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PROLONGATION OF SECOND ORDER

CONNECTIONS TO VERTICAL WEIL BUNDLES

ANTONELLA CABRAS AND IVAN KOĹAŘ

We study systematically the prolongation of second order connections
in the sense of C. Ehresmann from a fibered manifold into its vertical bundle deter-
mined by a Weil algebra A. In certain situations we deduce new properties of the
prolongation of first order connections. Our original tool is a general concept of a
B-field for another Weil algebra B and of its A-prolongation.

The simpliest example of a Weil functor is the jet functor Trk of k-dimensional
velocities of order r. Recently it has been clarified that the theory of Weil bundles
represents a unified technique for studying many geometric problems related with
product preserving functors, see [11] for a survey. Our starting point is a paper
by W. M. Mikulski and the second author, who studied the prolongation of a first
order connection on an arbitrary fibered manifoldY →M with respect to a vertical
functor on the category FM of all fibered manifolds and their morphisms, [12].
In the case of the vertical Weil functor VA they obtained an interesting naturality
result: the operator transforming a first order connection Γ on Y into its vertical
prolongation VAΓ on V AY is the only natural one.

On the other hand our research is based on the results from [3], where we de-
veloped systematically the theory of second order connections in the sense of C.
Ehresmann on an arbitrary fibered manifold. So the main subject of the present
paper are the geometric properties of prolongation of the second order connections
to the vertical Weil bundles. However, at several places we deduce further geomet-
ric properties of prolongation of the first order connections. Since our problems
are of general character, our procedures are always coordinate free. Nevertheless,
occasionally we outline the coordinate expressions as well. At these places we use
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heavily the fact that the A-prolongation of a real valued function is a function
with values in the Weil algebra A.

In Section 1 we introduce an original tool, the concept ofB-field for another Weil
algebra B and of its A-prolongation. Sections 2 and 3 are devoted to the vertical
A-prolongation of a first order connection Γ. In particular, we deduce an explicit
formula for the curvature of VAΓ in terms of the curvature of Γ and an analogous
characterization of the lifting map of VAΓ. The first result on the prolongation
of second order connections is Proposition 4, which reads that the prolongation
of the product of the first order connections is the product of their prolongations.
In Section 5 we introduce the lifting map of a second order connection ∆. It lifts
the elements of the second iterated tangent bundle TTM of the base M to TTY .
The sections M → TTM are D ⊗ D -fields on M , where D is the algebra of dual
numbers. Using the ideas of Section 1, we clarify that the lifting of D ⊗ D -fields
with respect to ∆ has similar properties to lifting of vector fields with respect to a
first order connection. This enables us to prove, in Corollary 3, that the canonical
decomposition of a second order connection is preserved under the vertical A-
prolongation. The last two sections are devoted to the basic properties of the first
order absolute differentiation with respect to the prolongated connection and of
the second order one.

All manifolds and maps are assumed to be infinitely differentiable and all man-
ifolds are paracompact. Unless otherwise specified, we use the terminology and
notation from [11].

1. Prolongation of Weil fields

Let A be a Weil algebra and TA be the corresponding Weil functor, [11], [18].
For a manifold M , we consider each element of TAM in the form of an A-jet jAg,
g : Rk→ M , where k is the width of A, [11]. For a smooth map f : M → N , we
define TAf : TAM → TAN by

(1) TAf(jAg) = jA(f ◦ g) .

Let B be another Weil algebra. Consider X ∈ TB(TAM ), X = jBϕ, where
ϕ : Rl → TAM , l= the width of B. Every ϕ(t) ∈ TAM , t ∈ Rl, is of the form
jAψ(τ, t), τ ∈ Rk, where ψ is a map Rk×Rl→M . Hence X = jB(jAψ(τ, t)) and
we can define the exchange diffeomorphism iB,AM : TB(TAM )→ TA(TBM ) by

(2) iB,AM (X) = jA(jBψ(τ, t)) .

Write πA,M : TAM → M for the bundle projection. Consider the bundle pro-
jection πB,TAM : TBTAM → TAM and the induced map TBπA,M : TBTAM →
TBM . One verifies easily that iB,AM exchanges the related projections, i.e.

(3) TAπB,M ◦ iB,AM = πB,TAM , πA,TBM ◦ iB,AM = TBπA,M .
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Definition 1. A section ξ : M → TBM will be called a Weil field of type B or a
B-field on M . The B-field T Aξ = iB,AM ◦ TAξ : TAM → TB(TAM ) will be called
the A-prolongation of ξ.

If B is the algebra D of dual numbers, then TD = T is the tangent functor, ξ is
a vector field and T Aξ is the flow prolongation of ξ, [11]. We remark that one has
defined the flow prolongation of a vector field with respect to an arbitrary natural
bundle, while in the case of a B-field we have to consider Weil bundles only.

Consider a fibered manifold p : Y →M . Its vertical Weil bundle V AY →M is
defined by

V AY =
⋃
x∈M

TA(Yx) .

Let W → N be another fibered manifold and f : Y → W be an FM-morphism
with the base map f : M → N . Then VAf : V AY → V AW is defined fiberwise.

Consider the subbundles VB(TAY → TAM ) ⊂ TB(TAM ) and TA(V BY ) ⊂
TA(TBY ).

Lemma 1. iB,AY maps V B(TAY → TAM ) into TA(V BY ).

Proof. By locality, it suffices to consider a product bundle Y = M ×N . We have

TAY = TAM × TAN , V B(TAY → TAM ) = TAM × TBTAN ,

V BY = M × TBN , TA(V BY ) = TAM × TATBN .

In this situation, iB,AY is reduced to the exchange diffeomorphism iB,AN : TBTAN →
TATBN . �

The restricted and corestricted map will be denoted by

iB,AV,Y : V B(TAY → TAM )→ TA(V BY ) .

If we consider TA(V BY ) as a fibered manifold over TAM , then iB,AV,Y is an FM-

morphism over idTAM . If we further restrict iB,AV,Y to V B(V AM → M ), then its
values lie in V A(V BY →M ). The restricted and corestricted map

iB,AY,V : V BV AY → V AV BY

represents the exchange diffeomorphism applied fiberwise.
A B-field ξ : Y → TBY is called projectable, if there is a B-field ξ : M → TBM

satisfying TBp ◦ ξ = ξ ◦ p. In this case,

VAξ := iA,BV,Y ◦ V Aξ : V AY → TB(V AY )

is a projectable B-field on V AY over ξ, which will be called the vertical A-
prolongation of ξ. If B = D , then VD = V is the vertical tangent functor and
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ξ is a projectable vector field on Y . One verifies easily that VAξ coincides with
the flow prolongation of ξ with respect to the functor VA.

Consider another fibered manifold q : Z → M and an FM-morphism f :
Y ×M Z → W with the base map f : M → N . Then we define the vertical
A-prolongation with respect to the first factor

V A1 f : V AY ×M Z → V AW

fiberwise. In other words, if we denote by fz : Yx → Wf(x), z ∈ Z, q(z) = x, the
map y 7→ f(y, z), then

(V A1 f)z = TA(fz) : (V AY )x → (V AW )f (x) .

In particular, if we have a section s : M → Z and write

f(s) : Y →W , f(s)(y) = f(y, s(py)) ,

then (VA1 f)(s) = V A(f(s)) : V AY → V AW .
Consider the special case W = VBY and f with the property πB,Y (f(y, z)) = y.

Then we introduce

VA1 f := iA,BY,V ◦ V A1 f : V AY ×M Z → V BV AY .

By construction, we have (VA1 f)(s) = VA(f(s)) for every section s : M → Z.

2. On the prolongation of first order connections

According to [12], the construction of the vertical A-prolongation of a first order
connection on Y can be based on the canonical exchange isomorphism

i1,AY : V A(J1Y →M )→ J1(V AY →M ) ,

[10], see also [8] for the special case A = D . Every X ∈ VA(J1Y → M ) over
x ∈M is of the form X = jAϕ(τ ), ϕ : Rk→ J1

xY , ϕ(τ ) = j1xψ(τ, u), u ∈M . Then
we define

(4) i1,AY (X) = j1xj
Aψ(τ, u) .

Lemma 2. If f : Y → Z is a base-preserving morphism, then the following
diagram commutes

(5)

V AJ1Y
V AJ1f

i1,AY

V AJ1Z

i1,AZ

J1V AY
J1V Af

J1V AZ
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Proof. We have (V AJ1f)(jAj1
xψ(τ, u)) = jA(J1f(j1xψ(τ, u)) = jA(j1

xf(ψ(τ, u))).
On the other hand, (J1V Af)(j1xj

Aψ(τ, u)) = j1xj
Af(ψ(τ, u)). �

Every connection Γ : Y → J1Y induces a connection VAΓ on V AY →M by

(6) VAΓ = i1,AY ◦ V AΓ : V AY → J1V AY .

It will be useful to have a kind of coordinate expression of VAΓ. Locally Y is
of the form Rm,n = Rm×Rn→ Rm with the coordinates xi on Rm and yp on Rn.
Then ypi are the induced coordinates on J1Rm,n and the equations of Γ are

(7) ypi = F pi (x, y) .

Since TAR = A, we have V ARm,n = Rm × An. So every element of V ARm,n
is of the form (x1, . . . , xm, η1, . . . , ηn), xi ∈ R, η p ∈ A. Hence ηp represents a
kind of vector valued coordinate function on VARm,n. The induced vector valued
coordinates on J1V ARm,n are ηpi .

In general, consider a function f : Y → R. If we interpret R as a fibered
manifold R→ pt, where pt is a point, then f is an FM-morphism. So we have an
induced A-valued function V Af : V AY → A. Since the addition or multiplication
in A is defined to be the prolongation of the addition or multiplication of reals, we
have, for another function g : Y → R,

V A(f + g) = VAf + V Ag ,(8)

V A(fg) = (VAf)(V Ag)(9)

with addition or multiplication in A on the right hand side, respectively. Further-
more, if we consider a function ϕ : M → R, then we find similarly

(10) V A(ϕf) = ϕVAf .

In this notation, (7) implies the following coordinate form of VAΓ

(11) ηpi = V A(F pi ) .

For every vector field X on M , we denote by ΓX : Y → TY its Γ-lift. The
curvature of Γ can be interpreted as a map

(12) CΓ : Y ×M (TM ×M TM )→ V Y .

For every two vector fields X1, X2 on M , we have

(13) CΓ(X1, X2) = [ΓX1,ΓX2]− Γ([X1, X2]) .

If we apply VA1 to (12), we obtain

VA1 CΓ : V AY ×M (TM ×M TM )→ V V AY .
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Proposition 1. We have CVAΓ = VACΓ.

Proof. Applying V A to (13), we obtain

(V A1 CΓ)(X1, X2) = V A([ΓX1,ΓX2])− V AΓ([X1, X2]) .

Using iA,DV,Y , we find

(VA1 CΓ)(X1, X2) = VA([ΓX1,ΓX2])− (VAΓ)([X1, X2]) .

But VA is the flow prolongation of vector fields that preserves the bracket, [11].
Hence VA([ΓX1,ΓX2]) = [(VAΓ)X1, (VAΓ)X2]. This completes the proof. �

If Γ is given by (7), then the coordinate form of CΓ is

(14)

(
∂F pi
∂xj

+
∂F pi
∂yq

F qj

)
dxi ∧ dxj .

Using Proposition 1, we deduce the following coordinate expression of CVAΓ

(15)
[
V A

(
∂F pi
∂xj

)
+ V A

(
∂F pi
∂yq

)
V A(F qj )

]
dxi ∧ dxj ,

where the product of the second and third terms is in A.
Since β : J1Y → Y is an affine bundle with associated vector bundle V Y ⊗T∗M ,

the difference of two connections Γ, Γ : Y → J1Y is a map δ(Γ,Γ) : Y → V Y ⊗
T ∗M that is called the deviation of Γ and Γ. If we write δ(Γ,Γ) : Y ×MTM → V Y ,
we can construct

VA1 δ(Γ,Γ) : V AY ×M TM → V V AY .

On the other hand, we have the deviation δ(VAΓ,VAΓ) : V AY ×M TM → V V AY .

Proposition 2. It holds δ(VAΓ,VAΓ) = VA1 δ(Γ,Γ).

Proof. For every vector field X on M , we have

δ(Γ,Γ)(X) = ΓX − ΓX .

Then we proceed in the same way as in the proof of Proposition 1. �

3. The lifting map in the first order

We are going to describe the prolongation of the lifting map of a first order
connection on Y in a way we shall need in the second order. We start with the
general situation. The lifting of tangent vectors from the base to the horizontal
subspaces of Y can be interpreted as an FM-morphism ΛY : J1Y ×M TM → TY
over idTM , provided we consider J1Y ×M TM as a fibered manifold over TM . If
we take j1xσ(u) ∈ J1Y and ∂

∂t

∣∣
0γ(t) ∈ TxM , then

ΛY (j1
xσ(u),

∂

∂t

∣∣
0
γ(t)) =

∂

∂t

∣∣
0
σ(γ(t)) .

On V AY , we have ΛV AY : J1V AY ×M TM → TV AY .
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Proposition 3. The following diagram commutes

V AJ1Y

i1,AY

×MTM
V AΛY V A(TY → TM )

iA,DV,Y

J1V AY ×MTM
ΛVAY T (V AY )

Proof. Take (jAj1
xψ(τ, u), ∂∂t

∣∣
0γ(t)) ∈ V AJ1Y ×MTM . Clockwise, we first obtain

jA ∂
∂t

∣∣
0
ψ(τ, γ(t)) and then ∂

∂t

∣∣
0
jAψ(τ, γ(t)). Counterclockwise, we first construct

j1
xj
Aψ(τ, u) and then ∂

∂t

∣∣
0
jAψ(τ, γ(t)). �

The lifting map ΛΓ of a first order connection Γ: Y → J1Y can be defined as

ΛΓ = ΛY ◦ (Γ×M idTM ) : Y ×M TM → TY .

If we add VAΓ = i1,AY ◦ V AΓ to the left of (16), we obtain

Corollary 1. We have

(17) Λ(VAΓ) = iA,DV,Y ◦ V
A(ΛΓ) .

4. Prolongation of second order connections

Consider the second non-holonomic prolongation J̃2Y = J1(J1Y → M ) of Y ,
[6], [13]. Beside the target jet projection β1 : J̃2Y → J1Y we have the first jet
prolongation J1β : J̃2Y → J1Y of the FM-morphism β : J 1Y → Y . The local
coordinates xi, yp on Y and the corresponding coordinates ypi on J1Y induce the
additional coordinates yp0i, y

p
ij on J̃2Y .

A second order non-holonomic connection on Y in the sense of C. Ehresmann
is a section ∆ : Y → J̃2Y , [7], [9]. So the coordinate expression of ∆ is

(18) ypi = F pi (x, y) , yp0i = Gpi (x, y) , ypij = Hp
ij(x, y) .

The second order exchange isomorphism of Y is defined by

(19) i2,AY = J1i1,AY ◦ i1,AJ1Y : V AJ̃2Y → J̃2V AY ,

where J1i1,AY : J1(V AJ1Y ) → J̃2V AY is the first jet prolongation of i1,AY and
i1,AJ1Y : V AJ̃2Y → J1V A(J1Y ) is the first order exchange isomorphism of J1Y .

Definition 2. The vertical A-prolongation of ∆ : Y → J̃2Y is

VA∆ := i2,AY ◦ V AY : V AY → J̃2V AY .

If ηp, ηpi , η
p
0i, η

p
ij are the induced A-valued coordinates on J̃2V AY , then the

coordinate form of VA∆ is

(20) ηpi = V A(F pi ) , ηp0i = V A(Gpi ) , η
p
ij = V A(Hp

ij) .

The product Γ∗Γ : Y → J̃2Y of two first order connections Γ, Γ on Y is defined
by Γ ∗ Γ := J1Γ ◦ Γ, where J1Γ : J1Y → J̃2Y is the first jet prolongation of the
FM-morphism Γ : Y → J 1Y .
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Proposition 4. We have VA(Γ ∗ Γ) = (VAΓ) ∗ (VAΓ).

Proof. If we apply Lemma 2 to the morphism Γ, we obtain (J 1V AΓ) ◦ i1,AY =
i1,AJ1Y ◦V AJ1Γ. Hence VA(Γ∗Γ) = i2,AY ◦V A(Γ∗Γ) = J1i1,AY ◦i1,AJ1Y ◦V AJ1Γ◦V AΓ =
J1i1,AY ◦ J1V AΓ ◦ i1,AY ◦ V AΓ = J1VAΓ ◦ VAΓ = VAΓ ∗ VAΓ. �
Remark 1. In general, an r-th order non-holonomic connection on Y is a section
Γ : Y → J̃rY , where the r-th order non-holonomic prolongation of Y is defined by
the iteration J̃rY = J1(J̃r−1Y →M ). We outline how the previous results can be
extended to such connections. First of all, we introduce ir,AY : V AJ̃rY → J̃rV AY
by the induction

ir,AY = J1ir−1,A
Y ◦ i1,A

Jr−1Y
,

where ir−1,A
Y : V AJ̃r−1Y → J̃r−1V AY . Since ir,AY is a composition of natural

transformations, it is a natural transformation too. By induction, one deduces

(21) ir,AY = J̃ lik,AY ◦ il,Y
JkY

for all k and l satisfying k + l = r. Using ir,AY , we introduce

VAΓ = ir,AY ◦ V AΓ : V AY → J̃rV AY .

If Γ : Y → J̃sY is another s-th order non-holonomic connection on Y , then the
product Γ ∗ Γ is defined by

Γ ∗ Γ = J̃sΓ ◦ Γ : Y → J̃r+sY ,

[17], [9]. Even in this case, we have

VA(Γ ∗ Γ) = (VAΓ) ∗ (VAΓ) .

Indeed, applying naturality V AJ̃s → J̃sV A to Γ, we obtain is,A
JrY
◦ V AJ̃sΓ =

J̃sV AΓ ◦ is,AY . Hence ir+s,AY ◦ V A(J̃sΓ ◦ Γ) = J̃sir,AY ◦ is,A
JrY
◦ V AJ̃sΓ ◦ V AΓ =

J̃sir,AY ◦ J̃sV AΓ ◦ is,AY ◦ V AΓ = (J̃sVAΓ) ◦ VAΓ.

5. The lifting map in the second order

The space of all non-holonomic 2-jets from a manifoldM into another manifold
N is defined as the second non-holonomic prolongation of the product fibered
manifoldM×N →M , [6]. It is well known that every X ∈ J̃2

x(M,N )y determines
a map λX : TTxM → TTyN , where TT is the second iterated tangent functor,
[15], [2]. We recall a direct geometric construction of λX.

Let X = j1xσ(u), σ : M → J1(M,N ). We have σ(u) = j1u%(u, v), where % is a
local map M ×N → N , so that

(22) X = j1xj
1
u%(u, v) .
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Consider D ∈ TTxM , D = ∂
∂t

∣∣
0γ(t), γ(t) = ∂

∂s

∣∣
0δ(t, s), where γ(t) is a tangent

vector to M at δ(t, 0). Then one defines

(23) λX(D) =
∂

∂t

∣∣
0

∂

∂s

∣∣
0
σ(δ(t, 0), δ(t, s)) ∈ TTyN .

We shall write λ(X,D) instead of λX(D) in the sequel.
If we have some local coordinates xi and yp on M and N , then ypi , yp0i, y

p
ij are

the additional coordinates on J̃2(M,N ). Further, write xi1 = dxi in the first step
and xi2 = dxi, xi3 = dxi1 in the second step for the induced coordinates on TTM .
Let yp1 , yp2 , yp3 be the coordinates induced on TTN in the same way. . Then the
coordinate form of λ(X,D) is, see [15], [2],

(24) yp1 = ypi x
i
1 , y

p
2 = yp0ix

i
2 , y

p
3 = ypijx

i
1x
j
2 + ypi x

i
3 .

In the case of J̃2Y , (23) induces a lifting map

(25) λY : J̃2Y ×M TTM → TTY ,

which is an FM-morphism over idTTM , provided we consider J̃2Y ×M TTM as
a fibered manifold over TTM . If we take VAY instead of Y , we have

λV AY : J̃2V AY ×M TTM → TTV AY .

We recall that the Weil algebra of TT is D ⊗D .

Proposition 5. The following diagram commutes

(26)

V AJ̃2Y

i2,AY

×MTTM
V AλY V A(TTY → TTM )

iA,D⊗DV,Y

J̃2V AY ×MTTM
λV AY TT (V AY )

Proof. If we consider X ∈ VAJ̃2Y in the form X = jAj1
xj

1
uψ(τ, u, v), then

(27) i2,AY (X) = J1i1,AY (i1,AJ1Y (X)) = j1xj
1
uj
Aψ(τ, u, v) .

Indeed, i1,AJ1Y exchanges jA and j1
x and J1i1,AY exchanges jA and j1

u. Consider fur-
ther D = ∂

∂t

∣∣
0
∂
∂s

∣∣
0δ(t, s) ∈ TTxM . Clockwise, we first obtain jA ∂

∂t

∣∣
0
∂
∂s

∣∣
0ψ(τ, δ(t, 0),

δ(t, s)) and then

(28)
∂

∂t

∣∣
0

∂

∂s

∣∣
0
jAψ(τ, δ(t, 0), δ(t, s)) .

Counterclockwise, we first find j1xj
1
uj
Aψ(τ, u, v) and then (28). �

The lifting map of ∆ : Y → J̃2Y is defined by

λ∆ = λY ◦ (∆×M idTTM ) : Y ×M TTM → TTY .

If we add VA∆ = i2,AY ◦ V A∆ to the left of (26), we obtain the following charac-
terization of the lifting map of VA∆.
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Corollary 2. We have λ(VA∆) = iA,D⊗DV,Y ◦ V A(λ∆). �
Consider a section ξ : M → TTM , i.e. a D ⊗ D -field on M . Its ∆-lift can be

introduced by
∆(ξ) = λY ◦ (∆×M ξ) .

This is a projectable D ⊗ D -field on Y , so that we have defined its vertical A-
prolongation

VA(∆ξ) : V AY → TTV AY .

On the other hand, we can construct the VA∆-lift (VA∆)(ξ) : V AY → TTV AY .
The following result demonstrates that the lifting of D ⊗ D -fields in the theory of
second order connections plays an analogous role to the lifting of vector fields in
the theory of first order connections.

Proposition 6. We have (VA∆)(ξ) = VA(∆ξ).

Proof. Add the map V A∆×M ξ to the left of the top row of (26). Clockwise we
obtain VA(∆ξ) and counterclockwise we find (VA∆)(ξ). �

Consider another connection ∆ : Y → J̃2Y satisfying

(29) β1∆ = β1∆ , J1β(∆) = J1β(∆) .

In [3] we deduced that there is a section Σ : Y → V Y ⊗
2
⊗T ∗M such that ∆ = ∆+Σ.

Let

(30) ypi = F pi (x, y) , yp0i = Gpi (x, y) , ypij = H
p
ij(x, y)

be the coordinate expression of ∆. Then Σ = (H
p

ij −H
p
ij).

A D ⊗ D -field ξ : M → TTM induces two vector fields ξ1 = πD,TM ◦ ξ and
ξ2 = TπD,M ◦ ξ on M . If ξ = (ξi1, ξ

i
2, ξ

i
3) is the coordinate expression of ξ, then

ξ1 = (ξi1) and ξ2 = (ξi2). By (24) we find the coordinate forms of the corresponding
lifts

∆(ξ) = (F pi ξ
i
1, G

p
i ξ
i
2.H

p
ijξ

i
1ξ
j
2 + F pi ξ

i
3) ,

∆(ξ) = (F pi ξ
i
1, G

p
i ξ
i
2, H

p

ijξ
i
1ξ
j
2 + F pi ξ

i
3) .

This implies

(31) ∆(ξ) −∆(ξ) = Σ(ξ1, ξ2) .

Now we apply V A. If we take into account the difference in notation on both sides,
we obtain

(32) V A(∆(ξ)) − V A(∆(ξ)) = V A1 Σ(ξ1, ξ2) .

Next we apply iA,DV,Y to both sides. Since Σ is vertical valued, iA,DV,Y is reduced to

iA,DY,V on the right hand side. Thus,

VA(∆(ξ)) − VA(∆(ξ)) = (VA1 Σ)(ξ1, ξ2) .

By Proposition 6, we have VA(∆ξ) = (VA∆)(ξ) and the same for ∆. Thus, we
have proved
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Proposition 7. If (29) holds and ∆ = ∆ + Σ, then

VA∆ = VA∆ + VA1 Σ .

In [3] we deduced that every ∆ : Y → J̃2Y can be uniquely written in the form

(33) ∆ = Γ ∗ Γ + Σ

with Γ,Γ : Y → J1Y and Σ : Y → V Y ⊗
2
⊗T ∗M . By Propositions 4 and 7, we

obtain

Corollary 3. If (33) holds, then

VA∆ = (VAΓ) ∗ (VAΓ) + VA1 Σ .

Remark 2. An r-th order non-holonomic connection Γ : Y → J̃rY determines a
lifting map in a similar way. Every non-holonomic r-jet X ∈ J̃rx(M,N )y induces
a map

λX : T . . .TxM → T . . . TyN ,

where T . . .T is the r-times iterated tangent functor, [16]. This defines the lifting
map of Γ

λΓ : Y ×M T . . .TM → T . . .TY .

The Weil algebra of T . . .T is D ⊗ . . .⊗D =
r
⊗D . Hence every

r
⊗D -field ξ on M is

lifted into a
r
⊗D -field Γξ on Y . Several properties of this operation are analogous

to the second order case, but we shall not go into details here.

6. The first order absolute differentiation

The absolute differentiation with respect to a first order connection Γ : Y →
J1Y can be viewed as a map

∇Γ : J1Y → V Y ⊗ T∗M .

The simpliest way of defining it is we use the fact that β : J1Y → Y is an affine
bundle with associated vector bundle V Y ⊗ T∗M and we set

(34) ∇Γ(X) = X − Γ(βX) , X ∈ J1Y ,

[14]. However, this approach is somewhat formal and cannot be extended to higher
orders.

The definition of higher order absolute differentiation by C. Ehresmann is of jet
character, [7], [9]. That is why we find it useful to discuss also the first order case
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from such a point of view. We shall use the standard identification T (Yx)⊗T∗xM =
J1
x(M,Yx). We introduce

J 1Y =
⋃
x∈M

J1
x(M,Yx) .

Hence (34) is an FM-morphism J1Y → J 1Y . From the jet viewpoint it is more
convenient to construct the inverse map ∇−1

Γ : J 1Y → J1Y . We have

Γ(y) = j1xψ(u, y) , ψ(x, y) = y , u ∈M, y ∈ Yx .

If (7) are the equations of Γ, then

∂ψp(x, y)
∂xi

= F pi (x, y) .

For Z = j1xϕ(u) ∈ J 1
x Y we define

(35) ∇−1
Γ (Z) = j1xψ(u, ϕ(u)) ∈ J1

xY .

Write zpi for the induced coordinates in J1Y . Evaluating (35), we obtain

ypi = F pi (x, y) + zpi .

This is the coordinate form of (34).
Consider W = jAj1

xϕ(τ, u) ∈ V AJ 1Y , ϕ : Rk × M → Yx . We define an
exchange isomorphism I1,A

Y : V AJ 1Y → J 1V AY by

(36) I1,A
Y (W ) = j1xj

Aϕ(τ, u) .

In the case of VAΓ, we have ∇−1
VAΓ : J 1V AY → J1V AY .

Proposition 8. The following diagram commutes

V AJ 1Y
V A(∇−1

Γ )

I1,A
Y

V AJ1Y

i1,AY

J 1V AY
∇−1
VAΓ J1V AY

Proof. By the definition of VAΓ, we have

VAΓ(jA%(τ )) = jAx j
Aψ(u, %(τ )) , jA%(τ ) ∈ V Ax Y .

Hence ∇−1
VAΓ(I1,A

Y (W )) = j1xj
Aψ(u, ϕ(τ, u)) = i1,AY (V A(∇−1

Γ )(W )). �
Remark 3. It is instructive to characterize the absolute differentiation with re-
spect to Γ from the groupoidal point of view, [7], [9]. Assume Y is locally trivial



PROLONGATION OF SECOND ORDER CONNECTIONS 345

and denote by GY the groupoid of all diffeomorphisms between the individual
fibers of Y . This is a smooth space in the sense of A. Frölicher. If f : Yx → Yu is a
diffeomorphism, then TAf : V Ax Y → V Au Y is also a diffeomorphism. In this sense
the groupoid GY acts smoothly on V AY as well. To define a first order element
of connection C on Y at x ∈M in the sense of C. Ehresmann, [7], [9], we have to
consider locally a smooth family of diffeomorphisms Θ(u) : Yx → Yu, u ∈M , and
define

C(y) = j1x[Θ(u)(y)] , y ∈ Yx .
The corresponding map ∇−1

C : J 1
x Y → J1

xY is of the form

∇−1
C (j1

xϕ(u)) = j1xΘ(u)(ϕ(u)) , ϕ : M → Yx .

If we replace Θ(u) by TAΘ(u), we obtain another construction of the connection
VAΓ as well as another approach to the absolute differentiation on VAY with
respect to VAΓ.

7. The second order absolute differentiation

In the second order, we define

J̃ 2Y =
⋃
x∈M

J̃2
x(M,Yx) .

The absolute differentiation with respect to ∆ : Y → J̃2Y is a map

∇∆ : J̃2Y → J̃ 2Y ,

whose inverse map can be introduced as follows. We have

∆(y) = j1xj
1
uψ(u, v, y) , u, v ∈M, y ∈ Yx .

Consider Z ∈ J̃2
x(M,Yx) of the form

Z = j1xj
1
uϕ(u, v) , ϕ : M ×M → Yx .

Then we define

(37) ∇−1
∆ (Z) = j1xj

1
uψ(u, v, ϕ(u, v)) ∈ J̃2

xY .

If (18) is the coordinate expression of ∆ and zp0i, z
p
ij are the additional coordinates

on J̃ 2Y , then the evaluation of (37) yields

(38) ypi = F pi + zpi , y
p
0i = Gpi + zp0i , y

p
ij = Hp

ij +
∂F pi
∂yq

zq0j +
∂Gpj
∂yq

zqi + zpij .

These formulae coincide with (19) from [3]. This clarifies that (37) is equivalent
to the approach from [3].

Consider W = jAj1
xj

1
uϕ(τ, u, v) ∈ V AJ̃2Y, ϕ : Rk×M ×M → Yx. We define an

exchange isomorphism I2,A
Y : V AJ̃ 2Y → J̃ 2V AY by

(39) I2,A
Y (W ) = j1xj

1
uj
Aϕ(τ, u, v) .

The construction of ∇VA∆ from ∇∆ is described in the following assertion.
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Proposition 9. The following diagram commutes

V AJ̃ 2Y
V A(∇−1

∆ )

I2,A
Y

V AJ̃2Y

i2,AY

J̃ 2V AY
∇−1
VA∆ J̃2V AY

Proof. By the definition of VA∆ and by (27), we have

VA∆(jA%(τ )) = j1xj
1
uj
Aψ(u, v, %(τ )) , jA%(τ ) ∈ V Ax Y .

Hence ∇−1
VA∆(I2,A

Y (W )) = j1xj
1
uj
Aψ(u, v, ϕ(τ, u, v)) = i2,AY (V A(∇−1

∆ )(W )). �

Remark 4. The groupoidal approach from Remark 3 can be applied to the second
order absolute differentiation as well.
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[9] Kolář, I., Higher order absolute differentiation with respect to generalized connections, Dif-

ferential Geometry, Banach Center Publications 12 (1984), 153–162.
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