Archivum Mathematicum

László Simon

On parabolic functional differential equations in unbounded domains

Archivum Mathematicum, Vol. 36 (2000), No. 5, 603--616

Persistent URL: http://dml.cz/dmlcz/107775

Terms of use:

© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS IN UNBOUNDED DOMAINS

László Simon
Department of Applied Analysis, Faculty of Science, Eötvös Loránd University 1053 Budapest, Kecskeméti u. 10-12, Hungary
Email: simonl@ludens.elte.hu

Abstract

We shall consider weak solutions of initial-boundary value problems for nonlinear parabolic functional differential equations containing discontinuous terms in the unknown function. There will be proved the existence of solutions and formulated some properties of the solutions.

AMS Subject Classification. 35R10

Keywords. partial functional differential equations, differential equations with dicontinuous terms.

1. Introduction

We shall consider initial-boundary value problems for the equation

$$
\begin{align*}
D_{t} u(t, x)-\sum_{j=1}^{n} D_{j}\left[f_{j}(t, x, u(t, x), \nabla u(t, x))\right] & +f_{0}(t, x, u(t, x), \nabla u(t, x))+ \\
+g(t, x, u(t, x))+h(t, x,[H(u)](t, x)) & =F(t, x) \tag{1}\\
(t, x) \in Q_{T} & =(0, T) \times \Omega
\end{align*}
$$

where $\Omega \subset R^{n}$ is a (possibly unbounded) domain with sufficiently smooth boundary, H is a linear continuous operator in $L^{p}\left(Q_{T}\right)$, the functions f_{j} are measurable in (t, x), continuous with respect to $u(t, x), \nabla u(t, x)$ but the functions g, h are assumed to be only measurable in all variables. Further, f_{j}, g, h have certain polynomial growth in $u(t, x), \nabla u(t, x)$. The case when Ω is bounded, was considered, e.g., in [11] where certain terms were rapidly increasing in $u(t, x)$. In [13] there were
considered equations of more general form where all the terms were continuous in $u(t, x)$ and $\nabla u(t, x)$.

The problem was motivated by the climate model considered by J.I. Díaz and G. Hetzer in [8] where a particular case of the equation (1) (also with discontinuous terms in u) was investigated on the unit sphere in R^{3} (instead of Ω). Some qualitative properties of the solutions of the climate model (without delay terms) were proved in [1] and [7]. Functional partial differential equations arise also in population dynamics, plasticity, hysteresis (see, e.g., [2], [4], [10], [15]).

The aim of this work is to formulate and prove new results in the case of unbounded Ω. We shall formulate conditions which imply the existence of weak solutions of initial-boundary value problems for (1) and to show that in the case of unbounded Ω, the limit of solutions of problems in large bounded domains is a solution of the problem in Ω. There will also be proved the boundedness of the solutions under some conditions and a theorem on the stabilization of the solutions as $t \rightarrow \infty$. Our results can be easily extended to equations, containing higher order derivatives with respect to x.

2. EXISTENCE THEOREMS

Let $\Omega \subset R^{n}$ be a (possibly unbounded) domain with sufficiently smooth boundary, $p \geq 2$. Denote by $W^{1, p}(\Omega)$ the usual Sobolev space with the norm

$$
\|u\|=\left[\int_{\Omega}\left(\sum_{j=1}^{n}\left|D_{j} u\right|^{p}+|u|^{p}\right)\right]^{1 / p}
$$

Let V be a closed linear subspace of $W^{1, p}(\Omega)$ and denote by $X_{T}=L^{p}(0, T ; V)$ the Banach space of the set of measurable functions $u:(0, T) \rightarrow V$ such that $\|u\|^{p}$ is integrable. The dual space of $L^{p}(0, T ; V)$ is $X_{T}^{\star}=L^{q}\left(0, T ; V^{\star}\right)$ where $1 / p+1 / q=1$ and V^{\star} is the dual space of V (see, e.g., [14]).

On functions f_{j} we assume that
A (i) $f_{j}: Q_{T} \times R^{n+1} \rightarrow R$ are measurable in $(t, x) \in Q_{T}$ and continuous in $\eta \in R, \zeta \in R^{n}$;
(ii) $\left|f_{j}(t, x, \eta, \zeta)\right| \leq c_{1}\left(|\eta|^{p-1}+|\zeta|^{p-1}\right)+k_{1}(x)$ with some constant c_{1} and a function $k_{1} \in L^{q}(\Omega)(j=0,1, \ldots, n)$;
(iii) $\sum_{j=1}^{n}\left[f_{j}(t, x, \eta, \zeta)-f_{j}(t, x, \eta, \tilde{\zeta})\right]\left(\zeta_{j}-\tilde{\zeta}_{j}\right)>0$ if $\zeta \neq \tilde{\zeta}$;
(iv) $\sum_{j=1}^{n} f_{j}(t, x, \eta, \zeta) \zeta_{j}+f_{0}(t, x, \eta, \zeta) \eta \geq c_{2}\left[|\zeta|^{p}+|\eta|^{p}\right]-k_{2}(x)$ with some constant $c_{2}>0$ and $k_{2} \in L^{1}(\Omega)$.

Remark 1. A simple example for f_{j}, satisfying A (i) - (iv) is

$$
\begin{gathered}
f_{j}(t, x, \eta, \zeta)=a_{j}(t, x) \zeta_{j}\left|\zeta_{j}\right|^{p-2}, \quad j=1, \ldots, n, \\
f_{0}(t, x, \eta, \zeta)=a_{0}(t, x) \eta|\eta|^{p-2}
\end{gathered}
$$

where a_{j} are measurable functions, satisfying $0<c_{0} \leq a_{j}(t, x) \leq c_{0}^{\prime}$ with some constants c_{0}, c_{0}^{\prime}.

On functions g, h we assume that
\mathbf{B} (i) $g=g_{1}+g_{2}, g_{j}: Q_{T} \times R \rightarrow R$ and $h: Q_{T} \times R \rightarrow R$ are measurable functions;
(ii) $\left|g_{1}(t, x, \eta)\right| \leq k_{3}(x)|\eta|^{p-1}$ and $g_{1}(t, x, \eta) \eta \geq 0$ with some function $k_{3} \in$ $L^{1}(\Omega) \cup \mid L^{\infty}(\Omega) ;$
$\left|g_{2}(t, x, \eta)\right| \leq k_{3}(x) k_{4}(|\eta|)|\eta|^{p-1}+k_{5}(x), \quad|h(t, x, \theta)| \leq k_{3}(x) k_{4}(|\theta|)|\theta|^{p-1}+k_{5}(x)$ where $k_{5} \in L^{q}(\Omega)$ and k_{4} is a continuous function, satisfying $\lim _{\infty} k_{4}=0$.

Further,
C $H: L^{p}\left(Q_{T}\right) \rightarrow L^{p}\left(Q_{T}\right)$ is a linear and continuous operator such that for any compact $K \subset \Omega$ there is a compact $\tilde{K} \subset \Omega$ with the following property: the restriction of $H(u)$ to $(0, t) \times K$ depends only on the restriction of u to $(0, t) \times \tilde{K}$ for all $t \in(0, T]$.
Remark 2. The operator H may have e.g. one of the following forms:

$$
[H(u)](t, x)=\int_{0}^{t} \beta_{0}(s, t, x) u(s, x) d s \text { or }[H(u)](t, x)=u(\tau(t), x)
$$

with some $\beta_{0} \in L^{\infty}\left((0, T) \times Q_{T}\right)$ and a continuously differentiable function τ satisfying $\tau^{\prime}>0,0<\tau(t) \leq t$.

Since g_{1} is locally bounded, for any $\epsilon>0$ we may define (with fixed $(t, x) \in Q_{T}$)

$$
\begin{gathered}
\bar{g}_{1}^{\varepsilon}(t, x, \eta)=\operatorname{ess} \sup _{|\eta-\tilde{\eta}|<\varepsilon} g_{1}(t, x, \tilde{\eta}), \\
\underline{g}_{1}^{\varepsilon}(t, x, \eta)=\operatorname{ess}_{\inf }^{|\eta-\tilde{\eta}|<\varepsilon} \mid \\
g_{1}(t, x, \tilde{\eta})
\end{gathered}
$$

For fixed $t, x, \eta \bar{g}_{1}^{\varepsilon}(t, x, \eta)$ is nonincreasing and $\underline{g}_{1}^{\varepsilon}(t, x, \eta)$ is nondecreasing as ε is decreasing thus

$$
\bar{g}_{1}(t, x, \eta)=\lim _{\varepsilon \rightarrow 0} \bar{g}_{1}^{\varepsilon}(t, x, \eta), \quad \underline{g}_{1}(t, x, \eta)=\lim _{\varepsilon \rightarrow 0} \underline{g}_{1}^{\varepsilon}(t, x, \eta)
$$

exist. Similarly may be defined $\bar{g}_{2}, \underline{g}_{2}, \bar{h}, \underline{h}$ (by functions g_{2}, h, respectively).
Theorem 1. Assume \mathbf{A} (i) - (iv) and \mathbf{B} (i) - (iii) and \mathbf{C}. Then for each $F \in$ $X_{T}^{\star}, u_{0} \in V$ there exists $u \in X_{T}$ with $D_{t} u \in X_{T}^{\star}$ and $\varphi_{1}, \varphi_{2}, \psi \in L^{q}\left(Q_{T}\right)$ such that

$$
\begin{equation*}
u(0, \cdot)=u_{0} \tag{2}
\end{equation*}
$$

for arbitrary $v \in V$ we have

$$
\begin{gather*}
\left\langle D_{t} u(t, \cdot), v\right\rangle+\sum_{j=1}^{n} \int_{\Omega} f_{j}(t, x, u(t, x), \nabla u(t, x)) D_{j} v(x) d x+ \tag{3}\\
\int_{\Omega} f_{0}(t, x, u(t, x), \nabla u(t, x)) v(x) d x+\int_{\Omega}\left[\varphi_{1}(t, x)+\varphi_{2}(t, x)+\psi(t, x)\right] v(x) d x= \\
\langle F(t, \cdot), v\rangle \text { for a.e. } t \in[0, T]
\end{gather*}
$$

and for a.e. $(t, x) \in Q_{T}$

$$
\begin{gather*}
\underline{g}_{l}(t, x, u(t, x)) \leq \varphi_{l}(t, x) \leq \bar{g}_{l}(t, x, u(t, x)), \quad l=1,2 \tag{4}\\
\underline{h}(t, x,[H(u)](t, x)) \leq \psi(t, x) \leq \bar{h}(t, x,[H(u)](t, x)) .
\end{gather*}
$$

Proof. Consider the function $j \in C_{0}^{\infty}(R)$ supported by $[-1,1]$ with the properties $j \geq 0, \int_{R} j=1$ and for any positive integer k define the functions j_{k} by $j_{k}(\eta)=$ $k j(k \eta)$. Then the convolutions (with fixed $t, x) g_{l, k}=g_{l} \star j_{k} \quad(l=1,2), \quad h_{k}=$ $h \star j_{k}$ are smooth functions (of η, θ, respectively). Further, define functions

$$
\begin{gathered}
\tilde{g}_{l, k}(t, x, \eta)=g_{l, k}(t, x, \eta) \text { if }|x| \leq k, \quad \tilde{g}_{l, k}(t, x, \eta)=0 \text { if }|x|>k \\
\tilde{h}_{k}(t, x, \theta)=h_{k}(t, x, \theta) \text { if }|x| \leq k, \quad \tilde{h}_{k}(t, x, \theta)=0 \text { if }|x|>k .
\end{gathered}
$$

Then we may define operators $A, B_{k}, C_{k}: X_{T} \rightarrow X_{T}^{\star}$ by

$$
\begin{gathered}
{[A(u), v]=\int_{0}^{T}\langle A(u)(t), v(t)\rangle d t} \\
\langle A(u)(t), v(t)\rangle=\sum_{j=1}^{n} \int_{\Omega} f_{j}(t, x, u, \nabla u) D_{j} v d x+\int_{\Omega} f_{0}(t, x, u, \nabla u) v d x \\
{\left[B_{k}^{l}(u), v\right]=\int_{0}^{T}\left\langle B_{k}^{l}(u)(t), v(t)\right\rangle d t=\int_{Q_{T}} \tilde{g}_{l, k}(t, x, u) v d t d x, \quad l=1,2,} \\
{\left[B_{k}(u), v\right]=\left[B_{k}^{1}(u), v\right]+\left[B_{k}^{2}(u), v\right]} \\
{\left[C_{k}(u), v\right]=\int_{0}^{T}\left\langle C_{k}(u)(t), v(t)\right\rangle d t=\int_{Q_{T}} \tilde{h}_{k}(t, x, H(u)) v d t d x, \quad u, v \in X_{T} .}
\end{gathered}
$$

By using the assumptions of our theorem, Hölder's inequality and Vitali's theorem it is not difficult to show that the operator $A+B_{k}+C_{k}: X_{T} \rightarrow X_{T}^{\star}$ is bounded (i.e. it maps bounded sets of X_{T} into bounded sets of X_{T}^{\star}) and demicontinuous, i.e.
$\left(u_{l}\right) \rightarrow u$ in X_{T} implies $\left(A+B_{k}+C_{k}\right)\left(u_{l}\right) \rightarrow\left(A+B_{k}+C_{k}\right)(u)$ weakly in X_{T}^{\star}.
Further, by using compact imbedding theorems we obtain (as in [12]) that $A+B_{k}+C_{k}$ is pseudomonotone with respect to

$$
D(L)=\left\{u \in X_{T}: D_{t} u \in X_{T}^{\star}, u(0)=0\right\},
$$

i.e. if $u_{l}, u \in D(L)$,

$$
\left(u_{l}\right) \rightarrow u \text { weakly in } X_{T}, \quad\left(D_{t} u_{l}\right) \rightarrow D_{t} u \text { weakly in } X_{T}^{\star} \text { and }
$$

$$
\limsup _{l \rightarrow \infty}\left[\left(A+B_{k}+C_{k}\right)\left(u_{l}\right), u_{l}-u\right] \leq 0
$$

then

$$
\begin{gathered}
\left(A+B_{k}+C_{k}\right)\left(u_{l}\right) \rightarrow\left(A+B_{k}+C_{k}\right)(u) \text { weakly in } X_{T}^{\star} \text { and } \\
\lim _{l \rightarrow \infty}\left[\left(A+B_{k}+C_{k}\right)\left(u_{l}\right), u_{l}-u\right]=0 .
\end{gathered}
$$

Finally, we show that $A+B_{k}+C_{k}$ is coercive, i.e.

$$
\begin{equation*}
\lim _{\|u\| \rightarrow \infty} \frac{\left[\left(A+B_{k}+C_{k}\right)(u), u\right]}{\|u\|_{X_{T}}}=+\infty . \tag{5}
\end{equation*}
$$

Assumption A (iv) implies

$$
\begin{equation*}
\int_{0}^{t}\langle A(u)(\tau), u(\tau)\rangle d \tau \geq c_{2}\|u\|_{X_{t}}^{p}-t \int_{\Omega} k_{2} \tag{6}
\end{equation*}
$$

By B (ii)

$$
\tilde{g}_{1, k}(t, x, \eta) \eta \geq 0 \text { if }|\eta|>1, \quad \tilde{g}_{1, k}(t, x, \eta) \eta \geq-k_{3}(x) \text { if }|\eta| \leq 1
$$

thus

$$
\begin{equation*}
\int_{0}^{t}\left\langle B_{k}^{1}(u)(\tau), u(\tau)\right\rangle d \tau \geq-t \int_{\Omega} k_{3} \tag{7}
\end{equation*}
$$

Let $a>0$ be an arbitrary number. Since $\lim _{\infty} k_{4}=0$, there exists $b>0$ such that $|\eta| \geq b$ implies $k_{4}(|\eta|) \leq a$. Hence, by using the notation $Q_{t}^{b}=\left\{(\tau, x) \in Q_{t}\right.$: $|u(\tau, x)| \leq b\}$ we obtain from \mathbf{B} (iii)

$$
\begin{gather*}
\left|\int_{0}^{t}\left\langle B_{k}^{2}(u)(\tau), u(\tau)\right\rangle d \tau\right| \leq \tag{8}\\
\left|\int_{Q_{t}^{b}} \tilde{g}_{2, k}(\tau, x, u) u d \tau d x\right|+\left|\int_{Q_{t} \backslash Q_{t}^{b}} \tilde{g}_{2, k}(\tau, x, u) u d \tau d x\right| \leq \\
C(a)+a\left\|k_{3}\right\|_{L^{\infty}(\Omega)}\|u\|_{X_{t}}^{p}+\left[t \int_{\Omega}\left|k_{5}\right|^{q}\right]^{1 / q}\|u\|_{X_{t}}
\end{gather*}
$$

with a constant $C(a)$ (not depending on u).
One gets similarly

$$
\begin{gather*}
\left|\int_{0}^{t}\left\langle C_{k}(u)(\tau), u(\tau)\right\rangle d \tau\right| \leq \tag{9}\\
C(a)+a\left\|k_{3}\right\|_{L^{\infty}(\Omega)}\|u\|_{X_{t}}^{p}+\left[t \int_{\Omega}\left|k_{5}\right|^{q}\right]^{1 / q}\|u\|_{X_{t}} .
\end{gather*}
$$

Choosing sufficiently small $a>0$, from (6) - (9) we obtain for all $t \in[0, T]$

$$
\begin{equation*}
\int_{0}^{t}\left\langle\left(A+B_{k}+C_{k}\right)(u)(\tau), u(\tau)\right\rangle d \tau \geq c_{2} / 2\|u\|_{X_{t}}^{p}-c_{2}^{\prime}\|u\|_{X_{t}}-c_{3}^{\prime} \tag{10}
\end{equation*}
$$

(with some constants $c_{2}^{\prime}, c_{3}^{\prime}$, not depending on u) which implies (5) since $p \geq 2$.
Thus, by Theorem 4 of [3], for any $F \in X_{T}^{\star}, u_{0} \in V$ there exists $u_{k} \in X_{T}$ such that $D_{t} u_{k} \in X_{T}^{\star}$ and

$$
\begin{gather*}
D_{t} u_{k}+\left(A+B_{k}+C_{k}\right)\left(u_{k}\right)=F, \tag{11}\\
u_{k}(0)=u_{0} \tag{12}
\end{gather*}
$$

Since

$$
\left\langle D_{t} u_{k}(t), u_{k}(t)\right\rangle=\frac{1}{2} \frac{d}{d t}\left\langle u_{k}(t), u_{k}(t)\right\rangle=\frac{1}{2} \frac{d}{d t}\left(u_{k}(t), u_{k}(t)\right)_{L^{2}(\Omega)}
$$

(see, e.g., [14]), applying both sides of (11) to u_{k}, we find by (10), (12)

$$
\begin{gather*}
1 / 2\left\|u_{k}(t)\right\|_{L^{2}(\Omega)}^{2}-1 / 2\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+c_{2} / 2\left\|u_{k}\right\|_{X_{t}}^{p} \leq \tag{13}\\
{\left[\|F\|_{X_{T}^{\star}}+c_{2}^{\prime}\right]\left\|u_{k}\right\|_{X_{t}}+c_{3}^{\prime}, \quad t \in[0, T] .}
\end{gather*}
$$

This inequality implies that

$$
\begin{equation*}
\left\|u_{k}\right\|_{X_{T}},\left\|u_{k}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \text { are bounded. } \tag{14}
\end{equation*}
$$

Hence the sequence $\left(A+B_{k}+C_{k}\right)\left(u_{k}\right)$ is bounded in X_{T}^{\star} and so $\left(D_{t} u_{k}\right)$ is bounded in X_{T}^{\star}, too.

Consequently, there exist $u \in X_{T}, w \in X_{T}^{\star}, \varphi_{l}, \psi \in L^{q}\left(Q_{T}\right)$ and a subsequence of $\left(u_{k}\right)$, again denoted by $\left(u_{k}\right)$ such that

$$
\begin{equation*}
\left(u_{k}\right) \rightarrow u \text { weakly in } X_{T}, \tag{15}
\end{equation*}
$$

$\left(u_{k}\right) \rightarrow u$ in $L^{p}\left((0, T) \times \Omega_{0}\right)$ for each fixed bounded $\Omega_{0} \subset \Omega$ and a.e. in Q_{T};
thus by \mathbf{C}

$$
\begin{gather*}
\left(H\left(u_{k}\right)\right) \rightarrow H(u) \text { a.e. in } Q_{T} \tag{17}\\
\left(A+B_{k}+C_{k}\right)\left(u_{k}\right) \rightarrow w \text { weakly in } X_{T}^{\star} \tag{18}\\
\tilde{g}_{l, k}\left(t, x, u_{k}\right) \rightarrow \varphi_{l} \text { and } \tilde{h}_{k}\left(t, x, u_{k}\right) \rightarrow \psi \text { weakly in } L^{q}\left(Q_{T}\right) . \tag{19}
\end{gather*}
$$

From (11), (12), (14), (15), (18), (19) it follows (see, e.g., [14]) $u(0)=u_{0}$,

$$
\begin{equation*}
D_{t} u+w+\varphi_{1}+\varphi_{2}+\psi=F \tag{20}
\end{equation*}
$$

Now we prove $w=A(u)$. Apply (11) to $\left(u_{k}-u\right) \zeta$ with arbitrary fixed $\zeta \in$ $C_{0}^{\infty}(\Omega)$ having the properties : $\zeta \geq 0, \zeta(x)=1$ in a compact subset K of Ω. So we obtain

$$
\begin{align*}
{\left[D_{t} u_{k}-D_{t} u,\left(u_{k}-u\right) \zeta\right]+} & {\left[D_{t} u,\left(u_{k}-u\right) \zeta\right]+\left[A\left(u_{k}\right),\left(u_{k}-u\right) \zeta\right]+} \\
& {\left[\left(B_{k}+C_{k}\right)\left(u_{k}\right),\left(u_{k}-u\right) \zeta\right]=\left[F,\left(u_{k}-u\right) \zeta\right] . } \tag{21}
\end{align*}
$$

For the first term we have

$$
\begin{align*}
{\left[D_{t} u_{k}-D_{t} u,\left(u_{k}-u\right) \zeta\right]=} & 1 / 2 \int_{0}^{T}\left[\frac{d}{d t} \int_{\Omega}\left(u_{k}(t)-u(t)\right)^{2} \zeta d x\right] d t= \tag{22}\\
& 1 / 2 \int_{\Omega}\left(u_{k}(T)-u(T)\right)^{2} \zeta d x \geq 0
\end{align*}
$$

further, by (15), (16), (19)

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left[D_{t} u,\left(u_{k}-u\right) \zeta\right]=0, \quad \lim _{k \rightarrow \infty}\left[\left(B_{k}+C_{k}\right)\left(u_{k}\right),\left(u_{k}-u\right) \zeta\right]=0 \\
\lim _{k \rightarrow \infty}\left[F,\left(u_{k}-u\right) \zeta\right]=0 \tag{23}
\end{gather*}
$$

Thus (21) - (23) imply

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left[A_{k}\left(u_{k}\right),\left(u_{k}-u\right) \zeta\right] \leq 0 \tag{24}
\end{equation*}
$$

Since by A (ii) and (16)

$$
\lim _{k \rightarrow \infty} \int_{Q_{T}} f_{0}\left(t, x, u_{k}, \nabla u_{k}\right)\left(u_{k}-u\right) \zeta d t d x=0
$$

from (24) we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sum_{j=1}^{n} \int_{Q_{T}} f_{j}\left(t, x, u_{k}, \nabla u_{k}\right)\left(u_{k}-u\right) \zeta d t d x \leq 0 . \tag{25}
\end{equation*}
$$

By using arguments of [5], we obtain from (25)

$$
\nabla u_{k} \rightarrow \nabla u \text { a.e. in }(0, T) \times K
$$

(see [13]). Since K can be chosen as any compact subset of Ω, we find

$$
\begin{equation*}
\nabla u_{k} \rightarrow \nabla u \text { a.e. in } Q_{T} . \tag{26}
\end{equation*}
$$

Thus Vitali's theorem and Hölder's inequality imply

$$
A\left(u_{k}\right) \rightarrow A(u) \text { weakly in } X_{T}^{\star}
$$

(see, e.g., [5]), i.e. $w=A(u)$.
In order to show the inequalities (4), one applies arguments of [9], by using (16), (17). (16) implies that for each positive a there exists a subset $\omega \subset Q_{T}$ with Lebesgue measure $\lambda(\omega)<a$ such that

$$
\left(u_{k}\right) \rightarrow u \text { uniformly on } Q_{T} \backslash \omega \text { and } u \in L^{\infty}\left(Q_{T} \backslash \omega\right) .
$$

Thus for any $\varepsilon>0$ there is k_{0} such that $k_{0}>2 / \varepsilon$ and $k>k_{0}$ implies

$$
\begin{equation*}
\left|u_{k}(t, x)-u(t, x)\right|<\varepsilon / 2 \text { if }(t, x) \in Q_{T} \backslash \omega . \tag{27}
\end{equation*}
$$

Let $k>k_{0},(t, x) \in Q_{T} \backslash \omega$. From $1 / k<\varepsilon / 2,(27)$ and the definition of $g_{1, k}, \underline{g}_{1}^{\varepsilon}, \bar{g}_{1}^{\varepsilon}$ it easily follows

$$
\underline{g}_{1}^{\varepsilon}(t, x, u(t, x)) \leq g_{1, k}\left(t, x, u_{k}(t, x)\right) \leq \bar{g}_{1}^{\varepsilon}(t, x, u(t, x)),
$$

hence for sufficiently large k

$$
\underline{g}_{1}^{\varepsilon}(t, x, u(t, x)) \leq \tilde{g}_{1, k}\left(t, x, u_{k}(t, x)\right) \leq \bar{g}_{1}^{\varepsilon}(t, x, u(t, x)) .
$$

Consequently, for any $\varphi \in C_{0}^{\infty}\left(Q_{T}\right)$ with $\varphi \geq 0$ we have

$$
\int_{Q_{T} \backslash \omega} \underline{g}_{1}^{\varepsilon}(t, x, u) \varphi \leq \int_{Q_{T} \backslash \omega} \tilde{g}_{1, k}\left(t, x, u_{k}\right) \varphi \leq \int_{Q_{T} \backslash \omega} \bar{g}_{1}^{\varepsilon}(t, x, u) \varphi
$$

which implies by (19)

$$
\int_{Q_{T} \backslash \omega} \underline{g}_{1}^{\varepsilon}(t, x, u) \varphi \leq \int_{Q_{T} \backslash \omega} \varphi_{1} \varphi \leq \int_{Q_{T} \backslash \omega} \bar{g}_{1}^{\varepsilon}(t, x, u) \varphi .
$$

Since $u \in L^{\infty}\left(Q_{T} \backslash \omega\right)$, Lebesgue's dominated convergence theorem implies as $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\int_{Q_{T} \backslash \omega} \underline{g}_{1}(t, x, u) \varphi \leq \int_{Q_{T} \backslash \omega} \varphi_{1} \varphi \leq \int_{Q_{T} \backslash \omega} \bar{g}_{1}(t, x, u) \varphi . \tag{28}
\end{equation*}
$$

(28) holds for arbitrary nonnegative $\varphi \in C_{0}^{\infty}\left(Q_{T}\right)$, thus we find

$$
\begin{equation*}
\underline{g}_{1}(t, x, u(t, x)) \leq \varphi_{1}(t, x) \leq \bar{g}_{1}(t, x, u(t, x)) \tag{29}
\end{equation*}
$$

for a.e. $(t, x) \in Q_{T} \backslash \omega$. Inequality (29) holds true for any $a>0$ and $\omega \subset Q_{T}$ with $\lambda(\omega)<a$, thus we obtain that (29) is valid a.e. in Q_{T}.

Remark 3. In certain particular cases (if some Lipschitz conditions are satisfied) one can prove uniqueness of the solution (see also [11]).

It is not difficult to prove an existence theorem for the interval $(0, \infty)$. Denote by X_{∞} and X_{∞}^{\star} the set of functions $u:[0, \infty) \rightarrow V, \quad w:[0, \infty) \rightarrow V^{\star}$, respectively, such that for any finite $T u \in L^{p}(0, T ; V), \quad w \in L^{q}\left(0, T ; V^{\star}\right)$, respectively. Further, define $Q_{\infty}=(0, \infty) \times \Omega$ and let $L_{l o c}^{p}\left(Q_{\infty}\right)$ be the set of functions $v: Q_{\infty} \rightarrow R$ such that $v \in L^{p}\left(Q_{T}\right)$ for arbitrary finite T.

Theorem 2. Assume that functions

$$
f_{j}: Q_{\infty} \times R^{n+1} \rightarrow R, \quad g, h: Q_{\infty} \times R \rightarrow R
$$

satisfy $\mathbf{A}(i)-(i v), \mathbf{B}(i)-(i i i)$ and \mathbf{C} for any finite $T>0$.
Then for arbitrary $F \in X_{\infty}^{\star}$ there exists $u \in X_{\infty}$ such that for any finite T the assertion of Theorem 1 holds with some functions $\varphi_{l}, \psi \in L_{l o c}^{q}\left(Q_{\infty}\right)$.

Theorem 2 is a consequence of Theorem 1, the proof is based on simple and standard arguments. (Similar arguments can be found e.g. in [12].)

By using arguments of the proof of Theorem 1 we obtain that in the case when Ω is unbounded, the limit (as $k \rightarrow \infty$) of certain problems in "large" bounded $\Omega_{k} \subset \Omega$ is a solution in Ω. Now we give the exact formulation of this statement.

Let $\Omega_{k} \subset \Omega$ be bounded domains with sufficiently smooth boundary such that $B_{k} \cap \Omega \subset \Omega_{k}\left(B_{k}=\left\{x \in R^{n}:|x|<k\right\}\right)$ and introduce the notations

$$
V_{k}=W_{0}^{1, p}\left(\Omega_{k}\right), \quad X_{T}^{k}=L^{p}\left(0, T ; V_{k}\right), \quad\left(X_{T}^{k}\right)^{\star}=L^{q}\left(0, T ; V_{k}^{\star}\right)
$$

where $W_{0}^{1, p}\left(\Omega_{k}\right)$ is the completion of $C_{0}^{\infty}\left(\Omega_{k}\right)$ with respect to the norm of $W^{1, p}\left(\Omega_{k}\right)$. Further, let $M_{k}: X_{T}^{k} \rightarrow X_{T}$ be the following (extension) operator:

$$
M_{k} v_{k}(t, x)=v_{k}(t, x) \text { for } x \in \Omega_{k}, \quad M_{k} v_{k}(t, x)=0 \text { for } x \in \Omega \backslash \Omega_{k}
$$

Define the restriction F_{k} of $F \in X_{T}^{\star}$ (to Ω_{k}) by

$$
\int_{0}^{T}\left\langle F_{k}(t), v_{k}(t)\right\rangle d t=\int_{0}^{T}\left\langle F(t),\left(M_{k} v_{k}\right)(t)\right\rangle d t, \quad v_{k} \in X_{T}^{k}
$$

Finally, let $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$ be a function with the properties

$$
\varphi(x)=1 \text { if }|x| \leq 1 / 2, \quad \varphi(x)=0 \text { if }|x| \geq 1
$$

and define φ_{k} by $\varphi_{k}(x)=\varphi(x / k)$.
Theorem 3. Assume that the conditions of Theorem 1 are satisfied and the functions $u_{k} \in X_{T}^{k}$ are solutions of the following problems in Ω_{k} :

$$
u_{k}(0, \cdot)=\varphi_{k} u_{0} \quad\left(\in V_{k}\right) ;
$$

$D_{t} u_{k} \in\left(X_{T}^{k}\right)^{\star}$ and for any $v_{k} \in V_{k}$

$$
\begin{aligned}
\left\langle D_{t} u_{k}(t, \cdot), v_{k}\right\rangle+ & \sum_{j=1}^{n} \int_{\Omega_{k}} f_{j}\left(t, x, u_{k}(t, x), \nabla u_{k}(t, x)\right) D_{j} v_{k}(x) d x+ \\
& \int_{\Omega_{k}} f_{0}\left(t, x, u_{k}(t, x), \nabla u_{k}(t, x)\right) v_{k}(x) d x+ \\
& \int_{\Omega_{k}}\left[\varphi_{1, k}(t, x)+\varphi_{2, k}(t, x)+\psi_{k}(t, x)\right] v_{k}(x) d x= \\
& \left\langle F_{k}(t, \cdot), v_{k}\right\rangle \text { for a.e. } t \in[0, T]
\end{aligned}
$$

with some functions $\varphi_{1, k}, \varphi_{2, k}, \psi_{k} \in L^{q}\left((0, T) \times \Omega_{k}\right)$ such that for a.e. $(t, x) \in$ $(0, T) \times \Omega_{k}$

$$
\begin{gathered}
\underline{g}_{l}\left(t, x, u_{k}(t, x)\right) \leq \varphi_{l, k}(t, x) \leq \bar{g}_{l}\left(t, x, u_{k}(t, x)\right), \quad l=1,2 \\
\underline{h}\left(t, x,\left[H\left(M_{k} u_{k}\right)\right](t, x)\right) \leq \psi_{k}(t, x) \leq \bar{h}\left(t, x,\left[H\left(M_{k} u_{k}\right)\right](t, x)\right) .
\end{gathered}
$$

Then the sequence $\left(M_{k} u_{k}\right)$ is bounded in X_{T} and it has a subsequence which is weakly convergent in X_{T} to a function $u \in X_{T}$ satisfying (2) - (4).

3. Boundedness and stabilization

Theorem 4. Assume that the conditions of Theorem 2 are satisfied such that c_{2} and k_{2} in \mathbf{A} (iv) are independent of $T, p>2,\|F(t)\|_{V^{*}}$ is bounded,

$$
\begin{equation*}
|g(t, x, \eta)|^{q} \leq c_{4}^{\star}|\eta|^{2}+k_{4}^{\star}(x), \quad|h(t, x, \theta)|^{q} \leq c_{4}^{\star}|\theta|^{2}+k_{4}^{\star}(x) \tag{30}
\end{equation*}
$$

with some constant c_{4}^{\star} and a function $k_{4}^{\star} \in L^{1}(\Omega)$. Further, for any $u \in L_{\text {loc }}^{p}\left(Q_{\infty}\right)$

$$
\begin{equation*}
\int_{\Omega}|H(u)|^{2}(t, x) d x \leq \text { const } \sup _{\tau \in[0, t]} \int_{\Omega}|u(\tau, x)|^{2} d x \text {. } \tag{31}
\end{equation*}
$$

Then for the solution u the function

$$
y(t)=\int_{\Omega}|u(t, x)|^{2} d x
$$

is bounded in $(0, \infty)$ and there exist constants $c^{\prime}, c^{\prime \prime}$ such that for sufficiently large T_{1}, T_{2}

$$
\int_{T_{1}}^{T_{2}}\|u(t)\|_{V}^{p} d t \leq c^{\prime}\left(T_{2}-T_{1}\right)+c^{\prime \prime}
$$

Idea of the proof. Apply (3) to $v=u(t, \cdot)$ and integrate over $\left(T_{1}, T_{2}\right)$. Then one obtains the inequality

$$
y\left(T_{2}\right)-y\left(T_{1}\right)+c^{\star} \int_{T_{1}}^{T_{2}}[y(t)]^{p / 2} d t \leq \mathrm{const} \int_{T_{1}}^{T_{2}}\left[\sup _{[0, t]}|y|+1\right] d t
$$

with some constant $c^{\star}>0$ which implies the assertion of Theorem 4. (See, e.g., the proof of Theorem 2 in [12].)

Now we formulate a theorem on the stabilization of the solution as $t \rightarrow \infty$. Assume that the conditions of Theorem 4 are satisfied. Consider a sequence $\left(t_{l}\right) \rightarrow$ $+\infty$ and define for a solution u

$$
U_{l}(s, x)=u\left(t_{l}+s, x\right), \quad s \in(-a, b), \quad x \in \Omega
$$

with some fixed numbers $a, b>0$. By Theorem $4\left(U_{l}\right)$ is bounded in $L^{p}(-a, b ; V)$.
Theorem 5. Let the assumptions of Theorem 4 be satisfied; assume that f_{j}, g, h are not depending on t, there exists a (finite) ρ such that for sufficiently large $t>0,[H(u)](t, x)$ depends only on the restriction of u to $(t-\rho, t) \times \Omega$ and it is not depending on t if u is not depending on t. Further, there exists $F_{\infty} \in V^{\star}$ such that

$$
\lim _{T \rightarrow \infty} \int_{T-1}^{T+1}\left\|F(t)-F_{\infty}\right\|_{V^{\star}} d t=0
$$

Finally,

$$
\begin{gather*}
\exists u_{\infty} \in L^{p}(\Omega) \text { and }\left(t_{l}\right) \rightarrow+\infty \text { such that }\left(U_{l}\right) \rightarrow u_{\infty} \text { weakly } \\
\text { in } L^{p}((-1-\rho, 1) \times \Omega) . \tag{32}
\end{gather*}
$$

(u_{∞} is not depending on $t!$)
Then there is a subsequence of $\left(t_{l}\right)$ (again denoted by $\left(t_{l}\right)$) such that for the sequence $\left(U_{l}\right)$ (defined by the subsequence $\left(t_{l}\right)$)

$$
\begin{gather*}
\left(U_{l}\right) \rightarrow u_{\infty} \text { weakly in } L^{p}(-1,1 ; V) \tag{33}\\
\quad\left(U_{l}\right) \rightarrow u_{\infty} \text { in } L^{p}\left((-1,1) \times \Omega_{0}\right) \tag{34}
\end{gather*}
$$

for each bounded $\Omega_{0} \subset \Omega$ and a.e. in $(-1,1) \times \Omega$.
Moreover, u_{∞} is a solution of the stationary problem

$$
\begin{gather*}
\sum_{j=1}^{n} \int_{\Omega} f_{j}\left(x, u_{\infty}(x), \nabla u_{\infty}(x)\right) D_{j} w(x) d x+\int_{\Omega} f_{0}\left(x, u_{\infty}(x), \nabla u_{\infty}(x)\right) w(x) d x+ \tag{35}\\
\int_{\Omega}\left[\tilde{\varphi}_{1}(x)+\tilde{\varphi}_{2}(x)+\tilde{\psi}(x)\right] w(x) d x=\left\langle F_{\infty}, w\right\rangle, \quad w \in V
\end{gather*}
$$

with some functions $\tilde{\varphi}_{l}, \tilde{\psi} \in L^{q}(\Omega)$ satisfying for a.e. $x \in \Omega$

$$
\begin{align*}
& \underline{g}_{l}\left(x, u_{\infty}(x)\right) \leq \tilde{\varphi}_{l}(x) \leq \bar{g}_{l}\left(x, u_{\infty}(x)\right), \quad l=1,2 \tag{36}\\
& \underline{h}\left(x,\left[H\left(u_{\infty}\right)\right](x)\right) \leq \tilde{\psi}(x) \leq \bar{h}\left(x,\left[H\left(u_{\infty}\right)\right](x)\right) .
\end{align*}
$$

Remark 4. In (36) u_{∞} means the constant function in t, defined in an interval $(t-\rho, t)$. By the assumption of our theorem, $H\left(u_{\infty}\right)$ does not depend on t.

Remark 5. The operators H, defined in Remark 2 satisfy the assumptions of Theorem 5 if

$$
\begin{gathered}
\beta_{0}(s, t, x)=\beta(s-t, x) \text { for } \max \{t-\rho, 0\} \leq s \leq t, \\
\beta_{0}(s, t, x)=0 \text { for } 0 \leq s \leq \max \{t-\rho, 0\}
\end{gathered}
$$

with a function $\beta \in L^{\infty}((-\rho, 0) \times \Omega) ; t-\rho \leq \tau(t)$, respectively.
Remark 6. By Theorem $4\left(U_{l}\right)$ is bounded in $L^{p}((-1-\rho) \times \Omega)$ for any sequence $\left(t_{l}\right) \rightarrow+\infty$, hence a subsequence of $\left(U_{l}\right)$ is weakly convergent to a function $U \in$ $L^{p}((-1-\rho) \times \Omega)$. In (32) we assume that there exists U, not depending on t.

A sufficient condition for (32) is

$$
\begin{equation*}
D_{t} u \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \tag{37}
\end{equation*}
$$

For the proof see [11]. In [11] there are given simple sufficient conditions for (37) which imply a stabilization result in the case when g, h are depending on t and Ω is bounded. The formulation and proof of this result for unbounded Ω is similar to the case of bounded Ω.

The sketch of the proof of Theorem 5. By Theorem $4\left(U_{l}\right)$ is bounded in $L^{p}(-2 \rho-$ $1,1 ; V)$ thus $D_{t} U_{l}$ is bounded in $L^{q}\left(-\rho-1,1 ; V^{\star}\right)$ which implies by (32) that there is a subsequence of $\left(U_{l}\right)$ (again denoted by $\left(U_{l}\right)$) such that
$\left(U_{l}\right) \rightarrow u_{\infty}$ weakly in $L^{p}(-\rho-1,1 ; V)$ and strongly in $L^{p}\left((-\rho-1,1) \times \Omega_{0}\right)$ for any bounded $\Omega_{0} \subset \Omega$;

$$
\begin{equation*}
\left(U_{l}\right) \rightarrow u_{\infty} \text { a.e. in }(-1,1) \times \Omega . \tag{39}
\end{equation*}
$$

Define the functions $\varphi_{1, l}, \varphi_{2, l}, \psi_{l}$ by

$$
\varphi_{1, l}(s, x)=\varphi_{1}\left(t_{l}+s, x\right), \quad \varphi_{2, l}(s, x)=\varphi_{2}\left(t_{l}+s, x\right), \quad \psi_{l}(s, x)=\psi\left(t_{l}+s, x\right)
$$

Since $\left(\varphi_{1, l}\right),\left(\varphi_{2, l}\right),\left(\psi_{l}\right)$ are bounded in $L^{q}((-1,1) \times \Omega)$, we may assume that

$$
\begin{equation*}
\left(\varphi_{1, l}\right) \rightarrow \varphi_{1}^{\star}, \quad\left(\varphi_{2, l}\right) \rightarrow \varphi_{2}^{\star}, \quad\left(\psi_{l}\right) \rightarrow \psi^{\star} \text { weakly in } L^{q}((-1,1) \times \Omega) . \tag{40}
\end{equation*}
$$

Finally, we may assume that

$$
\begin{equation*}
\hat{A}\left(U_{l}(t)\right) \rightarrow Y \text { weakly in } L^{q}\left(-1,1 ; V^{\star}\right) \tag{41}
\end{equation*}
$$

with some $Y \in L^{q}\left(-1,1 ; V^{\star}\right)$ where the operator $\hat{A}: V \rightarrow V^{\star}$ is defined by

$$
\langle\hat{A}(v), w\rangle=\sum_{j=1}^{n} \int_{\Omega} f_{j}(x, v, \nabla v) D_{j} w+\int_{\Omega} f_{0}(x, v, \nabla v) w, \quad v, w \in V
$$

Now we apply arguments of [7]. Let

$$
\begin{equation*}
\varphi \in C_{0}^{\infty}(-1,1), \quad 1 \geq \varphi \geq 0, \quad \int_{-1}^{1} \varphi=1, \quad w \in V \tag{42}
\end{equation*}
$$

Since u is a solution of (3), we have (for sufficiently large l)

$$
\begin{gather*}
\int_{-1}^{1} \int_{\Omega} U_{l} w \varphi^{\prime} d t d x+\int_{-1}^{1}\left\langle\hat{A}\left(U_{l}(t)\right), w\right\rangle \varphi d t+ \tag{43}\\
\int_{-1}^{1} \int_{\Omega}\left(\varphi_{1, l}+\varphi_{2, l}+\psi_{l}\right) w \varphi d t d x=\int_{-1}^{1}\left\langle F\left(t_{l}+t\right), w\right\rangle \varphi d t .
\end{gather*}
$$

By (38), (40) - (42) we obtain from (43) as $l \rightarrow \infty$

$$
\begin{equation*}
\int_{-1}^{1}\langle Y(t), w\rangle \varphi d t+\int_{-1}^{1} \int_{\Omega}\left(\varphi_{1}^{\star}+\varphi_{2}^{\star}+\psi^{\star}\right) w \varphi d t d x=\left\langle F_{\infty}, w\right\rangle \tag{44}
\end{equation*}
$$

It is not difficult to costruct fuctions $\varphi=\varphi_{j}$ satisfying (42) such that

$$
\lim _{j \rightarrow \infty}\left(\varphi_{j}\right)=1 / 2 \text { in }(-1,1)
$$

Applying (44) to $\varphi=\varphi_{j}$, we obtain as $j \rightarrow \infty$

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1}\langle Y(t), w\rangle d t+\int_{\Omega}\left(\tilde{\varphi}_{1}+\tilde{\varphi}_{2}+\tilde{\psi}\right) w d x=\left\langle F_{\infty}, w\right\rangle \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\varphi}_{k}=\frac{1}{2} \int_{-1}^{1} \varphi_{k}^{\star} d t, \quad \tilde{\psi}=\frac{1}{2} \int_{-1}^{1} \psi^{\star} d t \tag{46}
\end{equation*}
$$

Now we show $Y=\hat{A}\left(u_{\infty}\right)$. Let $\Omega_{0} \subset \Omega$ be any bounded domain and $\zeta \in C_{0}^{\infty}(\Omega)$ with the properties: $\zeta \geq 0, \zeta(x)=1$ for $x \in \Omega_{0}$ and denote by K the support of ζ. By (38) (for a suitable subsequence)

$$
\left(U_{l}(t)\right) \rightarrow u_{\infty} \text { in } L^{2}(K) \text { for a.e. } t \in(-1,1)
$$

hence there exist $\delta_{l}, \varepsilon_{l}>0$ such that (for a suitable subsequence of $\left(U_{l}\right)$)

$$
\begin{gather*}
\lim _{l \rightarrow \infty}\left(\delta_{l}\right)=0, \quad \lim _{l \rightarrow \infty}\left(\varepsilon_{l}\right)=0, \text { and } U_{l}\left(-1+\delta_{l}\right) \rightarrow u_{\infty} \tag{47}\\
U_{l}\left(1-\varepsilon_{l}\right) \rightarrow u_{\infty} \text { in } L^{2}(K)
\end{gather*}
$$

By (3) we find

$$
\begin{gather*}
\frac{1}{2} \int_{\Omega}\left|U_{l}\left(1-\varepsilon_{l}\right)\right|^{2} \zeta d x-\frac{1}{2} \int_{\Omega}\left|U_{l}\left(-1+\delta_{l}\right)\right|^{2} \zeta d x+\int_{-1+\delta_{l}}^{1-\varepsilon_{l}}\left\langle\hat{A}\left(U_{l}(t)\right), U_{l}(t) \zeta\right\rangle d t+ \tag{48}\\
\int_{-1+\delta_{l}}^{1-\varepsilon_{l}} \int_{\Omega}\left(\varphi_{1, l}+\varphi_{2, l}+\psi_{l}\right) U_{l} \zeta d t d x=\int_{-1+\delta_{l}}^{1-\varepsilon_{l}}\left\langle F\left(t_{l}+t\right), U_{l}(t) \zeta\right\rangle d t
\end{gather*}
$$

hence by (38), (40), (45) - (47)

$$
\begin{gather*}
\lim _{l \rightarrow \infty} \int_{-1+\delta_{l}}^{1-\varepsilon_{l}}\left\langle\hat{A}\left(U_{l}(t)\right), U_{l}(t) \zeta\right\rangle d t= \tag{49}\\
2\left\langle F_{\infty}, u_{\infty} \zeta\right\rangle-\int_{-1}^{1} \int_{\Omega}\left(\varphi_{1}^{\star}+\varphi_{2}^{\star}+\psi^{\star}\right) u_{\infty} \zeta d t d x=\int_{-1}^{1}\left\langle Y(t), u_{\infty} \zeta\right\rangle d t .
\end{gather*}
$$

By using arguments of [5] we obtain from (49)

$$
\nabla U_{l} \rightarrow u_{\infty} \text { a.e. in }(-1,1) \times \Omega_{0}
$$

which implies by (39)

$$
\left(\hat{A}\left(U_{l}\right)\right) \rightarrow \hat{A}\left(u_{\infty}\right) \text { weakly in } L^{q}\left(-1,1 ; V^{\star}\right)
$$

i.e. $Y=\hat{A}\left(u_{\infty}\right)$.

Finally, by (39), (40) we get (similarly to the proof of (4))

$$
\begin{gathered}
\underline{g}_{l}\left(x, u_{\infty}(x)\right) \leq \varphi_{l}^{\star}(t, x) \leq \bar{g}_{l}\left(x, u_{\infty}(x)\right), \quad l=1,2 \\
\underline{h}\left(x,\left[H\left(u_{\infty}\right)\right](x)\right) \leq \psi^{\star}(t, x) \leq \bar{h}\left(x,\left[H\left(u_{\infty}\right)\right](x)\right)
\end{gathered}
$$

Integrating these inequalities over $(-1,1)$, we obtain (36).

Acknowledgement

The author wishes to thanks the grant OTKA T 031807 for supporting the research.

References

1. Arcoya D., Díaz J.I., Tello L., S-sharped bifurcation branch in a quasilinear multivalued model arising in climatology, J. Diff. Eq., to appear
2. Badii M., Díaz J.I., Tesei M., Existence and attractivity results for a class of degenerate fuctional-parabolic problems, Rend. Sem. Mat. Univ. Padova 78 (1987), 109-124.
3. Berkovits J., Mustonen V., Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Ser. VII, 12, Roma (1992), 597-621.
4. Brokate M., Sprekels J., Hysteresis and Phase Transitions, Springer, 1996.
5. Browder F.E., Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Natl. Acad. Sci. USA 74 (1977), 2659-2661.
6. Browder F.E., Strongly nonlinear parabolic equations of higher order, Atti Acc. Lincei 77 (1986), 159-172.
7. Díaz J.I., Hernández J., Tello L., On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl. 216 (1997), 593-613.
8. equation arising in climatology, in: PDEs and Applications, Dunod, Paris, 1998.
9. Rauch J., Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc. 64 (1977), 277-282.
10. Renardy M., Hrusa W.J., Nohel J.A., Mathematical problems in viscoelasticity, Pitman Monographs and Survays in Pure and Applied Mathematics 35, Longman Scientific and Technical - John Wiley and Sons, Inc., New York.
11. Simon L., On the stabilization of solutions of nonlinear parabolic functional differential equations, Proceedings of the Conference Function Spaces, Differential Operators and Nonlinear Analysis, Syöte, 1999, 239-250.
12. Simon L., On different types of nonlinear parabolic functional differential equations, Pure Math. Appl. 9 (1998), 181-192.
13. Simon L., On nonlinear parabolic functional differential equations in unbounded domains, Proceedings of the World Congress of Nonlinear Analysts 2000, Catania, to appear.
14. Zeidler E., Nonlinear functional analysis and its applications II A and II B, Springer, 1990.
15. Wu J., Theory and applications of partial functional differential equations, Springer, 1996.
