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SOME EQUALITIES FOR GENERALIZED INVERSES OF
MATRIX SUMS AND BLOCK CIRCULANT MATRICES

YONGGE TIAN

Abstract. Let A1, A2, · · · , An be complex matrices of the same size. We

show in this note that the Moore-Penrose inverse, the Drazin inverse and the
weighted Moore-Penrose inverse of the sum n

t=1At can all be determined

by the block circulant matrix generated by A 1, A2, · · · , An. In addition, some
equalities are also presented for the Moore-Penrose inverse and the Drazin

inverse of a quaternionic matrix.

Let C be a circulant matrix over the complex number field C with the form

(1) C =


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0

 .
Then it is well known (see, e.g., [1] and [3]) that C satisfies the following similarity
factorization equality

(2) U∗CU = diag(λ1, λ2, · · · , λn ) ,

where U is a fixed unitary matrix with the form

(3) U = (upq)n×n, upq =
1√
n
ω(p−1)(q−1) , ω is the nth root of unity,

and

(4) λt = a0 + a1ω
(t−1) + a2(ω(t−1))2 + · · ·+ an−1(ω(t−1))n−1 , t = 1, · · · , n .

In particular,

(5) λ1 = a0 + a1 + · · ·+ an−1 .
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Observe that U in Eq.(3) has no relation with a0, . . . , an−1 in Eq.(1). Thus Eq.(2)
can directly be extended to block circulant matrix as follows.

Lemma 1. Let

(6) A =


A1 A2 · · · An
An A1 · · · An−1

...
...

. . .
...

A2 A3 · · · A1


be a block circulant matrix over the complex number field C , where At ∈ Cr×s ,
t = 1, · · · , n. Then A satisfies the following factorization equality

(7) U∗rAUs = diag(J1, J2, · · · , Jn) ,

where Ur and Us are two fixed block unitary matrices

(8) Ur = (upqIr)n×n , Us = (upqIs)n×n ,

upq is as in Eq.(3), meanwhile

(9) Jt = A1 + A2ω
(t−1) + A3(ω(t−1))2 + · · ·+An(ω(t−1))n−1 , t = 1, · · · , n .

Especially, the block entries in the first block rows and first block columns of Ur
and Us are all identity matrices, and J1 is

(10) J1 = A1 + A2 + · · ·+An .

Observe that J1 in Eq.(7) is the sum of A1, A2, · · · , An. Thus Eq.(7) implies
that the sum

∑n
t=1 At is closely linked to its corresponding block circulant matrix

through a unitary factorization equality. Recall a fundamental fact in the theory
of generalized inverses of matrices (see, e.g., [2]) that

(11) (PAQ)† = Q∗A†P ∗, if P and Q are unitary.

Then from Eq.(7), we can directly find the following result.

Lemma 2. Let A be given in Eq.(6), Ur and Us be given in Eq.(8). Then
(a) The Moore-Penrose inverse of A satisfies

(12) U∗sA
†Ur = diag(J†1 , J

†
2, · · · , J †n) .

(b) If r = s, then the Drazin inverse of A satisfies

(13) U∗rA
DUr = diag(JD1 , J

D
2 , · · · , JDn ) .

(c) Suppose that M ∈ Cr×r , and N ∈ Cs×s are two positive definite Hermitian
matrices. Then the weighted Moore-Penrose inverse of A satisfies

(14) U∗sA
†
M,N

Ur = diag((J1)†M,N , (J2)†M,N , · · · , (Jn)†M,N ) ,

where M̂ = diag(M,M, · · · ,M ) and N̂ = diag(N,N, · · · , N ).
Proof. Since Ur and Us in Eq.(7) are unitary, we have

(15) (U∗rAUs)
† = U∗sA

†Ur
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by Eq.(11). On the other hand, it is easily seen that

[diag(J1, J2, · · · , Jn)]† = diag(J†1 , J
†
2 , · · · , J †n) .

Thus Eq.(12) follows. Secondly, noting

(U∗rAUr)
D = (U−1

r AUr)D = U−1
r ADUr = U∗rA

DUr ,

and
[diag(J1, J2, · · · , Jn)]D = diag(JD1 , J

D
2 , · · · , JDn ) ,

we have Eq.(13). To prove Eq.(14), we apply the following well-known identity
(see [2])

A†M,N = N−
1
2 (M

1
2AN−

1
2 )†M

1
2 ,

and Eq.(11) to the left-hand side of Eq.(7),

(U∗rAUs)
†
M,N

= N̂−
1
2 (M̂

1
2U∗rAUsN̂

− 1
2 )†M̂

1
2

= N̂−
1
2 (U∗r M̂

1
2AN̂−

1
2Us)†M̂

1
2

= N̂−
1
2U∗s (M̂

1
2AN̂−

1
2 )†UrM̂

1
2

= U∗s N̂
− 1

2 (M̂
1
2AN̂−

1
2 )†M̂

1
2Ur

= U∗sA
†
M,N

Ur ,

where two simple facts

U∗r M̂
1
2 = U∗r M̂

1
2 , UsN̂

− 1
2 = N̂−

1
2Us

are used in the above deduction. On the other hand,

[diag(J1, · · · , Jn)]†
M,N

= N̂−
1
2 [M̂

1
2 diag(J1, · · · , Jn)N̂−

1
2 ]†M̂

1
2

= N̂−
1
2 [diag((M

1
2J1N

−1
2 )†, · · · , (M 1

2JnN
− 1

2 )†)]M̂
1
2

= diag(N−
1
2 (M

1
2 J1N

− 1
2 )†M

1
2 , · · · , N− 1

2 (M
1
2JnN

− 1
2 )†M

1
2 )

= diag((J1)†M,N , · · · , (Jn)†M,N ) .

So we have Eq.(14). 2

The main results of this note are presented below.
Theorem 3. Let A1, A2, · · · , An ∈ Cr×s be given. Then the Moore-Penrose
inverse of their sum satisfies the identity

(16) (A1+A2+· · ·+An)† =
1
n

[Is, Is, · · · , Is]


A1 A2 · · · An
An A1 · · · An−1

...
...

. . .
...

A2 A3 · · · A1


† 

Ir
Ir
...
Ir

 .
Proof. Pre-multiplying [Is, 0, · · · , 0] and post-multiplying [I r, 0, · · · , 0]T on the
both sides of Eq.(12) immediately yield Eq.(16). 2

Similarly we can establish the following two theorems.
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Theorem 4. Let A1, A2, · · · , An ∈ Cr×r be given. Then the Drazin inverse of
their sum satisfies the equality
(17)

(A1 +A2 + · · ·+An)D =
1
n

[Ir, Ir , · · · , Ir]


A1 A2 · · · An
An A1 · · · An−1

...
...

. . .
...

A2 A3 · · · A1


D 

Ir
Ir
...
Ir

 .
In particular, if the block circulant matrix in it is nonsingular, then
(18)

(A1 +A2 + · · ·+ An)−1 =
1
n

[Ir, Ir , · · · , Ir]


A1 A2 · · · An
An A1 · · · An−1

...
...

. . .
...

A2 A3 · · · A1


−1 

Ir
Ir
...
Ir

 .
Theorem 5. Let A1, A2, · · · , An ∈ Cr×s be given, M ∈ Cr×r and N ∈ Cs×s
be two positive definite Hermitian matrices. Then the weighted Moore-Penrose
inverse of their sum satisfies
(19)

(A1+A2+· · ·+An)†M,N =
1
n

[Is, Is, · · · , Is]


A1 A2 · · · An
An A1 · · · An−1

...
...

. . .
...

A2 A3 · · · A1


†

M,N


Ir
Ir
...
Ir

 ,
where M̂ = diag(M,M, · · · ,M ) and N̂ = diag(N,N, · · · , N ).

Eqs.(16)–(18) show that the expressions of the Moore-Penrose inverse, the
Drazin inverse, and the weighted Moore-Penrose inverse of the sum

∑n
t=1 At can all

be determined through the block circulant matrix A generated by A1, A2, · · · , An.
Using them one can establish various valuable expressions for generalized inverses
of matrices. Some related work was presented in the author’s [6].

Note that any complex matrix can be written as A + iB. Some interesting
equalities can also be derived from Eqs.(16)–(18) for generalized inverses of a
complex matrix A + iB.

Corollary 6. Let A + iB ∈ Cr×s with A, B ∈ Rr×s. Then the Moore-Penrose
inverse of A + iB satisfies the equality

(20) (A+ iB)† =
1
2

[Is, iIs]
[
A −B
B A

]† [
Ir
−iIr

]
.

Proof. According to Eq.(16), we first see that

(21) (A + iB)† =
1
2

[Is, Is]
[
A iB
iB A

]† [
Ir
Ir

]
.
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Moreover observe that[
A iB
iB A

]
=
[
Ir 0
0 iIr

] [
A −B
B A

] [
Is 0
0 −iIs

]
.

We then get[
A iB
iB A

]†
=
[
Is 0
0 iIs

][
A −B
B A

]† [
Ir 0
0 −iIr

]
.

Putting it in Eq.(21) yields Eq.(20). 2

Corollary 7. Let A + iB ∈ Cr×r with A, B ∈ Rr×r. Then the Drazin inverse
of A+ iB satisfies the equality

(22) (A + iB)D =
1
2

[Ir , iIr]
[
A −B
B A

]D [
Ir
−iIr

]
.

In particular, if A+ iB is nonsingular, then

(23) (A+ iB)−1 =
1
2

[Ir , iIr]
[
A −B
B A

]−1 [
Ir
−iIr

]
.

Corollary 8. Let A + iB ∈ Cr×s with A,B ∈ Rr×s, M ∈ Cr×r and N ∈ Cs×s
be two positive definite Hermitian matrices. Then the weighted Moore-Penrose
inverse of A + iB satisfies the equality

(24) (A+ iB)†M,N =
1
2

[Is, iIs]
[
A −B
B A

]†
M,N

[
Ir
−iIr

]
,

where M̂ = diag(M,M ) and N̂ = diag(N,N ).
The results in the above three corollaries on complex matrices motivate us

to find the following interesting results on generalized inverses of quaternionic
matrices.
Theorem 9. Let A = A0 + iA1 + jA2 + kA3 be a quaternionic matrix, where
A0, . . . , A3 ∈ Rm×n, i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and
ki = −ik = j. Then

(a) The Moore-Penrose inverse of A satisfies the equality

(25) A† =
1
4

[In, iIn, jIn, kIn]


A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0


† 

Im
−iIm
−jIm
−kIm

 .
(b) If m = n, then the Drazin inverse of A satisfies the equality

(26) AD =
1
4

[In, iIn, jIn, kIn]


A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0


D 

In
−iIn
−jIn
−kIn

 .
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(c) In particular, if A is nonsingular, then the inverse of A satisfies the equality

(27) A−1 =
1
4

[In, iIn, jIn, kIn]


A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0


−1 

In
−iIn
−jIn
−kIn

 .
The equalities (25)–(27) can be derived from the following universal factoriza-

tion equality for a quaternionic matrix

(28) Vm


A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0

Vn =


A

A
A

A

 ,
where

(29) Vt =
1
2


It iIt jIt kIt
−iIt It kIt −jIt
−jIt −kIt It iIt
−kIt jIt −iIt It

 , t = m,n

is a unitary quaternionic matrix, that is, VtV ∗t = V ∗t Vt = It. The equality was
first established by the author in [7]. Based on it, one can easily extend various
results in the real and complex matrix theory to the real quaternion algebra.
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