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Abstract. Let (Ω,Σ) be a measurable space, (E,P ) be an ordered separable
Banach space and let [a, b] be a nonempty order interval in E. It is shown

that if f : Ω × [a, b] → E is an increasing compact random map such that
a ≤ f(ω,a) and f(ω, b) ≤ b for each ω ∈ Ω then f possesses a minimal

random fixed point α and a maximal random fixed point β.

1. Introduction

Špaček [13] and Hans [5,6] initiated the study of random fixed point theorems
for random contraction mappings on Polish spaces. Subsequently Bharucha-Reid
[4] has given sufficient conditions for a stochastic analogue of Schauder’s fixed point
theorem for a random operator. Itoh [7] introduced random condensing operators
and considerably improved the known results. Recently Sehgal and Waters [12],
Papageorgiou [10], Beg et al [1, 2], Tan and Yuan [14], Lishan [9] and many other
authors have studied the fixed points of random maps. In this paper we shall
consider stochastic version of a very interesting theorem regarding minimal fixed
points of increasing compact maps defined on ordered Banach spaces.

2. Ordered Banach Spaces

Let E be a real Banach space. A cone P of E induces an ordering ≤ by setting
x ≤ y if and only if y − x ∈ P . By an ordered Banach space, denoted by (E,P ),
we mean a Banach space E together with an ordering ≤ induced by a cone P, the
positive cone of E. The norm of an ordered Banach space E is called monotone if
0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖ and semi-monotone if there exists a constant r such
that 0 ≤ x ≤ y implies ‖x‖ ≤ r‖y‖. The positive cone is called normal if the norm
is semi-monotone. The order interval [x, y] is defined by

[x, y] = {z ∈ E : x ≤ z ≤ y} = (x+ P ) ∩ (y − P ) .
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We now state a characterization of normal cones for subsequent use in Section 4
(for proofs see [8, 11, 15]).

Theorem 2.1. Let (E,P ) be an ordered Banach space. Then the following state-
ments are equivalent:

(i) P is normal;
(ii) every order interval is bounded;
(iii) there exists an equivalent monotone norm.

3. Random Maps

Let (Ω,Σ) be a measurable space (Σ = sigma algebra) and K a nonempty
subset of a metric space M . A mapping ξ : Ω → M is measurable if and only
if ξ−1(U ) ∈ Σ for each open subset U of M . The mapping f : Ω × K → M is a
random map if and only if for each fixed x ∈ K, the mapping f(., x) : Ω → M is
measurable. We denote by fn(ω, x) the n-th iterate f(ω, f(ω, . . . f(ω, x) . . . ))) of
f .

Definition 3.1. Let X be a nonempty subset of a Banach space E and f :
Ω ×X → E be a random map. Then f is called compact if f(ω, .) is continuous
and cl{f(ω, x) : x ∈ X} is compact for each ω ∈ Ω. The random map f is called
completely continuous if f is compact on bounded subsets of X.

For more details and other related results we refer to [3, 4].

4. Random Fixed Points

Definition 4.1. Let X be a nonempty subset of an ordered Banach space E and
f : Ω×X → E be a random map. A measurable mapping ξ : Ω→ E is a random
fixed point of the random map f if and only if f(ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω. A
random fixed point ξ of f is called minimal (maximal) random fixed point if every
random fixed point η of f satisfies ξ(ω) ≤ η(ω) (η(ω) ≤ ξ(ω)) for each ω ∈ Ω.

Definition 4.2. Let (E,P ) be an ordered Banach space and X be a nonempty
subset of E. A random map f : Ω ×X → E is called increasing if x ≤ y implies
f(ω, x) ≤ f(ω, y) for each ω ∈ Ω.

Theorem 4.3. Let (E,P ) be an ordered separable Banach space and let [a, b] be
a nonempty order interval in E. Suppose f : Ω × [a, b] → E is an increasing
compact random map such that a ≤ f(ω, a) and f(ω, b) ≤ b for each ω ∈ Ω. Then
f possesses a minimal random fixed point α and a maximal random fixed point β.

Proof. Since f is increasing with a ≤ f(ω, a) and f(ω, b) ≤ b for each ω ∈ Ω. It
follows that f maps Ω × [a, b] into [a, b]. Hence the sequence {fn(ω, a)} is well-
defined and it is increasing and relatively compact. This implies the convergence
of the whole sequence {fn(ω, a)} towards its only limit point α(ω). Since X is
separable therefore α is measurable. As f is continuous,

α(ω) = lim
n→∞

fn(ω, a) = f(ω, lim
n→∞

fn(ω, a)) = f(ω, α(ω)) ,
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for each ω ∈ Ω. If ξ is an arbitrary random fixed point of f , then by replacing b
by ξ(ω) in the above argument, it follows that α(ω) ∈ [a, ξ(ω)]. Hence α is the
minimal random fixed point of f . The assertion concerning the maximal random
fixed point β follows by an analogous argument.

Corollary 4.4. Let (E,P ) be an ordered separable Banach space with normal
positive cone, and let f : Ω × P → E be a completely continuous increasing map.
The f has a minimal random fixed point if and only if f has a random fixed
point at all i.e. if and only if there exists a measurable β : Ω → P such that
f(ω, β(ω)) ≤ β(ω) for every ω ∈ Ω.

Proof. The proof follows from the Theorems 2.1 and 4.3 and the fact that
f(ω, 0) ≥ 0.

Remark 4.5. We do not assert the existence of a maximal random fixed point in
P. The existence of a random fixed point in the order interval [0, b] is an immediate
consequence of Schauder’s random fixed point theorem. For many applications it
is of great importance that there exists a minimal random fixed point. It should
be observed that minimal random fixed point can be computed interatively since
α(ω) = lim

n→∞
fn(ω, 0(ω)).
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