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Abstract. Sometimes so-called cone invariance and squeezing properties
are used to show the existence of inertial manifolds for evolution equations.
We propose and motivate a modification of these properties for semiflows.
We show that the cone invariance and modified squeezing properties to-
gether with a coercivity assumption are sufficient for a general, continuous
semiflow to have an inertial manifold with exponential tracking property.
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1. Inertial Manifolds for Semiflows

Let (X, ‖·‖) be a Banach space and let S be a semiflow on X, i.e., let S : R≥0 ×X→X, Stx := S(t, x) satisfy

(S1) (St)t∈R≥0
is a strongly continuous semigroup of (nonlinear) continuous op-

erators, i.e.,

S0 = I, StSθ = St+θ for all t, θ ≥ 0,

and S(·, x) and St = S(t, ·) are continuous for all x ∈ X, t ∈ R≥0 .

Our goal is to find a submanifold M of X with the following properties:

(M1) M is a finite-dimensional Lipschitz submanifold of X;
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(M2) M is positively invariant with respect to S, i.e.,

∀u ∈ M ∀t ≥ 0: Stu ∈ M ;(1)

(M3) M has the exponential tracking property, i.e., there is an η > 0 such that,
for every x ∈ X, there are x′ ∈ M , c ≥ 0 with Stx′ ∈ M and

∥

∥Stx − Stx′
∥

∥ ≤ ce−ηt for all t ≥ 0.

Obviously, such a manifold is a generalization of inertial manifolds for evolution
equations which were first introduced and studied by P. Constantin, C. Foias,
B. Nicoalenko, G.R. Sell and R. Temam [4,3,1], see also [14], and [6,12] for the
exponential tracking property.

As usual, we look for M as a trivial submanifold of X, i.e., we look for

M = graph(m) := {ξ + m∗(ξ) : ξ ∈ π1X}
as the graph of function m over a finite-dimensional subspace X1 of X, where π1 is
a continuous projector from X onto X1. Moreover, m shall belong to the Banach
space G = Cb(π1X, π2X) of continuous, bounded functions and shall satisfy the
Lipschitz inequality

‖m(ξ1) − m(ξ2)‖ ≤ χ ‖ξ1 − ξ2‖ for all ξ1, ξ2 ∈ π1X
with some fixed χ > 0.

In Sect. 2, we introduce a modification of the cone invariance and squeezing
properties (called modified strong squeezing property) as a natural geometric as-
sumption on a semiflow to have an inertial manifold as graph of a bounded, globally
Lipschitz function over a finite-dimensional subspace. In Sect. 3, we show that this
property together with a coercivity property is actually sufficient for the existence
of an inertial manifold. In the both last sections, we give a short application to
evolution equations and we propose some extensions to more general results.

2. The Strong Squeezing Properties

Cone Invariance Property: If we look for m ∈ G satisfying the Lipschitz con-
dition

‖m(ξ1) − m(ξ2)‖ ≤ χ ‖ξ1 − ξ2‖ for all ξ1, ξ2 ∈ π1X,(2)

and if we don’t have additional boundedness properties, we have to look for m inM, where M is the set of all m ∈ G with (2). Introducing the cone

Cχ := {x ∈ X : ‖π2x‖ ≤ χ ‖π1x‖},

we have

m ∈M if and only if m ∈ G and ∀x ∈ graph(m) : graph(m) ∈ x + Cχ.(3)
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The required positive invariance (1) and the equivalence (3) yield

x1, x2 ∈ graph(m), t ≥ 0 imply Stx1 − Stx2 ∈ Cχ.

Since we only know m ∈ M and because of (3), we replace xi ∈ graph(m) by
x1 − x2 ∈ Cχ and get the following relation

x1 − x2 ∈ Cχ implies Stx1 − Stx2 ∈ Cχ for t ≥ 0(CIP)

as a natural assumption for the existence of the manifold.
Since (CIP) means the invariance of the cone Cχ with respect to the difference

of two positive trajectories, (CIP) is called cone invariance property .

Squeezing Properties: In order to motivate the squeezing properties, we
consider the following situation: We assume that S satisfies a cone invariance
property (CIP) with parameter χ > 0, and we assume that we have a positively
invariant manifold M = graph(m), m ∈ M, with exponential tracking property.
Concretely, we assume that for each x1 ∈ X \ M there is a x̃1 ∈ M with

∥

∥Stx1 − Stx̃1

∥

∥ ≤ c1dist(x1,M)e−ηt for all t ≥ 0,(4)

i.e., we assume that the exponential decays of the difference of the trajectory and
its asymptotic phase is estimated by the initial distance of x1 to the manifold.

We sharpen the assumptions on m by the additional assumption that m actu-
ally has a Lipschitz constant L < χ.

Then there is a constant c2 > 0 such that

∀x, y, z ∈ X with x − z 6∈ Cχ, y − z ∈ CL : ‖x − z‖ ≤ c2 ‖x − y‖ .(5)

Let x1 ∈ X \ M and x̃1 ∈ M with (4) and x1 − x̃1 6∈ Cχ, and let θ > 0 and
x2 ∈ M with Sθx1−Sθx2 6∈ Cχ. Then (CIP) implies Stx1−Stx2 6∈ Cχ for t ∈ [0, θ].
With x = Stx1, y = Stx̃1, z = Stx2 and (5), we obtain

∥

∥Stx1 − Stx2

∥

∥ ≤ c2

∥

∥Stx1 − Stx̃1

∥

∥ ≤ c1c2dist(x1,M)e−ηt(6)

for all θ > 0, t ∈ [0, θ] and all x2 ∈ M with Sθx2−Sθx1 6∈ Cχ. Since dist(x1,M) ≤

‖x1 − x2‖ and ‖x1 − x2‖ ≤
√

1 + χ−2 ‖π2[x1 − x2]‖, we obtain

∥

∥Stx1 − Stx2

∥

∥ ≤ c3 ‖π2[x1 − x2]‖ e−ηt

with some c3 > 0 and for all θ > 0, t ∈ [0, θ] and all x1 ∈ X \ M , x2 ∈ M with
Sθx1 − Sθx2 6∈ Cχ.

For unknown M , this leads to the assumption

There are χ2, η > 0 such that θ > 0, Sθx1 − Sθx2 6∈ Cχ imply
‖Stx1 − Stx2‖ ≤ χ2 ‖π2[x1 − x2]‖ e−ηt for all t ∈ [0, θ]

(SP)

called squeezing property .
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Let us restart with (6). Estimating dist(x1,M) ≤ ‖π2[x1 − x3]‖ with x3 ∈ M

and π1x3 = π1x1, replacing x3 ∈ M by x3 − x2 ∈ Cχ, and replacing Sθx1 −
Sθx2 6∈ Cχ by the sharper assumption π1S

θx1 = π1S
θx2, we find the following

modification of squeezing property:

There are χ21, χ22, η > 0 such that θ > 0, π1S
θx1 = π1S

θx2 imply
‖πi[S

tx1 − Stx2]‖ ≤ χ2i ‖π2[x1 − x3]‖ e−ηt for all t ∈ [0, θ] and
all x3 with π1x3 = π1x1 and x3 − x2 ∈ Cχ

(modSP)

called modified squeezing property .

The combination of the cone invariance property (CIP) with the squeezing
property (SP) is called strong squeezing property , see [11]. Analogously, the
combination of the cone invariance property (CIP) with the modified squeezing
property (modSP) is called modified strong squeezing property .

In the next section we will see the usefullness of the modified strong squeezing
property for the existence proof of an inertial manifold. Before this, we compare
the strong squeezing property with the modified strong squeezing property.

Checking the proofs of cone invariance properties found in [2,5,6,10,11,14], one
can see that the number χ usually is a solution of an inequality F (χ) > 0, where
F : ]0,∞[ → R is a smooth function. Obviously, at least in these cases a second
cone invariance property is satisfied. At least in [11, Proposition 3], such a second
cone invariance property is explicitly used.

Lemma 1. Let the cone invariance property (CIP) and the squeezing property

(SP) be satisfied with the parameter χ > 0. Suppose, there exists χ′ > χ such that

we have a second cone invariance property with χ′ instead of χ. Then the modified

squeezing property (modSP) is satisfied with χ21 := χ2χ′

χ(χ′−χ) , χ22 := χ2χ′

χ′−χ
.

Proof. Let x1, x2 ∈ X with π1S
θx1 = π1S

θx2 and π2S
θx1 6= π2S

θx2. Then Sθx1−
Sθx2 6∈ Cχ and Sθx1 − Sθx2 6∈ Cχ′ . The cone invariance property implies Stx1 −
Stx2 6∈ Cχ and Stx1 − Stx2 6∈ Cχ′ for all t ∈ [0, θ], i.e., we have

χ
∥

∥π1[S
tx1 − Stx2]

∥

∥ ≤ χ′
∥

∥π1[S
tx1 − Stx2]

∥

∥ <
∥

∥π2[S
tx1 − Stx2]

∥

∥(7)

for all t ∈ [0, θ]. Let x3 ∈ X with π1x3 = π1x1 and x3 − x2 ∈ Cχ, i.e.,

‖π2[x2 − x3]‖ ≤ χ ‖π1[x2 − x1]‖ .(8)

Using (7) and (8), we find χ′ ‖π1[x1 − x2]‖ ≤ ‖π2[x1 − x3]‖+ χ ‖π1[x1 − x2]‖ and,
hence,

‖π1[x1 − x2]‖ ≤
1

χ′ − χ
‖π2[x1 − x3]‖ .

By the squeezing property (SP) and (7), we have
∥

∥π2[S
tx1 − Stx2]

∥

∥ ≤ χ2e
ηt (‖π2[x1 − x3]‖ + ‖π2[x3 − x2]‖)

≤ χ2e
ηt (‖π2[x1 − x3]‖ + χ ‖π1[x1 − x2]‖)

≤
χ2χ

′

χ′ − χ
eηt ‖π2[x1 − x3]‖ ,
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for all t ∈ [0, θ], i.e., (modSP) holds.

Thus, the strong squeezing property together with a second cone invariance
property implies our modified strong squeezing property, i.e., in general, the mod-
ified strong squeezing property is the weaker assumption.

3. Construction of Inertial Manifolds

Let S be a semiflow on the Banach space X. Let X1 be a finite-dimensional subspace
of X, π1a continuous projector from X onto X1 and let π2 = I − π1. We assume
that S satisfies the cone invariance property (CIP) and the modified squeezing
property (modSP) with fixed χ > 0. As technical assumptions we need

(S2) S satisfies the coercivity property ‖π1S
tx‖ → ∞ as ‖π1x‖ → ∞ in X for t ≥

0.
(S3) There is a positively invariant strip

∑

:= {x ∈ X : ‖π2x‖ ≤ σ}.

Theorem 1. Under the above assumptions, there is an inertial manifold M =
graph(m) with bounded m : π1X→ π2X satisfying a global Lipschitz condition with

constant χ. Moreover, for each x1 ∈ X, there is a x2 ∈ M with

∥

∥πi[S
tx1 − Stx2]

∥

∥ ≤ χ2i ‖π2x1 − m∗(π1x1)‖ e−ηt for all t > 0.

Proof. We devide the proof into the following three steps:

Step 1: The Graph Transformation Mapping. We wish to construct M =
graph(m∗) by an graph transformation mapping, i.e., m∗ shall be the fixed point
of suitable mappings Gθ : M→ G , θ > 0, with

graph(Gθm) = Sθgraph(m) for all m ∈M.

whereM is the set of all m ∈ G with (2) and graph(m) ⊂
∑

. Concretely, we wish
to define Gθ by (Gθm)(ξ) := π2S

θx if π1S
θx = ξ. For it, we have to show that,

for any ξ ∈ π1X, θ > 0, m ∈M, the boundary value problem

x ∈ graph(m), π1S
θx = ξ(9)

has a unique solution x = X(θ, ξ,m).
Let θ > 0, ξ ∈ π1X, m ∈M, and x1, x2 with

π1S
θx1 = π1S

θx2 = ξ and x2 ∈ graph(m).

If we choose x3 := π1x1+m(π1x1), then the modified squeezing property (modSP)
implies

∥

∥πi[S
tx1 − Stx2]

∥

∥ ≤ χ2i ‖π2x1 − m(π1x1)‖ e−ηt for all t ∈ [0, θ].(10)



482 NORBERT KOKSCH

In particular, for x1 ∈ graph(m), we have π2x1 = m(π1x1) and (10) implies

∀θ > 0∀x1, x2 ∈ graph(m) : π1S
θx1 = π1S

θx2 =⇒ x1 = x2,(11)

i.e., for each θ > 0, m ∈ M, ξ ∈ π1X there is at most one x ∈ graph(m) with
π1S

θx = ξ.
Let θ > 0, m ∈ M be fixed and let H : π1X → : π1X be defined by H(ζ) :=

π1S
θ(ζ + m(ζ)).
By the continuity of Sθ, H is continuous with inverse H−1 given by H−1(ξ) =

π1X(θ, ξ,m) on Hπ1X. In order to show Hπ1X = π1X, we wish to show the
continuity of H−1. Suppose, there is a ξ ∈ π1X such that H−1 is not continuous
at ξ. Then there are ε > 0 and a sequence (ξk)k∈N in π1X such that ξk → ξ as
k → ∞ and

‖ζ − ζk‖ ≥ ε for all k ∈ N(12)

where ζ := X(θ, ξ,m), ζk := X(θ, ξk,m).
First we suppose that there is a subsequence of (ζk)k∈N, denoted for shortness

again by (ζk)k∈N, with ‖ζk‖ → ∞ as k → ∞. Then the coercivity property (S2)
implies

∥

∥π1S
θ(ζk + m(ζk))

∥

∥ → ∞ in contradiction to Sθ(ζk + m(ζk)) → Sθ(ζ +
m(ζ)).

Remains the boundedness of (ζk)k∈N. Since π1X is finite-dimensional space π1X,
there is a convergent subsequence, denoted for shortness again by (ζk)k∈N, with a
limit ζ∞ ∈ π1X. By the continuity of Sθ, we have Sθ(ζ∞+m(ζ∞)) = Sθ(ζ+m(ζ)),
and hence ζ = ζ∞ in contrast to (12) and (11).

Therefore, H and H−1 are continuous. Because of (S2), we have ‖H(ξ)‖ → ∞
for ‖ξ‖ → ∞. Thus, H is a homeomorphism from π1X onto π1X and hence we
have Hπ1X = π1X. Therefore, for each θ > 0, m ∈M, ξ ∈ π1X, we have a unique
solution X(θ, ξ,m) of (9), and we can define the graph transformation mappings
Gθ by

(

Gθm
)

(ξ) = π2S
θX(θ, ξ,m) for θ > 0,m ∈M, ξ ∈ π1X.

Step 2: Fixed-Points of the Graph Transformation Mapping. Let θ > 0,
m ∈ M, ξ1, ξ2 ∈ π1X be arbitrary. By (S3) we have graph(Gθm) ⊂

∑

. By the
cone invariance property (CIP), we have

∥

∥

(

Gθm
)

(ξ1) −
(

Gθm
)

(ξ2)
∥

∥ ≤ χ
∥

∥π1[S
θX(θ, ξ1,m) − SθX(θ, ξ2,m)]

∥

∥

= χ ‖ξ1 − ξ2‖ ,

i.e., Gθ maps M into itself for each θ > 0.
Now let θ > 0, ξ ∈ π1X, m1,m2 ∈M, and x1, x2 with

π1S
θx1 = π1S

θx2 = ξ and xi ∈ graph(mi).

If we choose x3 := π1x1 + m2(π1x1), then x3 − x2 ∈ Cχ and (modSP) imply
∥

∥π2[S
θx1 − Sθx2]

∥

∥ ≤ χ22 ‖m1(π1x1) − m2(π1x1)‖ e−ηθ for θ ≥ 0.
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Thus

∥

∥

(

Gθm1

)

(ξ)−
(

Gθm2

)

(ξ)
∥

∥ ≤ χ22e
−ηθ ‖m1(π1X(θ, ξ,m1))−m2(π1X(θ, ξ,m1))‖ ,

i.e.,

∥

∥Gθm1 − Gθm2

∥

∥G ≤ κ(θ) ‖m1 − m2‖G for all θ > 0 and m1,m2 ∈M,

where κ(θ) := χ22e
−ηθ. Since η > 0, there is a θ0 > 0 with κ(θ) < 1 for θ ≥ θ0.

Thus, for θ ≥ θ0, Gθ is a contractive self-mapping on the closed subset M of the
Banach space G . Hence, for each θ ≥ θ0, there is a unique fixed-point m(θ) of Gθ

in M.
Let p ∈ N>0 . Then m(θ) is a fixed-point of Gpθ and hence m(pθ) = m(θ) for

θ ≥ θ0 and p ∈ N>0 . Let q ∈ N>0 . Because of

Gθ
(

G
1

q
θm(θ)

)

= G
1

q
θ
(

Gθm(θ)
)

= G
1

q
θm(θ)

and the uniqueness of the fixed-point m(θ) of Gθ, m(θ) is the unique fixed-point

of G
1

q
θ for θ ≥ θ0 and each q ∈ N>0 . Thus, for each θ > 0, there is a unique

fixed-point m(θ) of Gθ and we have m( p

q
θ) = m(θ) for θ > 0 and all p, q ∈ N>0 .

Hence,

S
p

q
θ0x ∈ graph(m(θ0)) for u ∈ graph(m(θ0)) and m,n ∈ N>0

and the continuity of t 7→ Stu yields

Sθx ∈ graph(m(θ0)) for θ > 0 and x ∈ graph(m(θ0)).

Thus, m∗ := m(θ0) = m(θ) for all θ > 0, and M = graph(m∗) is positively invariant
with respect to S.

Step 3: Existence of Asymptotic Phases. Let x1 ∈ X and let (tk)k∈N be
a monotonously increasing sequence of real numbers tk with tk → ∞ for k → ∞.
Further, let ζk := π1X(tk, Stkx1,m

∗). By (10), we have

∥

∥πi[S
tx1 − StX(tk, Stkx1,m

∗)]
∥

∥ ≤ χ2i ‖π2x1 − m∗(π1x1)‖ e−ηt for all t ∈ [0, tk].

In particular, we find ‖π1x1 − ζk‖ ≤ χ21 ‖π2x1 − m∗(π1x1)‖. If π1X is finite di-
mensional, then the bounded and closed set

{ζ ∈ π1X : ‖π1x1 − ζ‖ ≤ χ21 ‖π2x1 − m∗(π1x1)‖}

is compact. Thus, there is subsequence of (tk)k∈N, denoted again by (tk)k∈N, such
that (ζk)k∈N is converging to some ζ∗ ∈ π1X. Let x2 := ζ∗ + m∗(ζ∗). Then

‖πi[S
tx1 − Stx2]‖
≤ ‖πi[S

tx1 − StX(tk, Stkx1,m
∗)]‖ + ‖πi[S

tX(tk, Stkx1,m
∗) − Stx2]‖

≤ χ2i ‖π2x1 − m∗(π1x1)‖ e−ηt + ‖πi[S
t(ζk + m∗(ζk) − St(ζ∗ + m∗(ζ∗)]‖
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for all θ > 0, t ∈ [0, θ] and all k ∈ N>0 with tk ≥ θ. By the continuity of m∗ and
S, and because of ζk → ζ∗, the second term can be made arbitrary small on [0, θ]
choosing k large enough. Therefore,

∥

∥πi[S
tx1 − Stx2]

∥

∥ ≤ χ2i ‖π2x1 − m∗(π1x1)‖ e−ηt for all θ > 0, t ∈ [0, θ],

i.e., t 7→ Stx2 is an asymptotic phase of t 7→ Stx1 in M .

4. Application to Evolution Equations

We consider the evolution equation

u̇ + Au = f(u)(13)

with selfadjoint, positive definite densly defined linear operator A in the separa-
ble Hilbert space (H , | · |0). Further let f ∈ Cb(D(Aα), H ) satisfy the Lipschitz
inequality

|f(u) − f(u′)|0 ≤ L|u − u′|α for all u, u′ ∈ D(A),

where α ∈ [0, 1
2 ]. Let π1 be the orthogonal projection from H onto the N -dim-

ensional subspace of H spanned by the N eigenvectors belonging to the first N

eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN of A, counted with their multiplicity.
Then (13) generates a semiflow S on X = D(Aα) satisfying (S1), cf. [7,9,8] for

(S1). The coercivity property (S2) follows from the variation of constant formula,
the boundedness of f and |π1e

−Atu| ≥ Ce−λN t|π1u|. Studying the quadratic form
Qχ(u) = |π2u|

2
α − χ2|π1u|

2
α along the difference of solutions of (13), in [8] was

shown, that there is a χ > 0 with

d

dt
Qχ(Stu1 − Stu2) ≤ Λ(χ)Qχ(Stu1 − Stu2) and Λ(χ) < 0(14)

if the spectral gap condition

λN+1 − λN > cL
(

λα
N + λα

N+1

)

(15)

holds with c = 1. Romanov showed in [13], that the spectral gap condition (15) is
sharp in the following sense: For each c ∈ [0, 1[, there are two-dimensional evolution
equations (13) in X = R2 without inertial manifold (i.e., here instable manifolds)
but satisfying (15).

In particular, we may choose χ = χ0 :=
√

λα
Nλ−α

N+1. Moreover, in [8] was

shown that (14) implies the modified strong squeezing property (CIP), (modSP)
of S. In particular, for χ = χ0 we may choose η := −λN+1 +Lλα

N+1, χ21 := 1
χ0−χ

,

χ22 := χ0

χ0−χ
, where χ < χ are the positive solutions of

(λN+1 − λN )2 χ2 = L2
(

χ2 + 1
) (

λ2α
N + χ2λ2α

N+1

)

.



A MODIFIED STRONG SQUEEZING PROPERTY / INERTIAL MANIFOLDS 485

5. Extensions

Let X be densely imbedded in the Banach space Y. If the cone invariance and
modified squeezing property are required only with respect to the weaker norm
‖·‖Y, we need an additional smoothing property of S in the form that there is
a function c0 : ]0,∞[ → ]0,∞[ with ‖Stu‖X ≤ c0(t) ‖u‖Y for u ∈ X and t > 0.
This approach allows α ∈ [0, 1[ for the evolution equation (13) if Y = D(Aν) with
ν ∈ [0,min{α, 1

2}], see [8].
Another approach consists in the construction of a manifold M = graph(m)

with bounded domain D(m) ⊂ X1 as an overflowing invariant manifold, see [8].
For it we need some overflowing and inflowing properties of the semiflow on the
boundary of a subset V of X in which the manifold shall be constructed. Then
the technical assumption (S2) can be removed, since the needed bijectivity of
the corresponding mapping H can be shown by the homotopy theorem. For the
evolution equation (13), this allows to replace the global boundedness and Lipschitz
assumptions on f by corresponding assumptions on V .
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