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1. Introduction

The question of the existence and uniqueness for the solutions of ordinary differen-
tial equations is an old problem of great importance. There is an enormous amount
of literature offering various sufficient conditions for the uniqueness. We shall men-
tion here only several mathematicians that have contributed to this problem.

The first result on the uniqueness of a scalar initial value problem

x′ = f(t, x), x(t0) = x0(1)

where f = (f1, f2, . . . , fn), x = (x1, x2, . . . , xn), x0 = (x01, x02, . . . , x0n), was given
by A. Cauchy in 1820–1830. The result was improved by R. Lipschitz in 1876, who
introduced so called Lipschitz condition of the form

|f(t, x) − f(t, y)| ≤ L|x− y|.(2)

The Lipschitz condition was generalized by many authors such as W. F. Osgood
(1898), P. Montel (1926), L. Tonelli (1925), M. Nagumo (1926). Very general is a
condition of Perron’s type

|f(t, x) − f(t, y)| ≤ g(t, |x− y|).(3)
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Perron’s result (1926) was improved by E. Kamke (1930). His well-known theorem
(see e. g. [1, pp. 56–57]) can be formulated for vector differential equations.

Theorem 1 (Kamke). Assume that
(i) g ∈ C(R0,R+ ), where R0 = {(t, u) ∈ R2 : t0 < t ≤ t0 + a, 0 ≤ u ≤ 2b},R+ = [0,∞) and for every t1 ∈ (t0, t0+a), the function u(t) ≡ 0 is the only solution

of u′ = g(t, u) defined on (t0, t1) and satisfying limt→t0 [u(t)/(t− t0)] = 0.
(ii) f : R→ Rn , R = {(t, x) ∈ Rn+1 : t0 ≤ t ≤ t0 + a, |x− x0| ≤ b} and

|f(t, x) − f(t, y)| ≤ g(t, |x− y|) for (t, x), (t, y) ∈ R, t 6= t0.(4)

Then the initial value problem (1) has at most one solution in [t0, t0 + a].

2. The use of Lyapunov functions

Kamke’s theorem was generalized in several manners. One of the fruitful ways is
the use of Lyapunov functions method. This approach allows to obtain very general
and flexible results. These results contain the most of previous results as special
cases and, by special choices, new interesting criteria for the uniqueness can be
obtained. There exists a lot of variants of criteria utilizing Lyapunov functions.
We can mention here the results of H. Okamura (1934–42), T. Sato (1936), O.
Bor̊uvka (1956), J. Chrastina (1969), S. C. Chu and J. B. Diaz (1970), T. Roger
(1972), F. Brauer and S. Sternberg (1958), R. D. Moyer (1966), S. R. Bernfeld -
R. D. Driver - V. Lakshmikantham (1976), Z. Tesařová - O. Došlý (1980), H. A.
Antosiewicz (1962), V. Lakshmikantham - M. Samimi (1983).

The interesting and powerful uniqueness criteria for the Cauchy problem were
derived by I. Kiguradze (1965). We shall remind a criterion for a singular Cauchy
problem formulated for t0 = a:

Theorem 2 (Kiguradze [6]). Let f be defined for a < t ≤ b, |x − x0| < r and
a function V (t, x) be continuous and positive definite in R0 = {(t, x) ∈ Rn : a <
t ≤ b, |x| ≤ 2r}. Assume that g(t, u) satisfies Carathéodory conditions on any set
{Rc = {(t, u) ∈ R2 : a ≤ t ≤ b, |u| ≤ c}, c ∈ (0,∞). Suppose that g(t, ·) is
nondecreasing, g(t, 0) ≡ 0 and the problem

du

dt
= g(t, u), u(a) = 0

has only the trivial solution. If the conditions

lim
t→a

V (t, x(t) − y(t)) = 0,(5)

V (t, x(t) − y(t)) ≤

∫ t

a

g(s, V (s, x(s) − y(s))ds(6)

hold for any two solutions x(t), y(t) of (1), then (1) has at most one solution.
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3. Nonuniqueness theorems

In contradistinction with the problem of uniqueness criteria, there are only sev-
eral papers dealing with problem of nonuniqueness. The necessary and sufficient
conditions for the uniqueness in the scalar case was derived by T. Yosie in 1926
(see e. g. [1, pp. 81–91]). His main result is the following:

Theorem 3 (Yosie’s criterion). The scalar initial value problem has at most
one solution in the interval [t0, t0 + a] if and only if for every ε > 0 there exists
a pair of lower- and upper- functions ϕ(t), ψ(t) with respect to the initial value
problem (1) such that 0 < ψ(t) − ϕ(t) < ε in the interval (t0, t0 + a].

The first nonuniqueness criterion appeared in 1922 (see e. g. [1, p. 98]):

Theorem 4 (Tamarkine). Let f(t, x) be a scalar function continuous in R =
{(t, x) ∈ R2 : |t− t0| ≤ a, |x− x0| ≤ b} with (t0, x0) = (0, 0) and for all (x, y) ∈ R
the condition

|f(t, x) − f(t, x(t))| ≥ g(|x− x(t)|)

holds, where x(t) is a solution of (1), g(u) being an increasing continuous function
for u ≥ 0, such that g(0) = 0 and

∫
0+

du
g(u) < ∞. Then the initial value problem

(1) has at least two solutions in [t0 − a, t0 + a].

The Tamarkine criterion was generalized by V. Lakshmikantham (1964). His
nonuniqueness condition formulated for t0 = 0 has a form

|f(t, x) − f(t, y)| ≥ g(t, |x− y|),(7)

where g ∈ C(R,R+ ), R = {(t, u) ∈ R2 : 0 < t ≤ a, 0 ≤ u ≤ 2b}, g(t, 0) ≡ 0,
g(t, u) > 0 for u > 0, and, there exists a differentiable function u(t) 6≡ 0 for which

u′(t) = g(t, u(t)), u(0) = u′+(0) = 0.

Lakshmikantham’s theorem was generalized by M. Samimi in 1982, however, as it
was noticed by H. Stettner and Chr. Nowak, the condition (7) should be replaced
by a stronger one: f(t, x) − f(t, y) ≥ g(t, x− y) for x > y. Unfortunately, the last
condition cannot be fulfilled (see [9]).

The first mathematician who used Lyapunov functions to obtain nonuniqueness
criterion was H. Stettner (1974). In our paper [2] a general nonuniqueness result
employing Lyapunov functions for the nonsingular Cauchy problem was given.
A modification of this result was presented by M. Samimi [10] in 1982. Samimi
supposes the boundedness of f and uses a function B(t) for the description of
the behaviour of the solutions near the initial point t0 in sense of the following
Theorem 5.

In 1992, Chr. Nowak [8] attempted to remove the condition on the boundedness
of f in Samimi’s theorem. In the paper [3] a general nonuniqueness criterion was
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derived, which contains as a consequence a revised form of Nowak’s nonuniqueness
criterion and the most of previous known nonuniqueness criteria. The notation

D+V (t, x) := lim sup
h→0+

V (t+ h, x+ hf(t, x)) − V (t, x)

h

is used and the criterion is given here in a simplified form formulated for t0 = a,
where −∞ ≤ a <∞:

Theorem 5 (Kalas [3]). Let t1 ∈ (a,A). Assume that f ∈ C[R,Rn ], where R =
{(t, x) ∈ Rn+1 : a < t < A, |x− x0| ≤ b}, and
(i) there exists a function g ∈ C[(a, t1] × R+ ,R] nondecreasing in the second
variable and such that a certain solution ϕ(t), t ∈ (a, t1] of

u′ = g(t, u)

satisfies conditions

ϕ(t1) > 0, lim
t→a+

ϕ(t)

B(t)
= 0,

where B ∈ C[(a, t1],R] is positive;
(ii) V ∈ C[R,R+ ] is such that

V (t1, y0) < ϕ(t1) for some y0 ∈ Rn , |y0 − x0| < b,(8)

V (t, x) > ϕ(t) for a < t < t1, |x− x0| = b,(9)

V (t, x) ≥ Φ(t)Ψ(|x− z(t)|) for a < t ≤ t1, |x− x0| < b,(10)

where Φ ∈ C[(a, t1],R+ ], Ψ ∈ C[[0, 2b),R+ ], z ∈ C[(a, t1],Rn ] satisfy

lim inf
t→a+

Φ(t)

B(t)
> 0, Ψ(0) = 0, Ψ(u) > 0 for u ∈ (0, 2b)(11)

and
lim

t→a+
z(t) = x0, |z(t) − x0| < b for t ∈ (a, t1];

(iii) there exists a positive function ε ∈ C[(a, t1),R+ ] such that V (t, x) satisfies
locally the Lipschitz condition with respect to x for (t, x) ∈ Ωϕ and

D+V (t, x) ≥ g(t, V (t, x)) on Ωϕ

holds, Ωϕ being defined by

Ωϕ ={(t, x) ∈ Rn+1 : ϕ(t) < V (t, x) < ϕ(t) + ε(t), a < t < t1, |x− x0| < b}.(12)

Then the problem (1) has at least two different solutions x(t) on (a, t1] such that

lim
t→a+

V (t, x(t))

B(t)
= 0

is valid.
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All the mentioned nonuniqueness criteria have the disadvantage that they can-
not be applied for the n-th order differential equations. In the following result
formulated for t0 = a, where −∞ ≤ a <∞, we use Lyapunov functions that need
not be positive definite in x (in sense of the condition (10)), but only in some
components of x and thus we need the estimations only of several components of
f . Such a result is applicable to the n-order differential equation. In the result we
use the projection Pr defined by Prx = (xi1 , . . . , xil

), where ij (j = 1, . . . , l) are
integers such that 1 ≤ i1 < · · · < il ≤ n.

Theorem 6 (Kalas [4]). Let f ∈ C(R,Rn ), where R = {(t, x) ∈ Rn+1 : a < t <
A, |x− x0| ≤ b}. Put µ(t) := max|x−x0|≤b |f(t, x)|. Suppose that

∫
a+

µ(t)dt <∞

holds and choose t1 ∈ (a,A) such that

∫ t1

a

µ(t)dt ≤ b/2

is valid. Assume that
(i) there exists a function g ∈ C[(a, t1] × R+ ,R] nondecreasing in the second
variable and such that a certain solution ϕ(t), t ∈ (a, t1] of

u′ = g(t, u)

satisfies conditions

ϕ(t1) > 0, lim
t→a+

ϕ(t)

B(t)
= 0,

where B ∈ C[(a, t1],R+ ] is positive;
(ii) V (t, x) ∈ C[R,R+ ] and there exists y0 ∈ Rl , |y0 − Prx0| < b/2, such that

V (t1, y) < ϕ(t1) for y ∈ Rn , |y − x0| ≤ b, Pr y = y0,

and
V (t, x) ≥ Φ(t)Ψ(|Prx− z(t)|) for a < t ≤ t1, |x− x0| < b,

where Φ ∈ C[(a, t1],R+ ], Ψ ∈ C[[0, 2b),R+ ], z ∈ C[(a, t1],Rl ] satisfy (11) and

lim
t→a+

z(t) = Prx0, |z(t) − Prx0| < b for t ∈ (a, t1];

(iii) there exists a positive function ε ∈ C[(a, t1),R+ ] such that V (t, x) satisfies
locally the Lipschitz condition with respect to x for (t, x) ∈ Ωϕ and

D+V (t, x) ≥ g(t, V (t, x)) on Ωϕ

holds, Ωϕ being defined by (12). Then the problem (1) has at least two different
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solutions x(t) on (a, t1] such that

lim
t→a+

V (t, x(t))

B(t)
= 0

is valid.

Proof. For the proof see [4].

Theorem 6 is formulated for the nonsingular Cauchy problem. Recently a re-
sult which attemps to extend the last result to a singular case was published in
[5]. Moreover a vector Lyapunov function instead of a scalar one is used, which
allows to apply achieved results to a wider class of differential equations. For the
formulation of the result we need the following notation:

| · | Hölder’s 1-norm (sum of the absolute values of components);

l fixed number from the set {1, · · · , n};

i1, i2, · · · , il integers 1 ≤ i1 < i2 < · · · < il ≤ n;

I := {i1, i2, · · · , il};

N := {1, 2, · · · , n};

R̃k
a,A :={(t, x) ∈ Rk+1 : a < t < A, x ∈ Rk};

R̂n
a,A :={(t, x) ∈ Rn+1 : a < t ≤ A, x ∈ Rn};

Rk
α,A;̺ :={(t, x) ∈ Rk+1 : α < t < A, |x| ≤ ̺};

L[R̂n
a,A,R+k

] class of all functions V (t, x) :R̂n
a,A → R+k

with following pro-
perty: V (t, ·) is uniformly continuous and if a < α < β ≤ A,
then V (t, x(t)) is absolutely continuous on [α, β] for any abso-
lutely continuous function x : [α, β] → Rn ;

K[R̃k
a,A,Rn ] class of all mappings R̃k

a,A → Rn which satisfy Caratheodory
conditions on Rk

α,A;̺ for any α ∈ (a,A), ̺ ∈ (0,∞);

N0(a,A; τ1, · · · , τn) :={Λ = (λij(t))
n
i,j=1 : λij ∈ L[[a,A],R+ ]} such that the sys-

tem of differential inequalities |x′i(t)| ≤
∑n

j=1 λij(t)|xj(t)|,

t ∈ [a,A], i∈N possesses no nontrivial solution x(t) = (x1(t),
x2(t), · · · , xn(t)) ∈ AC[[a,A],Rn ] satisfying xi(τi) = 0 (i = 1,
2, · · · , n);

NI(a,A) :=N0(a,A; τ1, · · · , τn), where τi = A for i ∈ I and τi = a for
i ∈ N \ I.

In the theorem, the initial value problem (1) with t0 = a, where −∞ ≤ a <∞,
will be considered. We shall assume, that the vector function f = (f1, · · · , fn) ∈
K[R̃n

a,A,Rn ] is such that there are ci ∈ R (i ∈ I), Λ = (λij)
n
i,j=1 ∈ NI(a,A),

µi ∈ L[[a,A],R+ ] (i ∈ N) for which

−fi(t, x) sgn(xi − ci) ≤
n∑

j=1

λij(t)|xj | + µi(t) (i ∈ I)



LYAPUNOV FUNCTIONS IN UNIQUENESS AND NONUNIQUENESS THEOREMS 475

and

fi(t, x) sgn(xi − x0i) ≤
n∑

j=1

λij(t)|xj − x0j | + µi(t) (i ∈ N \ I)

hold for (t, x) = (t, x1, . . . , xn) ∈ R̃n
a,A.

Theorem 7 (Kalas [5]). Assume that
(i) there exists a function g = (g1, . . . , gk) ∈ K[R̃k

a,A,Rk ] such that any compo-
nent gj(t, u1, . . . , uj−1, ·, uj+1, . . . , uk) is nondecreasing for j = 1, . . . , k and there
is a solution ϕ(t) = (ϕ1(t), . . . , ϕk(t)), t ∈ (a,A) of

u′ = g(t, u)

satisfying

ϕ(t) > 0, lim
t→a+

ϕ(t) = 0, lim inf
t→A−

ϕ(t) > 0;

(ii) V (t, x) = (V1(t, x), . . . , Vk(t, x)) ∈ L[R̂n
a,A,R+k

] and there exists y0 ∈ Rl such
that

sup{Vj(A, y) : y ∈ Rn ,Pr y = y0} < lim inf
t→A−

ϕj(t) (j = 1, . . . , k)

and,
|V (t, x)| ≥ Ψ(|Prx− z(t)|) for a < t < A,

where Ψ ∈ C[R+ ,R+ ], z ∈ C[(a,A),Rl ] are such that

Ψ(0) = 0, Ψ(u) > 0 for u > 0, lim
t→a+

z(t) = Prx0;

(iii) there exist positive functions εj ∈ C[(a,A),R+ ] such that

V ′
j (t, x(t)) ≥ gj(t, ϕ1(t), . . . , ϕj−1(t), Vj(t, x(t)), ϕj+1(t), . . . , ϕk(t))

holds for j = 1, 2, . . . , k and for any solution x(t) of (1) a. e. on any interval
(α1, α2) ⊆ (a,A) for which

Vi(t, x(t)) < ϕi(t) + εi(t) on (α1, α2), (i = 1, . . . , k),(13)

Vj(t, x(t)) > ϕj(t) on (α1, α2).(14)

Then the initial value problem (1) possesses at least two different solutions x(t)
on [a,A], either of which satisfies V (t, x(t)) ≤ ϕ(t) for t ∈ (a,A).

As a consequence we easily obtain the result for the nonuniqueness for the n-th
order differential equation (for details see [5]).

Corollary 1. Let f̃ ∈ K[R̃n
a,A,R]. Suppose c ∈ R, λ, µ ∈ L[[a,A],R+ ] are such

that
−f̃(t, x1, . . . , xn) sgn(xn − c) ≤ λ(t)|xn| + µ(t)
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for (t, x) ∈ R̃n
a,A . Assume that

(i) there exists a function g ∈ K[R̃1
a,A,R] such that g(t, ·) is nondecreasing and

there is a solution ϕ(t), t ∈ (a,A) of u′ = g(t, u) satisfying

ϕ(t) > 0, lim
t→a+

ϕ(t) = 0;

(ii) there are z ∈ C[[a,A],R], ε ∈ C[(a,A),R+ ] such that z is absolutely continu-
ous on [α,A] for any α ∈ (a,A), z(a) = x0n and

(f̃(t, x1, . . . , xn) − z′(t)) sgn(xn − z(t)) ≥ g(t, |xn − z(t)|)

holds on Ω̂ = {(t, x1, . . . , xn) ∈ Rn+1 : ϕ(t) < |xn − z(t)| < ϕ(t) + ε(t), a < t < A}
for almost all t ∈ (a,A). Then the initial value problem

v(n) = f̃(t, v, v′, · · · , v(n−1)),

v(a) = x01, v
′(a) = x02, · · · , v(n−1)(a) = x0n

is nonunique.

Finally, notice that very interesting results for nonuniqueness of a singular
Cauchy-Nicolletti problem were achieved by I. Kiguradze [7]. The sufficient con-
ditions are given in the form of one-sided inequalities for the components of the
right-hand side f . The estimating expression for the j-th component fj of f de-
pends on t and xj and is linear in |xj |. The proofs of Theorem 6 and Theorem 7
are based on the combination of the Lyapunov function method with the modified
method of I. Kiguradze [7]. We mention also the paper [9], where the differences
between the nonsingular and the singular initial value problem are analyzed.
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