions satisfying (6).
In the next part of the paper the case $c_{0}=0$ will be investigated.
Theorem 3. Let $\beta \in\{-1,1\}, \sigma>0, \varepsilon>0, \tau \in(0, \infty), M \in(0, \infty), \alpha \in\{-1,1\}$

$$
\begin{gather*}
\lambda>\sigma(n-2)+2 \tag{20}\\
c_{0}=0,(-1)^{i} \beta \quad c_{i} \geq 0 \quad \text { for } \quad i=1,2, \ldots, n-2 \tag{21}
\end{gather*}
$$

and

$$
\begin{equation*}
n+\frac{1-\alpha}{2} \quad \text { be odd. } \tag{22}
\end{equation*}
$$

Let (7) hold and a continuous function $r: \mathbb{R}_{+} \rightarrow \mathbb{R}$ exist such that

$$
\begin{gathered}
\alpha r(t)>0 \quad \text { on } \quad R_{+}, \\
\left|f\left(t, x_{1}, x_{2}, \ldots, x_{n-1}\right)\right| \geq|r(t)|\left|x_{1}\right|^{\sigma} \quad \text { for } t \in[0, \tau], \\
\beta x_{1} \in[0, \varepsilon],(-1)^{j} \beta x_{j+1} \in\left[(-1)^{j} \beta c_{j},(-1)^{j} \beta c_{j}+\varepsilon\right], j=1,2, \ldots, n-2 .
\end{gathered}
$$

Then there exists a singular solution y of (1) fulfilling (6) that is defined in a left neighbourhood of τ. If, moreover, (9) holds, then y is defined on $[0, \tau)$.

Proof. Let $\alpha=1$ and $\beta=1$; thus n is odd. For the other cases the proof is similar. Put for $i \in\{0,1, \ldots, n-2\}$

$$
\begin{array}{rlrl}
\chi_{i}(s) & =s & & \text { for } \\
& =c_{i}+(-1)^{i} \varepsilon & & \text { for } \tag{23}\\
& =c_{i} & & (-1)^{i} c_{i} \leq(-1)^{i} s \leq(-1)^{i} c_{i}+\varepsilon, \\
& & \text { for } & \\
& (-1)^{i} s<(-1)^{i} c_{i}+\varepsilon, \\
i
\end{array}
$$

Consider the Cauchy problem

$$
\begin{align*}
y^{(n)} & =f\left(t, \chi_{0}(y), \chi_{1}\left(y^{\prime}\right), \ldots, \chi_{n-2}\left(y^{(n-2)}\right)\right) g\left(y^{(n-1)}\right), \\
y^{(i)}(\tau) & =c_{i}, i=0,1, \ldots, n-2, \quad y^{(n-1)}(\tau)=k \tag{24}
\end{align*}
$$

where $k \in\left\{k_{0}, k_{0}+1, \ldots\right\}, k_{0} \geq[[2 M]]$.
Denote by y_{k} a solution of (24) and J_{1} the penetration of its definition interval and $[0, \tau]$. Note, that $\alpha=1,(23),(24)$ yield

$$
\begin{equation*}
y_{k}^{(n)}(t) \geq 0 \quad \text { and } \quad y_{k}^{(n-1)} \quad \text { is nondecreasing on } \quad J_{1} . \tag{25}
\end{equation*}
$$

Put $M_{1}=\frac{1}{[(n-1)!] \sigma} \min _{t \in[0, \tau]} r(t)>0, M_{2}=\left[\frac{M_{1}}{\sigma(n-1)+1}(\lambda+\sigma-1)\right]^{-\frac{1}{\lambda+\sigma-1}}$,

$$
\sigma_{1}=\frac{\sigma(n-1)+1}{\lambda+\sigma-1}, M_{3}=\max f\left(t, x_{1}, \ldots, x_{n-1}\right)
$$

where the maximum is given for $t \in[0, \tau], 0 \leq x_{1} \leq \varepsilon,(-1)^{i} c_{i} \leq(-1)^{i} x_{i+1} \leq$ $(-1)^{i} c_{i}+\varepsilon, i=1, \ldots, n-2$. Then (20) yields $\sigma_{1} \in(0,1)$.

Further, let $J=[T, \tau] \subset J_{1}$ be such that $T<\tau$,

$$
\begin{gather*}
\sum_{j=i}^{n-2} \frac{\left|c_{j}\right|}{(j-i)!}(\tau-T)^{j-i}+\frac{M_{2}}{(n-i-2)!\left(1-\sigma_{1}\right)}(\tau-T)^{n-i-\sigma_{1}-1} \leq(-1)^{i} c_{i}+\varepsilon \\
6) \tag{26}\\
i=0,1, \ldots, n-2
\end{gather*}
$$

and

$$
\begin{equation*}
M_{3}(\tau-T)<\int_{M}^{2 M} \frac{d s}{g(s)} \tag{27}
\end{equation*}
$$

Using (27), it can be proved similarly to the proof of Theorem 1, that (16) holds. Hence, using (21) and (22) we have

$$
\begin{equation*}
(-1)^{i} y_{k}^{(i)}(t) \geq(-1)^{i} c_{i} \geq 0 \quad \text { on } \quad J, i=0,1,2, \ldots, n-2 \tag{28}
\end{equation*}
$$

The Taylor series formula at $t=\tau$, (16), (21), (25) and n be odd yield

$$
\begin{aligned}
y_{k}(t) & =\sum_{j=0}^{n-2} c_{j} \frac{(t-\tau)^{j}}{j!}+\int_{\tau}^{t} \frac{(t-s)^{n-2}}{(n-2)!} y_{k}^{(n-1)}(s) d s \geq \int_{\tau}^{t} \frac{(t-s)^{n-2}}{(n-2)!} y_{k}^{(n-1)}(s) d s \\
& \geq \frac{(\tau-t)^{n-1}}{(n-1)!} y_{k}^{(n-1)}(t), \quad t \in J,
\end{aligned}
$$

and from $(24),(16),(25),(28)$ and the assumptions of the theorem

$$
y_{k}^{(n)}(t) \geq r(t)\left(y_{k}(t)\right)^{\sigma}\left[y_{k}^{(n-1)}(t)\right]^{\lambda} \geq M_{1}(\tau-t)^{\sigma(n-1)}\left(y_{k}^{(n-1)}(t)\right)^{\lambda+\sigma}, t \in J
$$

Hence, by the integration on $[t, \tau]$ we obtain similarly to the proof of Theorem 1

$$
y_{k}^{(n-1)}(t) \leq M_{2}(\tau-t)^{-\sigma_{1}}, t \in[T, \tau), k=k_{0}, k_{0}+1, \ldots
$$

From this, using the Taylor series formula at $t=\tau$, (26), (28) and $\sigma_{1}<1$ we have

$$
\begin{gathered}
0 \leq(-1)^{i} c_{i} \leq(-1)^{i} y_{k}^{(i)}(t)=\sum_{j=i}^{n-2} \frac{\left|c_{j}\right|}{(j-i)!}(\tau-t)^{j-i}+ \\
(-1)^{i} \int_{\tau}^{t} \frac{(t-s)^{n-i-2}}{(n-i-2)!} y_{k}^{(n-1)}(s) d s \\
\leq \sum_{j=i}^{n-2} \frac{\left|c_{j}\right|}{(j-i)!}(\tau-t)^{j-i}+\frac{M_{2}(\tau-t)^{n-i-1-\sigma_{1}}}{(n-i-2)!\left(1-\sigma_{1}\right)} \leq(-1)^{i} c_{i}+\varepsilon \\
i=0,1, \ldots, n-2
\end{gathered}
$$

Thus, according to (23), y_{k} is a solution of Eq. (1), too and the rest of the proof is similar as in Theorem 1.

The following theorem shows that the condition (20) cannot be weaken.
Theorem 4. Let $c_{i}=0, i=0,1, \ldots, n-2, \sigma>0, n \geq 2, n+\frac{1-\alpha}{2}$ be odd, $\alpha \in$ $\{-1,1\}$ and let $r \in C^{0}\left(\mathbb{R}_{+}\right), \alpha r>0$ on \mathbb{R}_{+}. Then the equation

$$
\begin{equation*}
y^{(n)}=r(t)|y|^{\sigma}\left|y^{(n-1)}\right|^{\lambda} \operatorname{sgn} y \tag{29}
\end{equation*}
$$

has a singular solution y fulfilling (6) if, and only if $\lambda>\sigma(n-2)+2$.
Proof. In view of Theorem 3 we must prove the necessity only. Let $\lambda \leq \sigma(n-2)+2$, y be singular and fulfilling (6). Suppose, for simplicity, that $r>0, \lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=$ ∞ and thus n be odd. In the other cases the proof is similar. Then there exists $t_{0} \in[0, \tau)$ such that
$(-1)^{i} y^{(i)}(t)>0, i=0,1, \ldots, n-2, y^{(n-1)}(t) \geq 1, y^{(n)}(t) \geq 0 \quad$ on $\quad J=\left[t_{0}, \tau\right)$.
Then using the Taylor series formula on $[t, \tau]$ and (6) we obtain

$$
\begin{equation*}
y(t)=\int_{\tau}^{t} \frac{(t-s)^{n-2}}{(n-2)!} y^{(n-1)}(s) d s \leq \frac{(\tau-t)^{n-2}}{(n-2)!}\left|y^{n-2}(t)\right|, t \in J \tag{31}
\end{equation*}
$$

Further,

$$
\left|y^{(n-2)}(t)\right|=\int_{t}^{\tau} y^{(n-1)}(s) d s \geq y^{(n-1)}(t)(\tau-t), t \in J
$$

and hence, using (31)

$$
y(t)\left[y^{(n-1)}(t)\right]^{n-2} \leq \frac{\left[y^{(n-2)}(t)\right]^{n-1}}{(n-2)!} \leq M_{1}, t \in J
$$

where M_{1} is a suitable number. From this,(30) and from $\lambda \leq \sigma(n-2)+2$

$$
\begin{aligned}
\infty & =\ln \frac{y^{(n-1)}(\tau)}{y^{(n-1)}\left(t_{0}\right)}=\int_{t_{0}}^{\tau} \frac{y^{(n)}(s)}{y^{(n-1)}(s)} d s=\int_{t_{0}}^{\tau} r(s) y^{\sigma}(s)\left[y^{(n-1)}(s)\right]^{\lambda-1} d s \leq \\
& \leq M_{1}^{\sigma} \int_{t_{0}}^{\tau} r(s)\left[y^{(n-1)}(s)\right]^{\lambda-1-\sigma(n-2)} d s \\
& \leq M_{1}^{\sigma} \int_{t_{0}}^{\tau} r(s) y^{(n-1)}(s) d s \leq M_{1}^{\sigma} \max _{0 \leq s \leq \tau} r(s)\left|y^{(n-2)}\left(t_{0}\right)\right|<\infty .
\end{aligned}
$$

The contradiction proves the conclusion.
The following proposition shows that condition (22) in Theorem 3 cannot be weaken.

Proposition 1. Let $\beta \in\{-1,1\}$, (21), $c_{n-2}=0$ and $n+\frac{1-\alpha}{2}$ be even. Then (1) has no singular solution fulfilling (6).

Proof. Let for the simplicity $\alpha=1$ and $\beta=-1$; for the other cases the proof is similar. Hence, n is even. Let y be a singular solution of (1) fulfilling (6). Then (1) and (21) yield $y(t)<0, y^{(n-1)}(t)>0$. Thus $y^{(n)}(t)>0$ in a left neighbourhood J of τ that contradicts (1), (2) and $\alpha=1$.

Remark 3. The following conclusion follows from Corollary 2 and Theorem 4. Let $n=2$. Then Eq. (29) has a singular solution y, fulfilling (6) if, and only if $\lambda>2$. Hence our results generalize the above mentioned one of Jaroš and Kusano.

Open problem. It is possible to look for sufficient and (or) necessary conditions under which there is a singular solution y of (1) satisfying

$$
\begin{aligned}
& \tau \in(0, \infty), \quad k \in\{0,1, \ldots, n-2\} \\
& \lim _{t \rightarrow \tau_{-}} y^{(i)}(t)=c_{i} \in \mathbb{R}, \quad i=0,1, \ldots, k \\
& \lim _{t \rightarrow \tau_{-}}\left|y^{(j)}(t)\right|=\infty, \quad j=k+1, \ldots, n-1
\end{aligned}
$$

References

1. I. V. Astashova, On Asymptotic Behaviour of Solutions of Some Nonlinear Differential Equations, Dokl. Raz. Zas. Sem. Ins. Prikl. Mat. Tbilisi University, 1 (1985), 9-11.
2. T. A. Chanturia, On Singular Solutions of Nonlinear Systems of Ordinary Differential Equations, Coll. Math. Soc. J. Bolyai, In: "15. Diff. Equations" (1975), 107-119.
3. _ On Existence of Singular and Unbounded Oscillatory Solutions of Differential Equations of Emden-Fowler Type, Dif. Urav. 28 (1992), 1009-1022.
4. J. Jaroš, T. Kusano, On Black Hole Solutions of Second Order Differential Equations with a Singularity in the Differential Operator, Funk. Ekv. (to appear).
5. I. Kiguradze, Asymptotic Properties of Solutions of a Nonlinear Differential Equation of Embden-Fowler Type, Izvestiya Akad. Nauk SSSR. Ser. Mat. 29 (1965), 965-986.
6. \qquad , On the Oscilation of Solutions of the Equation $\frac{d^{m} u}{d t^{m}}+a(t)|u|^{n} \operatorname{sgn} u$, Mat. Sbornik 65 (1964), 172-187.
7. , Some singular Boundary Value Problems for Ordinary Differential Equations., Tbilisi University Press, Tbilisi, (1975).
8. I. Kiguradze, G. Kvinikadze, On Strongly Increasing Solutions of Nonlinear Ordinary Differential Equations, Ann. Math. Pura ed Appl. 130 (1982), 67-87.
9. I. Kiguradze, T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Pub., Dordrecht-Boston-London, (1993).
10. D. Mirzov, Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations, Adygea, Majkop, (1993).

[^0]: * Supported by the grant no. 201/99/0295 of the Czech Republic Grant Agency.

