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ON OSCILLATORY LINEAR DIFFERENTIAL

EQUATIONS OF THIRD ORDER

N. PARHI AND SESHADEV PADHI

Sufficient conditions are obtained in terms of coefficient functions such
that a linear homogeneous third order differential equation is strongly oscillatory.

1. Introduction.
In this paper we consider

(1) y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0 ,

where a and b ∈ C1((0,∞), R), c ∈ C((0,∞), R). The adjoint of (1) is given by

(1∗)
(
(z′ − a(t)z)′ + b(t)z

)′ − c(t)z = 0 .

If a(t), b(t) and c(t) are constants a, b and c (c 6= 0), respectively, then (1) takes
the form

(2) y′′′ + ay′′ + by′ + cy = 0 .

It is well-known that Eq. (2) always admits a non-oscillatory solution. In the
literature, we usually come across following two types of definitions for oscillation
of a solution of (1) {(1∗)}:

Definition 1. A nontrivial solution y(t) of (1) {(1∗)} is said to be oscillatory on
[Ty,∞), Ty > 0, if it has arbitrarily large zeros in [Ty,∞), that is, there exists
a sequence 〈tn〉 ⊂ [Ty,∞) such that tn → ∞ as n → ∞ and y(tn) = 0 for
n = 1, 2, . . .

1999 Mathematics Subject Classification : 34C10, 34C11.
Key words and phrases : oscillation, nonoscillation, weakly oscillatory, strongly oscillatory.
This work is supported by the CSIR, New Delhi, Senior Research Fellowship through letter

No. 9/297(57)/97-EMR-I-BRK, dated September 8, 1997.
Received October 8, 1999.



34 N. PARHI AND S. PADHI

Definition 2. A nontrivial solution y(t) of (1) {(1∗)} is said to be oscillatory on
[Ty,∞), if it has infinite number of zeros in [Ty,∞).

These two definitions are equivalent for (1) {(1∗)}. However, if we consider (1)
{(1∗)} on (0, d), where d < ∞, then Definition 1 has no meaning. A nontrivial
solution y(t) of (1) {(1∗)} is said to be nonoscillatory if it is not oscillatory. If Eq.
(1) {(1∗)} has a nontrivial oscillatory solution, then it is said to be oscillatory;
otherwise, Eq. (1) {(1∗)} is said to be nonoscillatory.

In [2], Greguš has obtained sufficient conditions on q such that every solution
of

y′′′ + q(t)y′ + q′(t)y = 0 , t ∈ (−∞,∞) ,

has infinitely many zeros in (−∞,∞).
Let S and S ∗ denote the solution spaces of (1) and (1∗), respectively. Thus

each of them is a three dimensional vector space over the field of real numbers. Let
S 1{S ∗1} denote a nontrivial subspace of S {S∗}. Then S 1{S ∗1} is said to be
nonoscillatory if every nonzero member of S 1{S ∗1} is nonoscillatory, S 1{S ∗1} is
said to be weakly oscillatory if it contains a nontrivial oscillatory and a nonoscilla-
tory solution. S 1{S ∗1} is said to be strongly oscillatory if every nonzero member
of S 1{S ∗1} oscillates and S 1{S ∗1} is said to be oscillatory if S 1{S ∗1} is either
weakly oscillatory or strongly oscillatory. It may be noted that weakly oscillatory
definition applies only to subspaces of dimension greater than or equal to two.
If S {S ∗} is nonoscillatory, weakly oscillatory or strongly oscillatory, then Eq.
(1){(1∗)} is said to be nonoscillatory, weakly oscillatory or strongly oscillatory,
respectively. In [1], Dolan has established following results:

Theorem A. If Eq. (1) {(1∗)} is weakly oscillatory, then Eq. (1∗) {(1)} is oscil-
latory.

Theorem B. If S {S ∗} contains a nonoscillatory two-dimensional subspace, then
S ∗(S } is either nonoscillatory or strongly oscillatory.

Following two questions were raised by Dolan [1]:

(i) Does there exist an example of a linear third order differential equation
with the property that every two dimensional subspace of the solution
space is weakly oscillatory?

(ii) Does there exist an example of a linear third order differential equation
such that the solution space S and S∗ are strongly oscillatory?

In [4], Neuman has provided answers to above two questions. He has shown that
there does not exist a linear third order differential equation of the form (1) with
the property that every two-dimensional subspace of its solution space is weakly
oscillatory. Further, he has constructed an example of a strongly oscillatory Eq.
(1) whose adjoint (1∗) is also strongly oscillatory.

In this paper we have obtained easily verifiable sufficient conditions in terms of
coefficient functions a, b and c so that Eq. (1) is strongly oscillatory.
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2. Equation (1) may be written as

(1) (r(t)y′′)′ + q(t)y′ + p(t)y = 0 ,

where r(t) = exp
(∫ t

0 a(s) ds
)
, q(t) = b(t) r(t) and p(t) = c(t) r(t). We assume

that

(H1) a(t) ≤ 0 , b(t) ≥ 0 , c(t) < 0 , t > 0 ,

and

(3) (H2)


Second order linear homogeneous equation

(r(t)z′)′ + q(t)z = 0

is nonoscillatory.

Remark. Clearly, p(t) < 0, q(t) ≥ 0, r(t) > 0, r′ ≤ 0 and hence∫ ∞
0

dt

r(t)
=∞ .

In view of (H2) and Leighton’s oscillation criteria [5, p. 70] we have∫ ∞
0

q(t) dt <∞ .

We have the following result due to Keener [3] for our work.

Theorem 1 [3, p. 62]. If (H2) holds, then every solution of

(r(t)z′)′ + q(t)z = f(t)

is nonoscillatory, where f is a real-valued continuous function on (0,∞) such that
f(t) ≥ 0, t > 0.

Lemma 2. Suppose that (H1) and (H2) hold. If y(t) is a nonoscillatory solution
of (1), then y(t) y′(t) > 0 for large t.

Proof. We may assume, without any loss of generality, that y(t) > 0 for t ≥ t0 >
0. Since y′(t) is a solution of

(r(t)z′)′ + q(t)z = −p(t) y(t) , t ≥ t0

then from Theorem 1 it follows that y′(t) > 0 or < 0 for t ≥ t1 ≥ t0. If possible,
let y′(t) < 0 for t ≥ t1. As (r(t) y′′(t))′ > 0 for t ≥ t1, then y′′(t) > 0 or
< 0 for t ≥ t2 ≥ t1. However, y′′(t) < 0 for t ≥ t2 implies that y(t) < 0 for
large t, a contradiction. Thus y′′(t) > 0 for t ≥ t2. This implies, due to (1), that
y′′′(t) > 0 for large t. Hence y′(t) > 0 for large t, contradicting our assumption
that y′(t) < 0 for t ≥ t1. Thus y′(t) > 0 for t ≥ t1.
This completes the proof of the lemma. �
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Theorem 3. Let (H1) and (H2) hold. If

(H3)



(i) −∞ < lim inf
t→∞

a(t) ≤ 0;

(ii) 1
3a

2(t) − b(t) + a′(t) > 0 and

(iii)
∞∫
σ

[
2a3(t)

27 − a(t)b(t)
3 + a(t)a′(t)

3 + c(t)−

− 2
3
√

3

(
a2(t)

3 − b(t) + a′(t)
) 3

2

]
dt =∞, σ > 0

then Eq. (1) is strongly oscillatory.

Proof. If possible, let (1) admit a nonoscillatory solution y(t). Then y(t) y′(t) > 0
for t ≥ t0 > 0 by Lemma 2. Clearly, z(t) = y′(t)/y(t), t ≥ t0, is a positive solution
of the second order Riccati equation.

(4) u′′ + 3uu′ + a(t)u′ = −[z3(t) + a(t)z2(t) + b(t) z(t) + c(t)] .

Integrating (4) from t0 to t (t > t0) we obtain

z′(t) =z′(t0) +
3
2
z2(t0) + a(t0) z(t0)− 3

2
z2(t)− a(t) z(t)(5)

−
∫ t

t0

[
z3(s) + a(s) z2(s) + (b(s)− a′(s)) z(s) + c(s)

]
ds .

If

H (z(t)) =z3(t) + a(t) z2(t) + (b(t)− a′(t)) z(t) + c(t) ,

then H(z(t)) attains its minimum value for z(t) > 0 at

z(t) =
1
3

[
−a(t) +

(
a2(t) − 3b(t) + 3a′(t)

) 1
2

]
and the minimum value is given by

2
27
a3(t) − 1

3
a(t) b(t) +

1
3
a(t) a′(t) + c(t) − 2

3
√

3

(
a2(t)

3
− b(t) + a′(t)

) 3
2

.

Further, if

F (z(t)) =
3
2
z2(t) + a(t) z(t) ,

then F (z(t)) attains its minimum value for z(t) > 0 at z(t) = −a(t)/3 and the
minimum value is given by −a2(t)/6. Hence (5) yields

z′(t) ≤ z′(t0) +
3
2
z2(t0) + a(t0) z(t0) +

a2(t)
6

−
∫ t

t0

[
2a3(s)

27
− a(s) b(s)

3
+
a(s) a′(s)

3
+ c(s) − 2

3
√

3

(
a2(s)

3
− b(s) + a′(s)

) 3
2
]
dt
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From (H3) it follows that lim
t→∞

z′(t) = −∞. Thus z(t) < 0 for large t, a contradic-

tion. The proof of the theorem is complete. �
Remark. Theorem 3 fails to hold for Euler’s equation

y′′′ +
a0

t
y′′ +

b0
t2
y′ +

c0
t3
y = 0 ,

where a0 < 0, b0 > 0, c0 < 0, because (H3) (iii) is not satisfied.
Following result due to Potter [5, Theorem 2.36] is needed.

Theorem 4. Suppose that r and q ∈ C1((0,∞), R) such that r is positive and q
is nonnegative in (0,∞) and ∫ ∞

1

dt

r(t)
=∞ .

If L = lim
t→∞

r(t)
{

[r(t) q(t)]
−1
2

}′
exists and L > 2, then (3) is nonoscillatory.

Remark. Theorem 3 does not hold for (2), the third order equation with constant
coefficients, with a < 0, b > 0, c < 0 because

L = lim
t→∞

eat

{[
e2atb

]−1
2

}′
> 2

if and only if a2 > 4b. Further,

2a3

27
− ab

3
− 2

3
√

3

(
a2

3
− b
) 3

2

> 0

if and only if a2 < 4b. Thus (H3) (iii) and L > 2 do not hold simultaneously,
where L is defined in Theorem 4.

The following example illustrates Theorem 3.

Example. Consider

(6) y′′′ − y′′ +
(

1
4.0000004

+
1
t

)
y′ − k

t2
y = 0 , t ≥ 12,

where k > 0 is a constant. In this case L = 2.0000001 > 2. Then (H2) holds by
Theorem 4. The calculation shows that

2a3(t)
27

− a(t) b(t)
3

+
a(t) a′(t)

3
+ c(t)− 2

3
√

3

(
a2(t)

3
− b(t) + a′(t)

) 3
2

= 0.00000005 +
1
3t

+
0.1666664

t
+ · · · − k

t2

and

a2(t)
3
− b(t) + a′(t) =

1.0000004
12.000001

− 1
t
> 0

for t ≥ 12. Hence (H3) is satisfied. From Theorem 3 it follows that (6) is strongly
oscillatory.
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[2] Greguš, M., On some new properties of solutions of the differential equation y′′′ +Qy′+
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