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PROLONGATION OF SECOND ORDER
CONNECTIONS TO VERTICAL WEIL BUNDLES

ANTONELLA CABRAS AND IVAN KOIAR

ABSTRACT. We study systematically the prolongation of second order connections
in the sense of C. Ehresmann from a fibered manifold into its vertical bundle deter-
mined by a Weil algebra A. In certain situations we deduce new properties of the
prolongation of first order connections. Our original tool is a general concept of a
B-field for another Weil algebra B and of its A-prolongation.

The simpliest example of a Weil functor is the jet functor 7} of k-dimensional
velocities of order r. Recently it has been clarified that the theory of Weil bundles
represents a unified technique for studying many geometric problems related with
product preserving functors, see [11] for a survey. Our starting point is a paper
by W. M. Mikulski and the second author, who studied the prolongation of a first
order connection on an arbitrary fibered manifold Y — M with respect to a vertical
functor on the category FM of all fibered manifolds and their morphisms, [12].
In the case of the vertical Weil functor V4 they obtained an interesting naturality
result: the operator transforming a first order connection I' on Y into its vertical
prolongation VAT on VAY is the only natural one.

On the other hand our research is based on the results from [3], where we de-
veloped systematically the theory of second order connections in the sense of C.
Ehresmann on an arbitrary fibered manifold. So the main subject of the present
paper are the geometric properties of prolongation of the second order connections
to the vertical Weil bundles. However, at several places we deduce further geomet-
ric properties of prolongation of the first order connections. Since our problems
are of general character, our procedures are always coordinate free. Nevertheless,
occasionally we outline the coordinate expressions as well. At these places we use
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heavily the fact that the A-prolongation of a real valued function is a function
with values in the Weil algebra A.

In Section 1 we introduce an original tool, the concept of B-field for another Weil
algebra B and of its A-prolongation. Sections 2 and 3 are devoted to the vertical
A-prolongation of a first order connection I'. In particular, we deduce an explicit
formula for the curvature of VAT in terms of the curvature of I' and an analogous
characterization of the lifting map of VAT'. The first result on the prolongation
of second order connections is Proposition 4, which reads that the prolongation
of the product of the first order connections is the product of their prolongations.
In Section 5 we introduce the lifting map of a second order connection A. It lifts
the elements of the second iterated tangent bundle TT'M of the base M to TTY .
The sections M — TTM are D ® D-fields on M, where D is the algebra of dual
numbers. Using the ideas of Section 1, we clarify that the lifting of D ® D-fields
with respect to A has similar properties to lifting of vector fields with respect to a
first order connection. This enables us to prove, in Corollary 3, that the canonical
decomposition of a second order connection is preserved under the vertical A-
prolongation. The last two sections are devoted to the basic properties of the first
order absolute differentiation with respect to the prolongated connection and of
the second order one.

All manifolds and maps are assumed to be infinitely differentiable and all man-
ifolds are paracompact. Unless otherwise specified, we use the terminology and
notation from [11].

1. PROLONGATION OF WEIL FIELDS

Let A be a Weil algebra and T4 be the corresponding Weil functor, [11], [18].
For a manifold M, we consider each element of T4 M in the form of an A-jet j4g,
g :R¥ — M, where k is the width of A, [11]. For a smooth map f : M — N, we
define TAf : TAM — TN by

(1) TAf(j4g) = j*(fog).

Let B be another Weil algebra. Consider X € TB(TAM), X = jB¢p, where
@ : RN — TAM, I= the width of B. Every ¢(t) € TAM, t € R/, is of the form
j49(r,t), T € R¥, where 1 is a map R* x R — M. Hence X = jB(j44(r,t)) and
we can define the exchange diffeomorphism i : TB(TAM) — TA(TB M) by

.B. A . .
(2) i (X) = A (5Y(r, 1))
Write ma s : TAM — M for the bundle projection. Consider the bundle pro-

jection g papr : TBTAM — TAM and the induced map P74 5 : TPTAM —
TEM. One verifies easily that if/‘ exchanges the related projections, i.e.

A .B,A .B,A B
(3) T TTB,M © s :ﬂ-B,TAMa TI-A,TBJWOZ]V] =T TAM -
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Definition 1. A section & : M — TBM will be called a Weil field of type B or a
B-field on M. The B-field T4¢ = i%* o TA¢ : TAM — TP (T4 M) will be called
the A-prolongation of .

If B is the algebra D of dual numbers, then 7° = T is the tangent functor, ¢ is
a vector field and 74¢ is the flow prolongation of ¢, [11]. We remark that one has
defined the flow prolongation of a vector field with respect to an arbitrary natural
bundle, while in the case of a B-field we have to consider Weil bundles only.

Consider a fibered manifold p : Y — M. Its vertical Weil bundle VAY — M is
defined by
VA = | T4(%.).
xeM

Let W — N be another fibered manifold and f : Y — W be an FM-morphism
with the base map f : M — N. Then VAf : VAY — VAW is defined fiberwise.

Consider the subbundles VB(TAY — TAM) c TB(TAM) and TA(VEY) C
TA(TPY).

Lemma 1. ig’A maps VE(TAY — TAM) into TA(VEY).
Proof. By locality, it suffices to consider a product bundle Y = M x N. We have
TAY = TAM x TAN , VB(TAY — TAM) =TAM x TBTAN ,
VBY = M xTBN, TA(VEY) =T4M x TATEN .
In this situation, z'g’A is reduced to the exchange diffeomorphism iﬁ’A :TBTAN —
TATEN. O
The restricted and corestricted map will be denoted by

gy VE(TAY — TAM) — T4 (VEPY).

If we consider T4(VPY) as a fibered manifold over T4 M, then ia’{,‘ is an FM-
morphism over idpa,,. If we further restrict 'q]i’;‘ to VBE(VAM — M), then its
values lie in VA(VBY — M). The restricted and corestricted map

iy VEVAY - vAV By

represents the exchange diffeomorphism applied fiberwise.
A B-field € : Y — TPBY is called projectable, if there is a B-field §:M — TBEM
satisfying TPpo ¢ = o p. In this case,
VAE =iy o VAL VAY — TB(VAY)

is a projectable B-field on VAY over £, which will be called the vertical A-
prolongation of £&. If B = D, then VP = V is the vertical tangent functor and
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€ is a projectable vector field on Y. One verifies easily that VA¢ coincides with
the flow prolongation of ¢ with respect to the functor V4.

Consider another fibered manifold ¢ : Z — M and an FM-morphism f :
Y Xy Z — W with the base map f : M — N. Then we define the vertical
A-prolongation with respect to the first factor

VA VAY xy Z — VAW

fiberwise. In other words, if we denote by f. : Yo — Wy, 2 € Z, q(z) = z, the
map y — f(y, 2), then

(VlAf)z = TA(fZ) : (VAY)I - (VAW)i(I) .
In particular, if we have a section s : M — Z and write

f(s) Y =W, f(s)(y) = f(y,s(py)),
then (VAf)(s) = VA(f(s)) : VAY — VAW,

Consider the special case W = VPY and f with the property gy (f(y,2)) = v.
Then we introduce

VAL =i o VAL VAY x Z — VEVAY
By construction, we have (V{ f)(s) = VA(f(s)) for every section s : M — Z.

2. ON THE PROLONGATION OF FIRST ORDER CONNECTIONS

According to [12], the construction of the vertical A-prolongation of a first order
connection on Y can be based on the canonical exchange isomorphism

iyt VAJY - M) — JHVAY - M),
[10], see also [8] for the special case A = D. Every X € VA(J'Y — M) over

x € M is of the form X = j4p(7), ¢ : R¥F — JIYV, (1) = jie(r,u), u € M. Then
we define

(4) iy (X) = jLit(r ).

Lemma 2. If f : Y — Z is a base-preserving morphism, then the following
diagram commutes

vy VY yap g
-1,A 1,A
o

17/A
JvAY SV JWAZ
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Proof. We have (VAJ' f)(j4j,0(r,u)) = j4(J (a0 (1, w)) = 2 (jof((7, ).
On the other hand, (J'VAf)(jpj*%(r,w)) = jyj* f(¥(r, w)). 0
Every connection I' : Y — J'Y induces a connection VAT on VAY — M by

(6) VAT = ibd o VAT : VAY — JivAY .

It will be useful to have a kind of coordinate expression of VAT'. Locally Y is
of the form R™" = R™ x R™ — R™ with the coordinates 2* on R™ and 3” on R™.
Then ¢! are the induced coordinates on J'R™" and the equations of I' are

(7) i = F(x,y).
Since TAR = A, we have VAR™" = R™ x A™. So every element of VAR™™
is of the form (z!,...,2™ n', ...,n"), 2* € R, n? € A. Hence 7P represents a

kind of vector valued coordinate function on VAR™™. The induced vector valued
coordinates on J'VAR™™ are n?.

In general, consider a function f : ¥ — R. If we interpret R as a fibered
manifold R — pt, where pt is a point, then f is an FM-morphism. So we have an
induced A-valued function VAf : VAY — A. Since the addition or multiplication
in A is defined to be the prolongation of the addition or multiplication of reals, we
have, for another function g: ¥ — R,

(8) VA(f+9) =VAf+ V4,
9) VA(fg) = (VAN)(VAg)

with addition or multiplication in A on the right hand side, respectively. Further-
more, if we consider a function ¢ : M — R, then we find similarly

(10) VAef) = VS
In this notation, (7) implies the following coordinate form of VAT
(11) = VAE]).

For every vector field X on M, we denote by I'’X : Y — TY its I'-lift. The
curvature of I' can be interpreted as a map

(12) Cr:Y xa (TM x3 TM) = VY .

For every two vector fields X3, X2 on M, we have

(13) Cr(X1,X2) = IX1,TX5] — T'([ X1, X2)) .
If we apply V{! to (12), we obtain

VACE : VAY X (TM xp TM) — VVAY
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Proposition 1. We have Cyap = VACF.
Proof. Applying V4 to (13), we obtain

(VACr) (X1, X2) = VAL X1, T Xa]) — VAT([X1, Xa)).-
Using iéy’?, we find

(Vf'Cr)(X1, X2) = VA([0 X1, TX,)) — (VAD)([X1, X)) -

But V4 is the flow prolongation of vector fields that preserves the bracket, [11].
Hence VA([I'X1,T'X3)) = [(VAT) X1, (VAT)X,]. This completes the proof. O

If T is given by (7), then the coordinate form of Cr is

OFF  OFF i -
<8xj + oy Ff) dz" A dx? .

(14)

Using Proposition 1, we deduce the following coordinate expression of Cpar

OFY OFP . _
A 4 A 4 A(a % 7
(15) [V <8xj ) +V <_ayq ) VA(E! )] dat A da?

where the product of the second and third terms is in A.

Since 3 : J'Y — Y is an affine bundle with associated vector bundle VY ®T* M,
the difference of two connections I', T : ¥ — J'Y is a map §(I,T) : ¥ - VY ®
T*M that is called the deviation of ' and T. If we write §(I',T) : Y xyyTM — VY,
we can construct

VASD,T) : VAY xp TM — VVAY |

On the other hand, we have the deviation S(VAT, VAT) : VAY x, TM — VVAY.
Proposition 2. It holds §(VAT, VAT) = VAs(T,T).
Proof. For every vector field X on M, we have

S(I,T)(X)=TX —TX.

Then we proceed in the same way as in the proof of Proposition 1. |

3. THE LIFTING MAP IN THE FIRST ORDER

We are going to describe the prolongation of the lifting map of a first order
connection on Y in a way we shall need in the second order. We start with the
general situation. The lifting of tangent vectors from the base to the horizontal
subspaces of Y can be interpreted as an FM-morphism Ay : J'Y x; TM — TY
over idrys, provided we consider J'Y x; TM as a fibered manifold over TM. If
we take jio(u) € J'Y and 2| y(t) € T, M, then

Av(ikou), T, 1(1) = o2,

On VAY, we have Ayay : J'WVAY xpy TM — TVAY .
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Proposition 3. The following diagmm commutes

VAT s T LAY Ay VATY — TM)

1,4 AD
ty vy

JWAY s TM — VY T(VAY)

Proof. Take (jAj;w(T, u), Z|,v(t) € VATY x 3 TM. Clockwise, we first obtain

J 6t| Y(1,7(t)) and then 6t|OjAw 7,7(t)). Counterclockwise, we first construct

.w%(r u) and then & | j4v(r,~(1)). 0
The lifting map AT of a first order connection I': Y — J'Y can be defined as

AT = Ay o (T xpridyas) 1 Y xpy TM — TY .

If we add VAT = iv* o VAT to the left of (16), we obtain

Corollary 1. We have

(17) AWAT) = il o VA(AT).

4. PROLONGATION OF SECOND ORDER CONNECTIONS

Consider the second non-holonomic prolongation J2Y = JY(J'Y — M) of Y,
[6], [13]. Beside the target jet projection B : J2Y — J'Y we have the first jet
prolongation J!3 : J2Y — J'Y of the FM-morphism 3 : J'Y — Y. The local
coordinates z’, y? on Y and the corresponding coordinates 3f on J'Y induce the
additional coordinates y;, y}; on J2Y

A second order non-holonomic connection on Y in the sense of C. Ehresmann
is a section A :Y — J2Y, [7], [9]. So the coordinate expression of A is

(18) y; = FP(2,y), yo; = Gi(x,y), vi; = H(2,y).
The second order exchange isomorphism of Y is defined by
(19) = Jhipt o il VARY — JPVAY

where Jhiy A JI(VAjl ) — J2VAY is the first jet prolongation of i;’A and

i VAJ 2y — JYWA(JYY) is the first order exchange isomorphism of J'Y

Definition 2. The vertical A—prolongation of A:Y — J?Y is
VAN =iy o VAY 1 VAY — JPVAY .
If 0P, 07, 16;, 5y are the induced A-valued coordinates on J2VAY | then the
coordinate form of VAA is
(20) = VAEY), nty = VAGT), iy = VA(HE).
The product '+ : Y — J2Y of two first order connections I, T onY is defined

by [T := JT o T, where J'T' : J'Y — J2Y is the first jet prolongation of the
FM-morphism T : Y — JLY.
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Proposition 4. We have VA (T = f) = (VAF) % (VAf)'

Proof. If we apply Lemma 2 to the morphism I', we obtain (J'VAT) o ZY =
iy o VAT, Hence VA(D'+T) = ip o VA(T*T) = Jhiy 0il} oVAJITo VAT =
Jlip? o JWAT 0ip? o VAT = JIWAT 0 VAT = VAT « vAr. O
Remark 1. In general, an r-th order non-holonomic connection on Y is a section
L:Y —.J "Y', where the r-th order non-holonomic prolongation of Y is defined by
the iteration J"Y = JY(J"~1Y — M). We outline how the previous results can be

extended to such connections. First of all, we introduce 4" : VAJ'Y — J'VAY

by the induction

A Jl r—1,A .1,A

ty = 15 1y
where i}, AL yAT-ly 5 Jr-1VAY . Since i;,’A is a composition of natural

transformatlons, it is a natural transformation too. By induction, one deduces

(21) it = Tl ol

for all k and [ satisfying k + ! = r. Using i’;}A, we introduce
VAT =iy o VAT . VAY — JVAY .

IT:Y - J*Y is another s-th order non-holonomic connection on Y, then the
product I" * I" is defined by

[«T=JTol:Y — JHY,
[17], [9]. Even in this case, we have
VAT «T) = (VAT) « (VAT).

Indeed, applying naturality VAJS — JVA to T, we obtam zj o VAJT =
JVAT 0 ip. Hence "4 o VA(JT o T) = Joip” 0%/ o VAJT o VAT =
J5it% o JSVAT 0 i3 o VAT = (JVAT) o VAT.

5. THE LIFTING MAP IN THE SECOND ORDER

The space of all non-holonomic 2-jets from a manifold M into another manifold
N is defined as the second non-holonomic prolongation of the product fibered
manifold M x N — M, [6]. It is well known that every X € J2(M, N), determines
amap AX : TT,M — TT,N, where TT is the second iterated tangent functor,
[15], [2]. We recall a direct geometric construction of AX.

Let X = jlo(u), o : M — JY(M,N). We have o(u) = jlo(u,v), where g is a
local map M x N — N, so that

(22) X = Jojuolu,v).
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Consider D € TT,M, D = %|07(t), ~(t) = %|05(t,s), where ~(¢) is a tangent
vector to M at §(¢,0). Then one defines

9, 0
(23) AX(D) = §|0£|00(5(t, 0),d(t,s)) € TT,N .

We shall write A(X, D) instead of AX (D) in the sequel.
If we have some local coordinates a' and y? on M and N, then v, yg;, y;; are

the additional coordinates on J2(M, N). Further, write #i = da’ in the first step
and x} = da’, ¥} = dz? in the second step for the induced coordinates on TT M.
Let 47, v5, y§ be the coordinates induced on TTN in the same way.. Then the
coordinate form of A(X, D) is, see [15], [2],

(24) W=y, b = uhirh, uh = yhatal + ol
In the case of J2Y, (23) induces a lifting map
(25) My : J2Y xp TTM — TTY

which is an FM-morphism over idprps, provided we consider J2Y x v TTM as
a fibered manifold over TT M. If we take VAY instead of Y, we have

Avay @ J2VAY xy TTM — TTVAY .
We recall that the Weil algebra of 7T is D @ D.
Proposition 5. The following diagram commutes

~ A
VARY xp TTM YA VATTY — TTM)
(26) YAJ H Jiéﬁ'&@”

J2VAY x y TTM —2Y2Y 7T(VAY)

Proof. If we consider X € VAJ2Y in the form X = j4j1jly(r, u,v), then
(27) i) = Ty (i3 (X)) = dadud M (ru,v).
Indeed, z'lJ’fAY exchanges j4 and j! and J%iy* exchanges j4 and jL. Consider fur-
ther D = %|0% |05(t, s) € TT, M. Clockwise, we first obtainjA%|O%|Ow(T, 0(t,0),
d(t,s)) and then
9. 0, .,
(28) a|0£|0] w(Tv(S(ta 0)75(ta S))
Counterclockwise, we first find 52 ;! 44 (7, u,v) and then (28). O
The lifting map of A : Y — J2Y is defined by
AA = /\yO (A X]y]idTTM) 1Y XM TTM — TTY .

If we add VAA = i3 o VAA to the left of (26), we obtain the following charac-
terization of the lifting map of VAA.
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Corollary 2. We have A(VAA) = ié"’E@D o VA(NA). O

Consider a section £ : M — TTM, ie. a D ® D-field on M. Its A-lift can be
introduced by
A(§) = Ay o (Axp§).

This is a projectable D ® D-field on Y, so that we have defined its vertical A-
prolongation
VAAS) : VAY — TTVAY .

On the other hand, we can construct the VAA-lift (VAA)(€) : VAY — TTVAY.
The following result demonstrates that the lifting of D ® D-fields in the theory of
second order connections plays an analogous role to the lifting of vector fields in
the theory of first order connections.

Proposition 6. We have (VAA)(£) = VA(AS).

Proof. Add the map VAA x s € to the left of the top row of (26). Clockwise we
obtain V4 (A£) and counterclockwise we find (VAA)(€). O

Consider another connection A : Y — J2Y satisfying
(29) BiA = BiA, J'B(A) = T'B(A).

2 —
In [3] we deduced that there is a section ¥ : Y — VY ®T*M such that A = A+3X.
Let

(30) W =FP(x,y), vb = Gl(x,y), of; = Hij(x,y)
be the coordinate expression of A. Then ¥ = (H;, — HY,).

A D ®D-Aield £ : M — TTM induces two vector fields £ = mp 7 o € and
& =Tmpao&on M. If £ = (€,&5, &) is the coordinate expression of &, then
& = (&) and & = (&). By (24) we find the coordinate forms of the corresponding
lifts

A() = (FI&1, GTGHEGE + FT&) |
A(€) = (el GTe, Hij6i€h + FIEy).
This implies
(31) A(€) — A(g) = 3(&, &) -

Now we apply V4. If we take into account the difference in notation on both sides,
we obtain

(32) VABR(E) = VAAE) = 'B(6, &)
Next we apply z'é”e to both sides. Since ¥ is vertical valued, ié_”? is reduced to

i{}:g on the right hand side. Thus,

VAA()) —VHA(Q) = (Vi'D)(4, &)

By Proposition 6, we have VA(A¢) = (VAA)(€) and the same for A. Thus, we
have proved
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Proposition 7. If (29) holds and A = A+ X, then
VAR = VAA + V{5
In [3] we deduced that every A : Y — J2Y can be uniquely written in the form

(33) A=T*T+3

— 2
with'’T:Y - J'Y and ¥ : Y — VY ® ®T*M. By Propositions 4 and 7, we
obtain

Corollary 3. If (33) holds, then

VAA = (VAT) « (VAT) + Vs

Remark 2. An r-th order non-holonomic connection I' : Y —>~j "Y determines a
lifting map in a similar way. Every non-holonomic r-jet X € J3(M, N), induces
a map

AX:T..T,M—-T...TyN,

where T'...T is the r-times iterated tangent functor, [16]. This defines the lifting
map of "
N Y xyT...TM —-T...TY.

The Weil algebraof T... T isD ® ...@D :é)ID). Hence everyé)ID) -field £ on M is
lifted into a é)]D)—ﬁeld T'¢ on Y. Several properties of this operation are analogous

to the second order case, but we shall not go into details here.
6. THE FIRST ORDER ABSOLUTE DIFFERENTIATION
The absolute differentiation with respect to a first order connection I' : ¥ —
J'Y can be viewed as a map

Vr:JY VY QT*M.

The simpliest way of defining it is we use the fact that 8 : J'Y — Y is an affine
bundle with associated vector bundle VY ® T* M and we set

(34) Vr(X) = X - T(BX), X e J'vY,

[14]. However, this approach is somewhat formal and cannot be extended to higher
orders.

The definition of higher order absolute differentiation by C. Ehresmann is of jet
character, 7], [9]. That is why we find it useful to discuss also the first order case
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from such a point of view. We shall use the standard identification T(Y;) @ T M =
JY(M,Y,). We introduce

JVY =] Jh(MYy).
xeM

Hence (34) is an FM-morphism J'Y — J'Y. From the jet viewpoint it is more
convenient to construct the inverse map Vp' : J'Y — J'Y. We have

I(y) = js(u,y), Y(z,y) =y, uweEMyeY,.

If (7) are the equations of I', then

P
81#8(1;,1/) — FP(z,y).
T
For Z = jlp(u) € JLY we define
(35) Vil (Z2) = jpo(u, p(u) € LY .

Write 2 for the induced coordinates in J'Y. Evaluating (35), we obtain
¥ = Fl(z,y) + 2 .

This is the coordinate form of (34).
Consider W = j4jlo(r,u) € VAFY, o : RF x M — Y,. We define an
exchange isomorphism I3 : VAZYY — J1VAY by

(36) I W) = ijAe(r,u) .

In the case of VAT, we have V. \. : J'VAY — JIVAY.

Proposition 8. The following diagram commutes
vATly VAV VASY
I;*AJ iy
JWAY i> JWAY
Proof. By the definition of VAT, we have
VAT(jo(7)) = ji it (u o(r)),  jho(r) € VY.

Hence Vyip(Iy™ (W) = jhi*u(u, o(r,u)) = iy (VA(VE (). 0

Remark 3. It is instructive to characterize the absolute differentiation with re-
spect to I' from the groupoidal point of view, [7], [9]. Assume Y is locally trivial
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and denote by GY the groupoid of all diffeomorphisms between the individual
fibers of Y. This is a smooth space in the sense of A. Frolicher. If f: Y, — Y, isa
diffeomorphism, then T4 f : VAY — VAY is also a diffeomorphism. In this sense
the groupoid GY acts smoothly on VAY as well. To define a first order element
of connection C' on Y at z € M in the sense of C. Ehresmann, [7], [9], we have to
consider locally a smooth family of diffeomorphisms O(u) : Y, — Yy, u € M, and
define

Cly) =il0W®)], yeYs.
The corresponding map V' : J1Y — JY is of the form
Vel lzpw) = 2O0W)(p(w),  ¢: M —Y,.

If we replace ©(u) by T“©O(u), we obtain another construction of the connection
VAT as well as another approach to the absolute differentiation on VAY with
respect to VAT.

7. THE SECOND ORDER ABSOLUTE DIFFERENTIATION
In the second order, we define

j2Y = U 'E(Maym)
xeM

The absolute differentiation with respect to A :Y — J?Y is a map
Va:J2Y = J2Y,

whose inverse map can be introduced as follows. We have

A(y) = jajut(u,v,y),  wveMyeYs.
Consider Z € ,E(M ,Y,) of the form
Z = jijupu,v), @ MxM—=Y,.

Then we define
(37) V2 (2) = dadutb(u,v, p(u,0)) € TV
If (18) is the coordinate expression of A and zj;, 2;; are the additional coordinates
on J2Y, then the evaluation of (37) yields
OF? oG"

(38) yi = FU + 27, yo = G + 20, yfj :Hzpj+ B Zgj "’ijziq‘Fij'
These formulae coincide with (19) from [3]. This clarifies that (37) is equivalent
to the approach from [3].

Consider W = j4j15l (1, u,v) € VAJ?Y, o : RFx M x M — Y,. We define an
exchange isomorphism 12 : VAT2Y — J2VAY by
(39) LA W) = Grjud™e(r u0).

The construction of Vyaa from VA is described in the following assertion.
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Proposition 9. The following diagram commutes

A —1
JA .2, A
Iy J ty
—1

52‘/.4}/ VVAA j2vAY
Proof. By the definition of VAA and by (27), we have

VAN o(r)) = Gedui(u,v,0(r)),  jhe(r) € VY.

Hence V,k  (Ip* (W) = 411544 (u, v, o(r,u,0)) = i (VAR (W)). O

Remark 4. The groupoidal approach from Remark 3 can be applied to the second
order absolute differentiation as well.
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