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Abstract. In the paper sufficient conditions are given under which the
equation y(n) = f(t, y, . . . , y(n−2))g(y(n−1)) has a singular solution y :
[T, τ ) → R, τ < ∞ fulfilling limt→τ

−

y(i)(t) = ci ∈ R, i = 0, 1, 2, . . . , n − 2

and limt→τ
−

|y(n−1)(t)| = ∞.
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Consider the n-th order differential equation

y(n) = f(t, y, y′, . . . , y(n−2))g(y(n−1))(1)

where n ≥ 2, f ∈ Co(R+ × Rn−1 ), g ∈ Co(R),R+ = [0,∞),R = (−∞,∞), there
exists α ∈ {−1, 1} such that

αf(t, x1, . . . , xn−1)x1 > 0 for x1 6= 0 and g(x) ≥ 0 for x ∈ R.(2)

Hence, (1) fulfills the sign condition.
A solution y defined on [T, τ) ⊂ R+ is called singular if τ < ∞ and y cannot

be defined for t = τ . A singular solution y is called nonoscillatory if y 6= 0 in a left
neighbourhood of τ , otherwise it is called oscillatory.

The problem of the existence of a nonoscillatory singular solution y of (1)
fulfilling

y(i)(t)y(t) > 0, i = 0, 1, . . . , n − 1(3)

⋆ Supported by the grant no. 201/99/0295 of the Czech Republic Grant Agency.
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in a left neighbourhood of τ is posed and studied in [5,6] (in case α = 1) for
Emden-Fowler equation

y(n) = r(t)|y|λ sgn y, r 6= 0,(4)

see [1] and [2], too. For Eq. (1) the results are generalized in [7,8]. The existence
of oscillatory singular solution is proved only for Eq. (4) in [3]. Note that singular
solutions of (4) (with all derivatives) are unbounded, see e.q. [9].

On the other hand singular solutions with different asymptotic behaviour than
(3) may exist. Jaroš and Kusano announced that in [4] they studied a special case
of (1), the second order equation

y′′ = r(t)|y|σ|y′|λ sgn y, σ > 0, r < 0 on R+ .

They proved that the necessary and sufficient condition for the existence of a
singular solution y fulfilling

lim
t→τ

−

y(t) = c ∈ [0,∞), lim
t→τ

−

y′(t) = −∞(5)

is λ > 2; solutions fulfilling (5) are called black hole solutions.
In our paper we generalize this result for (1).
We will study the existence of a singular solution y fulfilling the conditions:

τ ∈ (0,∞), limt→τ
−

y(i)(t) = ci ∈ R, i = 0, 1, . . . , n − 2,
limt→τ

−

|y(n−1)(t)| = ∞.
(6)

This solution is nonoscillatory. Moreover the sign of y(n−1), α and c0 cannot be
arbitrary.

Lemma 1. Let y be a solution of (1) fulfilling (6).
(a) If limt→τ

−

y(n−1)(t) = ∞ then αc0 ≥ 0.

(b) If limt→τ
−

y(n−1)(t) = −∞ then αc0 ≤ 0.

Proof. (a) Let α = 1 for simplicity and suppose c0 < 0. Then according to (1) and
(2) y(n)(t) ≤ 0 for large t that contradicts limt→τ

−

y(n−1)(t) = ∞. Hence c0 ≥ 0.
(b) The proof is similar.

Denote by [[x]] the entire part of x.

Theorem 1. Let τ ∈ (0,∞), λ > 2, c0 6= 0, ci ∈ R for i = 1, . . . , n − 2 and
M ∈ (0,∞). Let β = α sgn c0 and

g(x) ≥ |x|λ for βx ≥ M.(7)

Then there exists a singular solution y of (1) fulfilling (6) that is defined in a left
neighbourhood of τ .
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If, moreover, ε > 0,

n +
1 − α

2
is odd, (−1)icic0 ≥ 0 for i = 1, 2, . . . , n − 2(8)

and
∣

∣

∣

∣

∣

∫ βε

0

ds

g(s)

∣

∣

∣

∣

∣

= ∞(9)

then y is defined on [0, τ).

Proof. We prove the statement for α = 1 and c0 > 0 (thus β = 1). For the other
cases the proof is similar.

Let N > 2 max(c0, |c1|, . . . , |cn−2|). Consider the auxilliary problem

y(n) = f
(

t, χ0, (y), χ(y′), . . . , χ(y(n−2))
)

g(y(n−1)),
y(i)(τ) = ci, i = 0, 1, . . . , n − 2, y(n−1)(τ) = k

(10)

where k ∈ {k0, k0 + 1, . . . }, k0 ≥ [[2M ]],

χ0(s) = s for c0

2 ≤ s ≤ N,
= N for s > N,
= c0/2 for s < c0/2,

χ(s) = s for |s| ≤ N,
= N for s > N,
= −N for s < −N.

(11)

Denote by yk a solution of (10) and by J1 the penetration of its definition
interval and [0, τ ]. Note, that (2), (10) and (11) yield

y
(n)
k (t) ≥ 0 on J1.(12)

Put

M1 = min{f(t, x1, . . . , xn−1) : t ∈ [0, τ ],
c0

2
≤ x1 ≤ N,

|xj | ≤ N, j = 2, . . . , n − 1} > 0,

M2 = max{f(t, x1, . . . , xn−1) : t ∈ [0, τ ],
c0

2
≤ x1 ≤ N,

|xj | ≤ N, j = 2, . . . , n − 1},

M3 =[(λ − 1)M1]
− 1

λ−1 .

Further, let J = [T, τ ] ⊂ J1 be such that T < τ ,

n−2
∑

j=i

|cj |

(j − i)!
(τ − T )j−i +

λ − 1

λ − 2
M3(τ − T )

n−i−1− 1
λ−1 ≤ N, i = 0, 1, . . . , n − 2,

(13)

n−2
∑

j=1

|cj |

j!
(τ − T )j +

λ − 1

λ − 2
M3(τ − T )

n−1− 1
λ−1 ≤

c0

2
(14)
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and

M2(τ − T ) <

∫ 2M

M

ds

g(s)
.(15)

As (7), λ > 2 and n ≥ 2, J exists.
We prove that

y
(n−1)
k (t) ≥ M, t ∈ J.(16)

Suppose, contrarily, that T1 ∈ [T, τ) exists such that y
(n−1)
k (T1) = M . Then with

respect to (10) and (12) y
(n−1)
k (t) ≥ M for t ∈ [T1, τ ]. From this and from (10)

and (11)

y
(n)
k (t) ≤ M2g

(

y
(n−1)
k (t)

)

, t ∈ [T1, τ ]

and hence, by the integration on [T1, τ ],

∫ 2M

M

ds

g(s)
≤

∫ k

M

ds

g(s)
≤ M2(τ − T1) ≤ M2(τ − T ).

The contradiction with (15) proves that y(n−1) 6= M for t ∈ J . From this, from

(12) and y
(n−1)
k (τ) = k > M (16) holds.

Further, (7), (10), (11) and (16) yield

y
(n)
k (t) ≥ M1g

(

y(n−1)(t)
)

≥ M1

(

y(n−1)(t)
)λ

, t ∈ J

and by the integration on [t, τ ] ⊂ J we have

(y
(n−1)
k (t))1−λ − k1−λ ≥ M1(λ − 1)(τ − t),

y
(n−1)
k (t) ≤ M3(τ − t)

− 1
λ−1 , t ∈ [T, τ), k ≥ k0.(17)

Hence, using the Taylor series formula at τ , (13), (17) and λ > 2, we have

∣

∣

∣
y
(i)
k (t)

∣

∣

∣
≤

n−2
∑

j=i

|cj |

(j − i)!
(τ − t)j−i +

∣

∣

∣

∣

∫ t

τ

(t − s)n−i−2

(n − i − 2)!
y
(n−1)
k (s)ds

∣

∣

∣

∣

≤

≤
n−2
∑

j=i

|cj |

(j − i)!
(τ − T )j−i +

M3(τ − t)n−i−2

(n − i − 2)!

∣

∣

∣

∣

∫ t

τ

(τ − s)−
1

λ−1 ds

∣

∣

∣

∣

≤ N , i = 0, 1, . . . , n − 2, t ∈ [T, τ), k ≥ k0.

Similarly, using (14) and (17)

yk(t) ≥ c0 −
n−2
∑

j=1

|cj |

j!
(τ − T )j −

λ − 1

λ − 2
M3(τ − T )n−1− 1

λ−1 ≥
c0

2
,

t ∈ [T, τ), k ≥ k0.
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From these estimations and (11) we can see that yk is the solution of Eq. (1),

too. Moreover, the sequences {y
(i)
k }∞k0

, i = 0, . . . , n− 1 are uniformly bounded and
equipotentially continuous on every segment of [T, τ). Hence according to Arzel-
Ascoli Theorem there exists a subsequence that converges uniformly to a solution
y of (1). Evidently, the conditions (6) are fulfilled with limt→τ

−

y(n−1)(t) = ∞.

Let (8) and (9) be valid. Let the above given solution y be defined on (τ̄ , τ) ⊂
[0, τ) and cannot be extended to t = τ̄ . Then

lim sup
t→τ̄+

∣

∣

∣
y(n−1)(t)

∣

∣

∣
= ∞.(18)

First, we prove that

y(n−1)(t) > 0 on (τ̄ , τ).(19)

Thus, suppose that there exists τ1 ∈ (τ̄ , τ) such that y(n−1)(τ1) = 0 and y(n−1)(t) >
0 on (τ1, τ). It follows from this and from (6) that y(j), j = 0, 1, . . . , n − 2 are
bounded, |y(j)(t)| ≤ K, j = 0, 1, . . . , n− 2, t ∈ [τ1, τ). Let τ2 ∈ (τ1, τ) be such that
y(n−1)(τ2) = ε. Then by the integration of (1) and by (9)

∞ =

∫ ε

0

ds

g(s)
=

∫ τ2

τ1

f
(

t, y(t), . . . , y(n−2)(t)
)

dt < ∞.

Hence, (19) is valid, and (8) and (19) yield y(t) > 0 on (τ̄ , τ). From this and
from (1) y(n)(t) > 0 on (τ̄ , τ), that, together with (19), contradicts (18). Thus y
is defined at t = τ̄ and τ̄ = 0.

Corollary 1. Let λ > 2 and M ∈ R+ be such that

g(x) ≥ xλ for x ≥ M.

Then (1) has a singular solution.

Remark 1. For α = 1 the conclusion of Corollary 1 is known, see, e.g., [9, Theorem
11.3].

The following result shows that for the existence of a singular solution with (6)
λ cannot be equal to 2.

Theorem 2. Let M ∈ (0,∞) be such that g(x) ≤ x2 for |x| ≥ M . Then Eq. (1)
has no singular solution y fulfilling (6).

Proof. Let y be singular and fulfil (6). Suppose, for simplicity, α = 1 and
limt→τ

−

y(n−1)(t) = ∞. From this there exists a left neighbourhood [τ1, τ) of τ

such that |y(i)(t)| ≤ M1 < ∞ for i = 0, 1, . . . , n − 2 and y(n−1)(t) ≥ M on [τ1, τ)
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where M1 is a suitable constant. Hence, using the assumptions of the theorem we
have

∞ = ln
y(n−1)(τ)

y(n−1)(τ1)
=

τ
∫

τ1

y(n)(s)

y(n−1)(s)
ds ≤

τ
∫

τ1

∣

∣

∣
f

(

s, y(s), . . . , y(n−2)(s)
)∣

∣

∣
y(n−1)(s)ds

≤
(

cn−2 − y(n−2)(τ1)
)

max |f(s, x1, . . . , xn−1)| < ∞

where the maximum is taken for s ∈ [τ1, τ ], |xi| ≤ M1, i = 1, . . . , n − 1. The
contradiction proves the conclusion.

Corollary 2. Let c0 6= 0,M ∈ (0,∞) and g(x) = |x|λ for |x| ≥ M . Then (1) has
a singular solution y fulfilling (6) if and only if λ > 2.

Proof. It follows from Theorems 1 and 2.

Remark 2. Note, that, especially, eq.

y(n) = f(t, y, y′, . . . , y(n−2))

has no singular solutions satisfying (6).

In the next part of the paper the case c0 = 0 will be investigated.

Theorem 3. Let β ∈ {−1, 1}, σ > 0, ε > 0, τ ∈ (0,∞), M ∈ (0,∞), α ∈ {−1, 1}

λ > σ(n − 2) + 2,(20)

c0 = 0, (−1)iβ ci ≥ 0 for i = 1, 2, . . . , n − 2,(21)

and

n +
1 − α

2
be odd.(22)

Let (7) hold and a continuous function r : R+ → R exist such that

αr(t) > 0 on R+,

|f(t, x1, x2, . . . , xn−1)| ≥ |r(t)| |x1|
σ

for t ∈ [0, τ ],

βx1 ∈ [0, ε], (−1)jβxj+1 ∈
[

(−1)jβcj , (−1)jβcj + ε
]

, j = 1, 2, . . . , n − 2.

Then there exists a singular solution y of (1) fulfilling (6) that is defined in a left
neighbourhood of τ . If, moreover, (9) holds, then y is defined on [0, τ).

Proof. Let α = 1 and β = 1; thus n is odd. For the other cases the proof is similar.
Put for i ∈ {0, 1, . . . , n − 2}

χi(s) = s for (−1)ici ≤ (−1)is ≤ (−1)ici + ε,
= ci + (−1)iε for (−1)is > (−1)ici + ε,
= ci for (−1)is < (−1)ici.

(23)
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Consider the Cauchy problem

y(n) = f
(

t, χ0(y), χ1(y
′), . . . , χn−2(y

(n−2))
)

g
(

y(n−1)
)

,
y(i)(τ) = ci, i = 0, 1, . . . , n − 2, y(n−1)(τ) = k

(24)

where k ∈ {k0, k0 + 1, . . . }, k0 ≥ [[2M ]].
Denote by yk a solution of (24) and J1 the penetration of its definition interval

and [0, τ ]. Note, that α = 1, (23), (24) yield

y
(n)
k (t) ≥ 0 and y

(n−1)
k is nondecreasing on J1.(25)

Put M1 = 1
[(n−1)!]σ mint∈[0,τ ] r(t) > 0, M2 =

[

M1

σ(n−1)+1 (λ + σ − 1)
]− 1

λ+σ−1

,

σ1 =
σ(n − 1) + 1

λ + σ − 1
,M3 = max f(t, x1, . . . , xn−1),

where the maximum is given for t ∈ [0, τ ], 0 ≤ x1 ≤ ε, (−1)ici ≤ (−1)ixi+1 ≤
(−1)ici + ε, i = 1, . . . , n − 2. Then (20) yields σ1 ∈ (0, 1).

Further, let J = [T, τ ] ⊂ J1 be such that T < τ ,

n−2
∑

j=i

|cj |

(j − i)!
(τ − T )j−i +

M2

(n − i − 2)!(1 − σ1)
(τ − T )n−i−σ1−1 ≤ (−1)ici + ε

i = 0, 1, . . . , n − 2(26)

and

M3(τ − T ) <

∫ 2M

M

ds

g(s)
.(27)

Using (27), it can be proved similarly to the proof of Theorem 1, that (16)
holds. Hence, using (21) and (22) we have

(−1)iy
(i)
k (t) ≥ (−1)ici ≥ 0 on J, i = 0, 1, 2, . . . , n − 2.(28)

The Taylor series formula at t = τ , (16), (21), (25) and n be odd yield

yk(t) =
n−2
∑

j=0

cj

(t − τ)j

j!
+

∫ t

τ

(t − s)n−2

(n − 2)!
y
(n−1)
k (s)ds ≥

∫ t

τ

(t − s)n−2

(n − 2)!
y
(n−1)
k (s)ds

≥
(τ − t)n−1

(n − 1)!
y
(n−1)
k (t), t ∈ J,

and from (24), (16), (25), (28) and the assumptions of the theorem

y
(n)
k (t) ≥ r(t)(yk(t))σ [y

(n−1)
k (t)]λ ≥ M1(τ − t)σ(n−1)

(

y
(n−1)
k (t)

)λ+σ

, t ∈ J.
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Hence, by the integration on [t, τ ] we obtain similarly to the proof of Theorem 1

y
(n−1)
k (t) ≤ M2(τ − t)−σ1 , t ∈ [T, τ), k = k0, k0 + 1, . . .

From this, using the Taylor series formula at t = τ , (26), (28) and σ1 < 1 we have

0 ≤ (−1)ici ≤ (−1)iy
(i)
k (t) =

n−2
∑

j=i

|cj |

(j − i)!
(τ − t)j−i +

(−1)i

∫ t

τ

(t − s)n−i−2

(n − i − 2)!
y
(n−1)
k (s)ds

≤
n−2
∑

j=i

|cj |

(j − i)!
(τ − t)j−i +

M2(τ − t)n−i−1−σ1

(n − i − 2)!(1 − σ1)
≤ (−1)ici + ε,

i = 0, 1, . . . , n − 2.

Thus, according to (23), yk is a solution of Eq. (1), too and the rest of the proof
is similar as in Theorem 1.

The following theorem shows that the condition (20) cannot be weaken.

Theorem 4. Let ci = 0, i = 0, 1, . . . , n − 2, σ > 0, n ≥ 2, n + 1−α
2 be odd, α ∈

{−1, 1} and let r ∈ C0(R+ ), αr > 0 on R+ . Then the equation

y(n) = r(t)|y|σ |y(n−1)|λ sgn y(29)

has a singular solution y fulfilling (6) if, and only if λ > σ(n − 2) + 2.

Proof. In view of Theorem 3 we must prove the necessity only. Let λ ≤ σ(n−2)+2,
y be singular and fulfilling (6). Suppose, for simplicity, that r > 0, lim

t→τ
−

y(n−1)(t) =

∞ and thus n be odd. In the other cases the proof is similar. Then there exists
t0 ∈ [0, τ) such that

(−1)iy(i)(t) > 0, i = 0, 1, . . . , n − 2, y(n−1)(t) ≥ 1, y(n)(t) ≥ 0 on J = [t0, τ).

(30)

Then using the Taylor series formula on [t, τ ] and (6) we obtain

y(t) =

∫ t

τ

(t − s)n−2

(n − 2)!
y(n−1)(s)ds ≤

(τ − t)n−2

(n − 2)!
|yn−2(t)|, t ∈ J.(31)

Further,

|y(n−2)(t)| =

∫ τ

t

y(n−1)(s)ds ≥ y(n−1)(t)(τ − t), t ∈ J

and hence, using (31)

y(t)[y(n−1)(t)]n−2 ≤
[y(n−2)(t)]n−1

(n − 2)!
≤ M1, t ∈ J
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where M1 is a suitable number. From this,(30) and from λ ≤ σ(n − 2) + 2

∞ = ln
y(n−1)(τ)

y(n−1)(t0)
=

∫ τ

t0

y(n)(s)

y(n−1)(s)
ds =

∫ τ

t0

r(s) yσ(s)[y(n−1)(s)]λ−1ds ≤

≤ Mσ
1

∫ τ

t0

r(s)[y(n−1)(s)]λ−1−σ(n−2)ds

≤ Mσ
1

∫ τ

t0

r(s)y(n−1)(s)ds ≤ Mσ
1 max

0≤s≤τ
r(s)

∣

∣

∣
y(n−2)(t0)

∣

∣

∣
< ∞.

The contradiction proves the conclusion.

The following proposition shows that condition (22) in Theorem 3 cannot be
weaken.

Proposition 1. Let β ∈ {−1, 1}, (21), cn−2 = 0 and n + 1−α
2 be even. Then (1)

has no singular solution fulfilling (6).

Proof. Let for the simplicity α = 1 and β = −1; for the other cases the proof is
similar. Hence, n is even. Let y be a singular solution of (1) fulfilling (6). Then (1)
and (21) yield y(t) < 0, y(n−1)(t) > 0. Thus y(n)(t) > 0 in a left neighbourhood J
of τ that contradicts (1), (2) and α = 1.

Remark 3. The following conclusion follows from Corollary 2 and Theorem 4. Let
n = 2. Then Eq. (29) has a singular solution y, fulfilling (6) if, and only if λ > 2.
Hence our results generalize the above mentioned one of Jaroš and Kusano.

Open problem. It is possible to look for sufficient and (or) necessary conditions
under which there is a singular solution y of (1) satisfying

τ ∈ (0,∞), k ∈ {0, 1, . . . , n − 2},

lim
t→τ

−

y(i)(t) = ci ∈ R, i = 0, 1, . . . , k,

lim
t→τ

−

|y(j)(t)| = ∞, j = k + 1, . . . , n − 1.
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