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Abstract. A method of lower and upper solutions is used to prove the
existence of a solution of a boundary value problem with generalized bound-
ary conditions given by continuous linear functionals. The cases of Dirich-
let, Neumann, multipoint and integral conditions are covered.
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The method of lower and upper solutions is, in connection with the topological
degree theory, widely used to prove the existence or multiplicity results for various
types of boundary value problems. See [1] – [8].

The aim of this paper is to extend the method of lower and upper solutions to
the case of boundary conditions given by the continuous linear functionals. Such
conditions are given by Riemann-Stjeltjes integrals.

We consider the second order differential equation

x′′ = f(t, x, x′)(1)

with the generalized boundary conditions

x(a) =

∫ b

a

x(t) dg1(t) + k1x
′(a)

x(b) =

∫ b

a

x(t) dg2(t) − k2x
′(b),

(2)
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where f : I = [a, b] × R2 → R is a continuous function, gi(t) are nondecreasing
functions with bounded variation, 1 ≥ gi(b) − gi(a) and ki ≥ 0.

We assume that gi, ki, are such that the boundary conditions are linearly
independent. Our purpose is to extend some existence results of [6] to the case of
the problem (1), (2).

Definition 1. The function α(t) is called a lower solution for the problem (1), (2)
if

α′′(t) ≥ f(t, α(t), α′(t)),

α(a) ≤

∫ b

a

α(t) dg1(t) + k1α
′(a)

α(b) ≤

∫ b

a

α(t) dg2(t) − k2α
′(b),

(3)

Similarly the function β(t) is called an upper solution for the problem (1), (2) if

β′′(t) ≤ f(t, β(t), β′(t)),

β(a) ≥

∫ b

a

β(t) dg1(t) + k1β
′(a)

β(b) ≥

∫ b

a

β(t) dg2(t) − k2β
′(b),

(4)

If the strict inequalities for α′′, β′′ hold α, β are called strict lower and upper
solutions.

Remark 1. In the case of Dirichlet conditions x(a) = x(b) = 0, continuity of the
function f implies that for ε > 0 sufficiently small α(t)−ε, β(t)+ε are strict lower
and upper solutions satisfying the strict inequalities (3), (4).

Therefore below we assume that in the case of Dirichlet conditions the strict
lower and upper solutions satisfy also the strict inequalities (3), (4).

Lemma 1. [8, p. 214] Let h(s) be a positive continuous function such that

∫

∞ s

h(s)
ds = ∞,(5)

f be a continuous function satisfying

|f(t, x, y)| ≤ h(|y|) for each |x| ≤ r, t ∈ I,

and let x(t) be a solution of the problem (1), (2) such that ‖x‖ ≤ r. Then there is
a constant ρ0 > 0 such that ‖x′‖ < ρ0.

Lemma 2. Let α, β be a strict lower and upper solutions and u(t) be a solution
of the problem (1), (2).

Then α(t) ≤ u(t) implies α(t) < u(t) and β(t) ≥ u(t) implies β(t) > u(t).
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Proof. Let 0 = u(t0) − β(t0) at t0 ∈ (a, b). Then

0 ≥ u(t0)
′′−β(t0)

′′ = f(t0, u(t0), u
′(t0))−β(t0)

′′ ≥ f(t0, β(t0), β
′(t0))−β(t0)

′′ > 0,

a contradiction.
Let 0 = u(a) − β(a), u(t) < β(t) for t ∈ (a, b). If u′(a) = β′(a) we obtain the

same contradiction as above. Suppose u′(a) < β′(a).
We consider several cases.
Let k1 > 0. Then

u(a) − β(a) <

∫ b

a

u(t) − β(t) dg1(t) ≤ (g1(b) − g1(a))max
t∈I

(u(t) − β(t)) ≤ 0,

a contradiction.
Let k1 = 0. If g1 is nonconstant on a subinterval [c, d] ⊂ (a, b) then

u(a) − β(a) ≤

∫ b

a

u(t) − β(t) dg1(t) < (g1(b) − g1(a))max
t∈I

(u(t) − β(t)) ≤ 0,

a contradiction.
If g1 is constant on (a, b] then the first condition of (2) is reduced to Dirichlet

condition. With respect to Remark 1 we assume β(a) > 0. Then u(a) − β(a) < 0,

a contradiction.
If g1 is constant on [a, b) then u(a)− β(a) ≤ c(u(b)− β(b)), c ≤ 1. That means

u(a) = β(a) implies u(b) = β(b). Using the boundary condition at point b and
considering the same cases as above we obtain a contradiction with the equality
u(b) − β(b) = 0. The last case g2 is constant on (a, b] leads either to the Dirichlet
conditions case, or to the linear dependance of boundary conditions.

Let X = C1(I), domL = {x(t) ∈ C2(I), x satisfies (2)}, Z = C(I). We denote

L : domL ⊂ X → Z, Lx = x′′,

N : X → Z, Nx(t) = f(t, x(t), x′(t)).

The problem (1), (2) is equivalent to the operator equation

Lx = Nx,

where the operator N is L-compact [2].
We denote

Ωr,ρ = {x(t) ∈ C1(I), ‖x‖ < r, ‖x′‖ < ρ}.

Lemma 3. Let
(i) there is a constant r > 0 such that f(t, r, 0) > 0 and f(t,−r, 0) < 0,

(ii) |f(t, x, y)| ≤ h(|y|), h ≥ ε > 0 satisfies (5), for each t ∈ I, |x| < r.

Then there is ρ0 > 0 such that the topological degree

D(L,N,Ωr,ρ) = 1 (mod 2)

for each ρ > ρ0 i.e. there is a solution x(t) of (1), (2) such that |x(t)| < r,

|x′(t)| < ρ.
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Proof. We consider the homotopy

Lx = Ñ(x, λ)

defined by the parametric system of equations

x′′ = λf(t, x, y) + (1 − λ)x, (2).(6)

Now −r, r are a strict lower and upper solutions of the problem (6).
As |λf(t, x, y)+(1−λ)x| ≤ h(|y|)+r, the assumptions of Lemma 1 are satisfied

for the function λf(t, x, y) + (1 − λ)x. Then the a priori bound of derivative and
Lemma 2 imply that no solution of (6) lies on the boundary of ∂Ωr,ρ, ρ ≥ ρ0.

By the generalized Borsuk theorem [3]

D(L, Ñ(., 1), Ωr,ρ) = D(L, Ñ(., 0), Ωr,ρ) = 1 (mod 2)

and Lemma 3 is proved.

Theorem 1. Let
(i) α(t) < β(t) be a lower and upper solutions of the problem (1), (2).
(ii) |f(t, x, y)| ≤ h(|y|), for each (t, x, y), t ∈ I, α(t) ≤ x ≤ β(t), y ∈ R, where

h ≥ ε > 0 satisfies (5),
Then there is a constant ρ0 such that for each Ω = {x(t) ∈ C1(I), α(t) <

x(t) < β(t), ‖x′‖ < ρ}, ρ > ρ0 there is a solution x ∈ Ω̄ of (1), (2).
Moreover if α(t), β(t) are strict lower and upper solutions then

D(L,N,Ω) = 1 (mod 2).

Proof. Let r = max{‖α‖, ‖β‖}, M > max |f(t, x, 0)| for t ∈ I, |x| ≤ r.

We define a perturbation

f∗(t, x, y) =































f(t, β(t), y) + M(r − β(t)) + M x > r + 1,

f(t, β(t), y) + M(x − β(t)) β(t) < x ≤ r + 1,

f(t, x, y) α(t) ≤ x ≤ β(t),

f(t, α(t), y) − M(α(t) − x) −r − 1 ≤ x < α(t),

f(t, α(t), y) − M − M(α(t) + r) x < −r − 1.

The function f∗ satisfies the Nagumo condition as well as the assumptions of
Lemma 3 for Ωr+1,ρ, ρ > ρ0 where ρ0 is a constant from Lemma 1 for the function
f∗.

Suppose u(t) ∈ Ωr+1,ρ is a solution of the problem

x′′ = f∗(t, x, x′), (2).(7)

We show that α ≤ u ≤ β.

Let v(t) = u(t) − β(t) attains its maximum vmax > 0. Then β(t) + vmax is a
strict upper solution of (7). Lemma 2 implies u(t) < β(t) + vmax a contradiction.
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That means u(t) is a solution of (1), (2).
If α(t), β(t) are a strict lower and upper solutions then moreover

D(L,N∗, Ωr,ρ) = D(L,N∗, Ω) = D(L,N,Ω) = 1 (mod 2).

Theorem 2. Let
(i) |f(t, x, y)| < M,

(ii) α, β, β(t) < α(t), be a strict lower and upper solutions for the problem (1),
(2).

Then there are constants r, ρ > 0 such that

D(L,N,Ω) = 1 (mod 2)

where Ω = {x(t) ∈ C1(I), ∃tx ∈ I, β(tx) < x(tx) < α(tx), ‖x‖ < r, ‖x′‖ < ρ}.

Proof. Let ρ = (b − a)2M and r = max (‖α‖, ‖β‖) + (b − a)ρ.

We define a perturbation f∗ by

f∗(t, x, y) =































f(t, x, y) + M x > r + 1,

f(t, x, y) + M(x − r) r < x ≤ r + 1,

f(t, x, y) −r ≤ x ≤ r,

f(t, x, y) + M(x + r) −r − 1 ≤ x < −r,

f(t, x, y) − M x < −r − 1.

Clearly r + 1, −r − 1 are a strict lower and upper solutions of the problem

x′′ = f∗(t, x, x′), (2).(8)

As |f∗| < 2M then for each solution of (8) the boundary conditions (2) imply
that there is a constant ρ such that |x′(t)| < ρ.

Therefore
D(L,N∗, Ωr+1,ρ) = 1 (mod 2)

Let now

Ωl = {x(t) ∈ Ωr+1,ρ, −r − 1 < x < β},

Ωu = {x(t) ∈ Ωr+1,ρ, α < x < r + 1}.

Then
D(L,N∗, Ωl) = D(L,N∗, Ωu) = 1 (mod 2)

Set Ωm = Ωr+1,ρ \
(

Ωl ∪ Ωu

)

.

As −r − 1, α, r + 1, β are strict lower and upper solutions, Lemma 2 implies
there is no solution u ∈ ∂Ωm.

The addition property of the degree means

D(L,N∗, Ωm) = 1 (mod 2)

on the set Ωm = Ωr+1 \
(

Ωl ∪ Ωu

)

, and finally the excision property implies

D(L,N∗, Ωm) = D(L,N∗, Ω) = D(L,N,Ω) = 1 (mod 2).
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The Nagumo condition in Theorem 1 and the a priori bound of f in Theorem
2 are in the following theorems replaced by the one sided growth condition.

Theorem 3. Let
(i) k1 > 0, k2 > 0,

(ii) there is M > 0 such that f(t, x, y) ≤ M for each t ∈ I, and each x, y ∈ R.

(iii) α, β, α(t) < β(t), be a strict lower and upper solutions of the problem (1),
(2).

Then there is ρ0 > 0 such that for each ρ > ρ0 and Ω = {x(t) ∈ C1(I), α(t) <

x(t) < β(t), ‖x′‖ < ρ} there is

D(L,N,Ω) = 1 (mod 2).

Proof. Let r = max{‖α‖, ‖β‖}.
Let x(t) be a solution of (1), (2) such that ‖x‖ < r. Then the boundary

conditions (2) imply x′(a) ≤
2r

k1
and x′(b) ≥ −

2r

k2
. Therefore ‖x′‖ ≤

2r

k
+(b−a)M,

where k = min{k1, k2}.

Let ρ1 =
2r

k
+ (b − a)M + max{‖α′‖, ‖β′‖}.

We define

χ(s, t) =











1 s ≤ t
2t−s

t
t < s ≤ 2t

0 s > 2t

and

f∗ = χ(‖x‖, r)χ(‖y‖, ρ1)f(t, x, y).(9)

Now f∗ is a bounded function and α, β, are strict lower and upper solutions of
the problem

x′′ = f∗(t, x, x′), (2).(10)

Theorem 1 implies that there is ρ2 such that for each ρ > ρ2

D(L,N∗, Ω) = 1 (mod 2).

We choose ρ > max{ρ1, ρ2} = ρ0. For each solution x of (10) such that ‖x‖ < r

there is ‖x′‖ < ρ1. Then f(t, x(t), x′(t)) = f∗(t, x(t), x′(t)) and

D(L,N,Ω) = D(L,N∗, Ω) = 1 (mod 2).

Theorem 4. Let
(i) k1, k2 > 0,

(ii) there is M > 0 such that f(t, x, y) ≤ M for each t ∈ I, and each x, y ∈ R.

(iii) α, β, β(t) < α(t), be a strict lower and upper solutions of the problem (1),
(2).
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Then there is r, ρ > 0 such that

D(L,N,Ω) = 1 (mod 2)

where

Ω = {x(t) ∈ C1(I), ∃tx ∈ I β(tx) < x(tx) < α(tx), ‖x‖ < r, ‖x′‖ < ρ}.

Proof. Let m = max{‖α‖, ‖β‖}, x(t) be a solution and let ∃tx ∈ I β(tx) < x(tx) <

α(tx). Then |x(tx)| ≤ m.

Let t1 be such that min x(t) = x(t1), and suppose that x(t1) < −m.

Let t1 < tx. Then either x′(t1) = 0 or t1 = a.

In the case x′(t1) = 0 there is x′(t) =
∫ t

t1
x′′(s) ds ≤ (b− t1)M, for t ≥ t1. Then

x(t1) = x(tx) −

∫ tx

t1

x′(s) ds ≥ −m− (tx − t1)(b − t1)M.

If t1 = a then the boundary condition implies x(a) > x(a) (g1(b) − g1(a)) +
k1x

′(a). Hence k1x
′(a) < (1− (g1(b) − g1(a))) x(a) which implies x′(a) < 0, a

contradiction.
Let t1 > tx. Then either x′(t1) = 0 or t1 = b.

Again x′(t1) = 0 implies that x′(t) = −
∫ t1

t
x′′(s) ds ≥ −(t1 − a)M, for t ≤ t1.

Then

x(t1) = x(tx) +

∫ t1

tx

x′(s) ds ≥ −m − (t1 − a)(b − tx)M.

If t1 = b then x(b) > x(b) (g2(b) − g2(a))− k2x
′(b) i.e. k2x

′(b) > −(1− (g2(b)−
g2(a)))x(b) which implies x′(b) > 0, a contradiction.

That means x(t) > −m − (b − a)2M.

Suppose that there is t2 such that maxx(t) = x(t2) > m.

Case t2 > t1.

There is x′(t) = x′(t1) +
∫ t

t1
x′′(s) ds ≤ (t2 − t1)M, for t ∈ [t1, t2], and

x(t2) = x(t1) +

∫ t2

t1

x′(s) ds ≤ m + (t2 − t1)
2M.

Case t2 < t1.

There is x′(t) = x′(t1) −
∫ t1

t
x′′(s) ds ≥ −(t1 − t2)M, for t ∈ [t2, t1], and

x(t2) = x(t1) −

∫ t1

t2

x′(s) ds ≤ m + (t2 − t1)
2M.

The above estimations give a priori bound of a solution

|x(t)| < r = m + (b − a)2M.
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Arguing as in the proof of the preceeding theorem we obtain that

|x′(t)| ≤
2r

k
+ (b − a)M,

where again k = min{k1, k2} and we put ρ1 =
2r

k
+ (b − a)M + max{‖α′‖, ‖β′‖}.

Using again the perturbation (9) and Theorem 2 we obtain that there is ρ2

such that for each ρ > ρ2

D(L,N∗, Ω) = 1 (mod 2),

where

Ω = {x(t) ∈ C1(I), ∃tx ∈ I β(tx) < x(tx) < α(tx), ‖x‖ < r, ‖x′‖ < ρ}.

We choose ρ > max(ρ1, ρ2) = ρ0. A priori bounds of solutions imply

D(L,N,Ω) = D(L,N∗, Ω) = 1 (mod 2).

Remark 2. It is possible to replace the inequality in the condition (ii) of Theorem
3 and 4 by f(t, x, y) ≥ −M for each t ∈ I, x, y ∈ R.
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