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THE DUAL NOTION OF PRIME SUBMODULES

SIAMAK YASSEMI

Abstract. In this paper the concept of the second submodule (the dual
notion of prime submodule) is introduced.

0. Introduction

Throughout this note the ring R is commutative with a non-zero identity. A
proper submodule N of a module M over a ring R is said to be prime submodule
if for each a ∈ R the homothety M/N

a·−→ M/N is either injective or zero.
This implies that Ann(M/N ) = p is a prime ideal of R, and N is said to be p-
prime submodule. In other words, N is a p-prime submodule if it is a p-primary
submodule whose radical is identical with p = Ann(M/N ), c.f. [1], [2], [4] and [6].

In [3] MacDonald introduced the notion of secondary module, which is (in a
certain sense) a dual to the notion of primary module. An R-module M 6= 0 is
called secondary if for each a ∈ R the homothety M a·−→M is either surjective or
nilpotent. Then nilrad(M ) = p is a prime ideal and M is called p-secondary.

The purpose of this paper is to introduce second submodules (the dual notion
of prime submodules). The non-zero submodule S of M is said to be second
submodule of M if for each a ∈ R the homothety S

a·−→ S is either surjective
or zero. This implies that Ann(S) = p is a prime ideal of R, and S is said to
be p-second. We show that for a finitely cogenerated (the dual notion of finitely
generated) module, every non-zero submodule contains a second submodule. Let
p be a prime ideal of R and let N be a submodule of the R-module M . We prove
that N is a minimal p-secondary if and only if N is a minimal p-second.

Let the zero submodule of M be a prime submodule. Then it is shown that M
is a second submodule of itself if and only if M is an injective R/Ann(M )-module.
Also the dual of this result is proved.

We show that, if M is a finitely generated R-module and if M is a second
submodule of itself then the zero submodule of M is a prime submodule. Also the
dual of this result (in some sense) is shown.
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In the last section we bring some functorial results for the class of all modules
M such that the zero submodule is a prime submodule (or M = 0), and the class
of all modules that are second as a submodule of itself.

1. Second Submodules

First we bring some definitions and notations of [10] and [7] that we use in this
paper.

Let M be an R-module. The dual notion of Z(M ), the set of zero divisors of
M , is denoted by W(M ) and it is defined by

W(M ) = {a ∈ R|M a·−→M is not surjective}.

The submodule L of M is said to be cocyclic if it is a submodule of E(R/m),
injective envelope of R/m, for some m ∈Max(R).

A prime ideal p of R is said to be a weakly coassociated prime of M if there
exists a cocyclic homomorphic image L of M such that p is a minimal element in
V(Ann(L)) = {q ∈ Spec(R)|Ann(L) ⊆ q}. The set of weakly coassociated prime
ideals of M is denoted by Cõass(M ).

The R-module M is said to be divisible if for each x ∈M and for each non-zero
divisor r ∈ R there exists y ∈M such that ry = x.

The module M over a domain R is said to be torsion-free if rx = 0 implies
r = 0 or x = 0 (where r ∈ R and x ∈M ).
Definition 1.1. The non-zero submodule S of M is said to be second submodule
of M if for each a ∈ R the homothety S a·−→ S is either surjective or zero. This
implies that Ann(S) = p is a prime ideal of R, and S is said to be p-second.
Lemma 1.2. Let p ∈ Spec(R). The following are equivalent for any 0 6= S ⊆M ;

(i) S is a p-second submodule of M .
(ii) Ann(S) = W(S) = p.

Proof. It is obvious. �
Theorem 1.3. Let S be a non-zero submodule of M , with Ann(S) = p. Then the
following are equivalent;

(i) S is a p-second submodule of M
(ii) S is a divisible R/p-module;
(iii) rS = S for all r ∈ R\p;
(iv) aS = S for all ideals a * p;
(v) W(S) = p;
(vi) CõassS = {p}.

Proof. The parts “(i)⇒(ii)”, “(ii)⇒(iii)”, “(iii)⇒(iv)” and “(iv)⇒(v)” are straight-
forward.

“(v)⇒(i)” Use (1.2).
“(vi)⇒(v)” Use [10; 2.14].
“(v)⇒(vi)” Set q ∈ CõassS. Then there exists a cocyclic homomorphic image

L of S such that q is a minimal element in V(Ann(L)). Since Ann(S) ⊆ Ann(L)
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we have that p ⊆ q. Now if p 6= q then q 6⊆ W(S), which is a contradiction, cf.
[10; 2.14]. �
Proposition 1.4. If S is a submodule of M and Ann(S) = m ∈ Max(R) then S
is a m-second submodule.
Proof. Since Ann(S) = m, we have that S is a vector space over R/m, and hence
S is a divisible R/m-module. Thus S is a m-second by (1.3). �
Definition 1.5. We call a non-zero submodule N of M , a minimal submodule if
N is a simple module.
Proposition 1.6. If S is a minimal submodule of M , then S is a second submod-
ule.
Proof. Since S is a minimal we have that S is a simple R-module and hence
Ann(S) belongs to Max(R). Now the assertion follows from (1.4). �
Definition 1.7. An R-module M is said to be finitely cogenerated (the dual
notion of finitely generated) if E(M ) (the injective envelope of M ) is isomorphic
to a direct sum of finitely many injective envelopes of simple modules. It is well-
known that a module is finitely cogenerated if and only if its socle is a finitely
generated and essential submodule.

In the Proposition (1.6) we show that any minimal submodule is second sub-
module. So it is good to know, which modules have minimal submodules. The
next theorem gives these modules.
Theorem 1.8. The R-module M has minimal submodules if and only if there
exists non-zero finitely cogenerated submodule L of M .
Proof. The proof is trivial. �
Corollary 1.9. If M is a finitely cogenerated module, then every non-zero sub-
module of M contains a simple, hence second, submodule.
Proof. The proof is trivial. �

In [3] MacDonald introduced the notion of a secondary module, which is (in a
certain sense) a dual to the notion of primary module. An R-module M 6= 0 is
called secondary if for each a ∈ R the homothety M a·−→M is either surjective or
nilpotent. Then nilrad(M ) = p is a prime ideal and M is called p-secondary.
Proposition 1.10. The following hold;

(a) Let S be a secondary submodule of M . Then S is a second if and
only if Ann(S) ∈ Spec(R).

(b) Let K be a submodule of a p-second module M . Then K is a
p-secondary submodule if and only if K is a p-second submodule.

Proof. “(a)” This is obvious.
“(b)” Assume K is a p-secondary submodule of M . Then p = Ann(M ) ⊆

Ann(K) ⊆ nilrad(K) = p. �
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We shall call a submodule N of M a minimal p-secondary (resp. p-second)
submodule of M if N is a p-secondary (resp. p-second) submodule which is not
strictly contains any other p-secondary (resp. p-second) submodule of M .
Theorem 1.11. The submodule N of M is minimal p-secondary if and only if N
is a minimal p-second submodule of M .
Proof. “If” By 1.10(b).

“Only if” Assume that N is a minimal p-secondary submodule of M . If r ∈
W(N ) then rN 6= N . Since rN is a quotient of N , hence a p-secondary submodule
of M , and N is a minimal p-secondary submodule of M , we have that rN = 0 and
hence r ∈ Ann(N ). Thus N is a (minimal) p-second submodule of M . �

2. Prime and second modules

Definition 2.1. Let M be an R-module. Then
(a) We say M is a prime module if the zero submodule of M is a prime

submodule of M , see also [8].
(b) We say M is a second module if M is a second submodule of itself.

Note that N is a prime submodule of M if and only if M/N is a prime module.
In addition, the ring R is a prime R-module if and only if R is an integral domain.
Also R is a second R-module if and only if R is a field.
Proposition 2.2. Let p ∈ SpecR. Then the following hold:

(a) The sum of p-second modules is a p-second module.
(b) Every product of p-second module is a p-second module.
(c) Every non-zero quotient of a p-second module is likewise p-second.

Proof. “(a)” Let M1,M2, . . . ,Mn be p-second modules. Then for any 1 ≤ i ≤ n
we have Ann(Mi) = p and Mi is a divisible R/p-module, by (1.3). Therefore
Ann(

∑
Mi) = p and

∑
Mi is a divisible R/p-module. Thus

∑
Mi is a p-second

module, by (1.3).
The proof of parts (b) and (c) are similar. �

Theorem 2.3. Let M be a prime module. Then the following are equivalent:
(i) M is a second module,
(ii) M is an injective R/Ann(M )-module.

Proof. Since M is a prime module we have that p = Ann(M ) ∈ Spec(R) and M
is a torsion-free R/p-module, by [1; Theorem 1].

“(i)=⇒(ii)” Since p = Ann(M ) and M is a second module we have that M is a
divisible R/p-module, by (1.3). Thus M is a vector space over the field of fractions
of R/p, and hence M is an injective R/p-module.

“(ii)=⇒(i)” Since M is an injective R/p-module we have that M is a divisible
R/p-module, by [7; 3.23]. Now the assertion follows from (1.3). �
Theorem 2.4. Let M be a second module. Then the following are equivalent:

(i) M is a prime,
(ii) M is a flat R/Ann(M )-module.
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Proof. Since M is a second module we have that p = Ann(M ) ∈ Spec(R) and M
is a divisible R/p-module, by [1; Theorem 1].

“(i)=⇒(ii)” Since p = Ann(M ) and M is a prime module we have that M is a
torsion-free R/p-module, by [1; Theorem 1]. Thus M is a vector space over the
field of fractions of R/p, and hence M is a flat R/p-module.

“(ii)=⇒(i)” Since M is a flat R/p-module we have that M is a torsion-free
R/p-module, by [7; 4.33]. Now the assertion follows from [1; Theorem 1]. �

In [9], Vasconcelos has shown an interesting application of the Nakayama Lemma.
If M is a finitely generated R-module and ϕ : M −→ M is a surjective R-
homomorphism then ϕ is injective, cf. [5; 2.4]. We use this result in the next
theorem.
Theorem 2.5. Let M be a finitely generated R-module. If M is a second module
then M is a prime module.
Proof. Immediate from [5; 2.4].

The next result is a dual of (2.5) in a certain sense.
Theorem 2.6. Let M be an Artinian R-module. If M is a prime module then M
is a second module.
Proof. Immediate from the Fitting’s Lemma.

Corollary 2.7. Let M be a finitely generated and Artinian module. Then M is a
prime module if and only if M is a second module.

3. Functorial Results

In [10] we have some functorial results for the category of modules such that
the zero submodule has a primary decomposition (or being zero) and the category
of modules that has secondary representation (or being zero). In this chapter we
bring the similar results for the class P of all prime R-modules (or being zero),
and the class S of all second R-module (or being zero).
Theorem 3.1. Let T be a linear functor over the category of R-modules. Then
the following hold:

(a) If T is a left exact and covariant and if M ∈ P then T(M ) ∈ P.
In particular, if F is a flat R-module and M ∈ P then M ⊗F ∈ P,
and if M ∈ P then Hom(N,M ) ∈ P for any R-module N .

(b) If T is right exact and covariant and if M ∈ P then T(M )S.
In particular, if E is an injective R-module and M ∈ P then
Hom(M,E) ∈ S.

(c) If T is right exact and covariant and if M ∈ S then T(M ) ∈
S. In particular, if M ∈ S then M ⊗ N ∈ S for any R-module
N . In addition, if P is a projective R-module and M ∈ S then
Hom(P,M ) ∈ S.

(d) If T is left exact and contravariant and if M ∈ S then T(M ) ∈ P.
In particular, if M ∈ S then Hom(M,N ) ∈ P for any N .
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Proof. “(a)” Since for any a ∈ R the homothety M
a·−→ M is either injective

or zero, we have that T(M ) a·−→ T(M ) is either injective or zero. Thus T(M ) is
either prime or zero.

“(b)” Since for any a ∈ R the homothety M a·−→M is either injective or zero,
we have that T(M ) a·−→ T(M ) is either surjective or zero. Thus T(M ) is either
second or zero.

The proof of (c) is similar to the proof (a), and the proof of (d) is similar to
the proof (b). �
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