Archivum Mathematicum

Jarosław Morchało

Asymptotic properties of solutions of second-order difference equations

Archivum Mathematicum, Vol. 38 (2002), No. 1, 15--26

Persistent URL: http://dml.cz/dmlcz/107815

Terms of use:

© Masaryk University, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ASYMPTOTIC PROPERTIES OF SOLUTIONS OF SECOND-ORDER DIFFERENCE EQUATIONS

JAROSŁAW MORCHAŁO

Abstract

Using the method of variation of constants, discrete inequalities and Tychonoff's fixed-point theorem we study problem asymptotic equivalence of second order difference equations.

1. Introduction

Some asymptotic relationships between the solutions of the second order difference equations

$$
\begin{equation*}
\Delta\left(p_{n-1} \Delta x_{n-1}\right)+q_{n} x_{n}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(p_{n-1} \Delta y_{n-1}\right)+q_{n} y_{n}=f\left(n, y_{n}, \Delta y_{n-1}\right) \tag{2}
\end{equation*}
$$

are studied.
The purpose of this paper is to extend some of the results from [2] and [6] on differences equations.

Analogous problem for differential equations has been considered in paper [11] by J. Kuben.

We suppose that $n \in N\left(n_{0}+1\right)=\left\{n_{0}+1, n_{0}+2, \ldots\right\},\left(n_{0}\right.$ is a fixed nonnegative integer), Δ is the forward difference operator; i.e., $\Delta u_{n}=u_{n+1}-u_{n}$ for any function $u: N\left(n_{0}\right) \rightarrow R(R$ is a real line $), p: N\left(n_{0}\right) \rightarrow(0, \infty), q: N\left(n_{0}\right) \rightarrow$ $R, f: N\left(n_{0}+1\right) \times R \times R \rightarrow R$ is for any $n \in N\left(n_{0}+1\right)$ continuous as a function of $(y, z) \in R \times R$. Hereafter, the term "solution" of (1) or (2) is always used as such real sequence $\left\{u_{n}\right\}$ satisfying (1) or (2) for each $n \in N\left(n_{0}+1\right)$. Such a solution we denote by u_{n}.

Notation 1. Let M_{1} be the set of all solutions of the equation (1) and M_{2} the set of all solutions of the equation (2) that exist for all $n \in N\left(n_{0}+1\right)$.

[^0]Let $\mu: N\left(n_{0}\right) \rightarrow R$. The symbols O and o have the usual meaning: $z_{n}=O\left(\mu_{n}\right)$ denotes that there exists $c_{1}>0$ such that $\left|z_{n}\right| \leq c_{1}\left|\mu_{n}\right|$ for large n, and $z_{n}=o\left(\mu_{n}\right)$ denotes that there exists h_{n} such that $z_{n}=\mu_{n} h_{n}$ and $\lim _{n \rightarrow \infty} h_{n}=0$.
Definition 1. We shall say that the equations (1) and (2) are μ^{0}-asymptotically equivalent if for each $x \in M_{1}$ there exists $y \in M_{2}$ such that

$$
\begin{equation*}
x_{n}-y_{n}=o\left(\mu_{n}^{0}\right) \tag{3}
\end{equation*}
$$

and conversely.
Definition 2. We shall say that the equations (1) and (2) are weakly μ^{1}-asymptotically equivalent if for each $x \in M_{1}$ there exists $y \in M_{2}$ such that

$$
\Delta x_{n}-\Delta y_{n}=o\left(\mu_{n}^{1}\right)
$$

and conversely.
Definition 3. The equations (1) and (2) will be called strongly (μ^{0}, μ^{1})-asymptotically equivalent if for appropriate x_{n} and $y_{n},(3)$ and (3^{\prime}) holds.

The asymptotic equivalence was studied by many authors e.g. [1]-[10]. Our method is similar to that of [9] but is applied to the difference equation.

2. Equivalence of nonhomogeneous linear difference equations

Let in equation (2) $f(n, u, v) \equiv a_{n}$, where $a: N\left(n_{0}+1\right) \rightarrow R$. Then the equation (2) has the form

$$
\begin{equation*}
\Delta\left(p_{n-1} \Delta y_{n-1}\right)+q_{n} y_{n}=a_{n} \tag{4}
\end{equation*}
$$

The method of variation of constants formula gives for each solution y of the equation (4) the relation

$$
\begin{equation*}
y_{n}=c_{1} u_{n}+c_{2} v_{n}-c^{-1} u_{n} \sum_{s=n_{0}+1}^{n} v_{s} a_{s}+c^{-1} v_{n} \sum_{s=n_{0}+1}^{n} u_{s} a_{s} \tag{5}
\end{equation*}
$$

where c_{1}, c_{2} are arbitrary constants, u_{n}, v_{n} are lineary independent solutions of the equation (1),

$$
c=p_{n}\left[u_{n} v_{n+1}-v_{n} u_{n+1}\right] .
$$

Notation 2. If u_{n}, v_{n} are lineary independent solutions of (1) then

$$
y_{n}^{0}=-c u \sum_{s=n_{0}+1}^{n} v_{s} a_{s}-c v_{n} \sum_{s=n+1}^{\infty} u_{s} a_{s}
$$

where $c^{-1}=p_{n} W\left[u_{n}, v_{n}\right], W[\cdot, \cdot]$-the Casorati matrix is a particular solution of (4).

Applying the operator Δ to both sides of relation (5) we obtain

$$
\Delta y_{n}=c_{1} \Delta u_{n}+c_{2} \Delta v_{n}-c^{-1} \Delta u_{n} \sum_{s=n_{0}+1}^{n} v_{s} a_{s}+c^{-1} \Delta v_{n} \sum_{s=n_{0}+1}^{n} u_{s} a_{s}
$$

Theorem 1. The equations (1) and (4) are μ^{0}-asymptotically equivalent (weakly μ^{1}-asymptotically equivalent, strongly $\left(\mu^{0}, \mu^{1}\right)$-asymptotically equivalent) if there exists a solution y_{n}^{0} of the equation (4) such that

$$
y_{n}^{0}=o\left(\mu_{n}^{0}\right), \quad\left(\Delta y_{n}^{0}=o\left(\mu_{n}^{1}\right), \Delta^{i} y_{n}^{0}=o\left(\mu_{n}^{i}\right), i=0,1\right) \quad \text { where } \quad \Delta^{0} y_{n}=y_{n}
$$

Proof. Each solution of the equation (4) can be expressed in the form

$$
y_{n}=x_{n}+y_{n}^{0}
$$

where x_{n} is an arbitrary solution of the equation (1). This implies the assertion of the theorem.
Theorem 2. Assume that

$$
\begin{equation*}
u_{n} \sum_{s=n_{0}+1}^{n} v_{s} a_{s}+v_{n} \sum_{s=n+1}^{\infty} u_{s} a_{s}=o\left(\mu_{n}^{0}\right) \tag{6}
\end{equation*}
$$

or

$$
\Delta u_{n} \sum_{s=n_{0}+1}^{n} v_{s} a_{s}+\Delta v_{n} \sum_{s=n+1}^{\infty} u_{s} a_{s}=o\left(\mu_{n}^{1}\right)
$$

or both (6) and (6^{\prime}) hold. Then the equation (4) has a solution y^{0} with property

$$
y_{n}^{0}=o\left(\mu_{n}^{0}\right) \quad \text { or } \quad \Delta y_{n}^{0}=o\left(\mu_{n}^{1}\right) \quad \text { or } \quad \Delta^{i} y_{n}^{0}=o\left(\mu_{n}^{i}\right) ; \quad i=0,1
$$

Proof. The assertion is an immediate consequence of the relations

$$
\begin{aligned}
y_{n} & =c_{1} u_{n}+c_{2} v_{n}-c^{-1} u_{n} \sum_{s=n_{0}+1}^{n} v_{s} a_{s}-c^{-1} v_{n} \sum_{s=n+1}^{\infty} u_{s} a_{s} \\
\Delta y_{n} & =c_{1} \Delta u_{n}+c_{2} \Delta v_{n}-c^{-1} \Delta u_{n} \sum_{s=n_{0}+1}^{n} v_{s} a_{s}-c^{-1} \Delta v_{n} \sum_{s=n+1}^{\infty} u_{s} a_{s}
\end{aligned}
$$

Theorem 2'. Assume that

$$
u_{n} \sum_{s=n}^{\infty} v_{s} a_{s}-v_{n} \sum_{s=n}^{\infty} u_{s} a_{s}=o\left(\mu_{n}^{0}\right)
$$

or

$$
\Delta u_{n} \sum_{s=n}^{\infty} v_{s} a_{s}-\Delta v_{n} \sum_{s=n}^{\infty} u_{s} a_{s}=o\left(\mu_{n}^{1}\right)
$$

or both $\left(6^{\prime \prime}\right)$ and $\left(6^{\prime \prime \prime}\right)$ hold. Then the equation (4) has a solution y^{0} with property

$$
y_{n}^{0}=o\left(\mu_{n}^{0}\right) \quad \text { or } \quad \Delta y_{n}^{0}=o\left(\mu_{n}^{1}\right) \quad \text { or } \quad \Delta^{i} y_{n}^{0}=o\left(\mu_{n}^{i}\right) ; \quad i=0,1
$$

Corollary 1. If the hypotheses of Theorem 2 (or Theorem 2') holds, then the equations (1) and (4) are μ^{0}-asymptotically equivalent, weakly μ^{1}-asymptotically equivalent or strongly $\left(\mu^{0}, \mu_{1}\right)$ asymptotically equivalent respectively.

3. Equivalence of nonlinear difference equations

In this chapter we shall give sufficient conditions for the types of asymptotic equivalence defined above. We suppose that the following hypotheses hold:
(i) $f: N\left(n_{0}+1\right) \times R \times R \rightarrow R$
(ii) there exists a nonnegative function

$$
F: N\left(n_{0}+1\right) \times R_{+} \times R_{+} \rightarrow R_{+}
$$

which is continuous and nondecreasing with respect two last arguments for each fixed $n \in N\left(n_{0}+1\right)$ such that

$$
\begin{equation*}
|f(n, u, v)| \leq F(n,|u|,|v|) \tag{7}
\end{equation*}
$$

Here R_{+}is the set of all nonnegative real numbers.
Notation 3. Let $r^{i}: N\left(n_{0}\right) \rightarrow(0, \infty),(i=0,1)$ be a positive function such that

$$
\begin{equation*}
\Delta^{i} u_{n}=O\left(r_{n}^{i}\right), \quad \Delta^{i} v_{n}=O\left(r_{n}^{i}\right), \quad(i=0,1) \tag{8}
\end{equation*}
$$

For example, we can take

$$
r^{i}=\left|\Delta^{i} u_{n}\right|+\left|\Delta^{i} v_{n}\right| ; \quad(i=0,1)
$$

Theorem 3. Suppose that (7) holds and let for any $\alpha \geq 0$

$$
\sum_{s=n_{0}}^{\infty}\left|u_{s}\right| F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)<\infty
$$

and

$$
\begin{equation*}
\left|\Delta^{i} u_{n}\right| \sum_{s=n_{0}+1}^{n}\left|v_{s}\right| F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)=o\left(r_{n}^{i}\right), \quad(i=0,1) \tag{i}
\end{equation*}
$$

Let for each solution $y \in M_{2}$,

$$
\begin{equation*}
\Delta^{i} y_{n}=O\left(r_{n}^{i}\right), \quad(i=0,1) \tag{i}
\end{equation*}
$$

and there exist finite limits for $\left\{\Delta^{i} u_{n}\right\},\left\{\Delta^{i} u_{v}\right\}, i=0,1$.
The the equation (1) and (2) are strongly $\left(\mu^{0}, \mu^{1}\right)$-asymptotically equivalent for each pair of functions μ^{0}, μ^{1}, such that for any $\alpha \geq 0$

$$
\begin{gather*}
\left|\Delta^{i} u_{n}\right| \sum_{s=n_{0}+1}^{n}\left|v_{s}\right| F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)+\left|\Delta^{i} v_{n}\right| \sum_{s=n+1}^{\infty}\left|u_{s}\right| F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)=o\left(\mu_{n}^{i}\right) \tag{i}\\
(i=0,1)
\end{gather*}
$$

Proof I. Let $y \in M_{2}$. Consider a nonhomogeneous linear difference equation

$$
\Delta\left(p_{n-1} \Delta z_{n-1}\right)+q_{n} z_{n}=f\left(n, y_{n}, \Delta y_{n-1}\right)
$$

that possesses the solution y_{n}. From assumption of the theorem for appropriate $\alpha>0$ we have

$$
\begin{aligned}
& \left|\Delta^{i} u_{n} \sum_{s=n_{0}+1}^{n} v_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)+\Delta^{i} v_{n} \sum_{s=n+1}^{\infty} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)\right| \\
& \leq\left|\Delta^{i} u_{n}\right| \sum_{s=n_{0}+1}^{n}\left|v_{s}\right| F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)+\left|\Delta^{i} v_{n}\right| \sum_{s=n+1}^{\infty}\left|u_{s}\right| F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)=o\left(\mu_{n}^{i}\right) \\
& (i=0,1)
\end{aligned}
$$

Theorem 2 guarantees the existence of a solution z such that $\Delta^{i} z_{n}=o\left(\mu_{n}^{i}\right)$, $(i=0,1)$. Then $x_{n}=y_{n}-z_{n}$ is the desired solution of the equation (1) that satisfies the order relations (3) and (3').
II. Let $x \in M_{1}$ and consider eqautions

$$
\begin{align*}
y_{n}= & x_{n}-c u_{n} \sum_{s=n_{1}+1}^{n} v_{s} f\left(s, y_{s}, \Delta y_{s-1}\right) \\
& -c v_{n} \sum_{s=n+1}^{\infty} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right) \\
\Delta y_{n}= & \Delta x_{n}-c \Delta u_{n} \sum_{s=n_{1}+1}^{n} v_{s} f\left(s, y_{s}, \Delta y_{s-1}\right) \tag{12}\\
& -c \Delta v_{n} \sum_{s=n+1}^{\infty} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)
\end{align*}
$$

for $n \geq n_{1}$ where $n_{1} \geq n_{0}$ will be choosen later.
We denote by $\Phi=\Phi\left(N_{n_{1}}, R^{2}\right)$ the set all pairs functions defined on $N\left(n_{1}\right)$. For $g \in \Phi$, let $p_{m}(g)=\sup \left\{\left\|g_{n}\right\|: n \in N_{m}\left(n_{1}\right)=\left\{n_{1}, n_{1}+1, \ldots, n_{1}+m\right\}\right\}, m=$ $0,1, \ldots$, here $\|\cdot\|$ is some convenient norm in R^{2}. Then p_{m} is a pseudo-norm and Φ with the topology induced by the family of pseudo-norms $\left\{p_{m}\right\}_{m=1}^{\infty}$ is a Frechet space.

Denote

$$
B_{\rho}\left(n_{1}+1\right)=\left\{\varphi=\left[\varphi^{0}, \varphi^{1}\right] \in \Phi:\left|\varphi_{n}^{i}\right| \leq \rho r_{n}^{i}, i=0,1\right\}, \quad n_{1} \geq n_{0}
$$

There exists $\alpha>0$ such that

$$
\left\lfloor\Delta^{0} x, \Delta x\right\rfloor,\left\lfloor\Delta^{0} u, \Delta u\right\rfloor,\left\lfloor\Delta^{0} v, \Delta v\right\rfloor \in B_{\alpha}\left(n_{0}+1\right) .
$$

Let $\rho \geq 2 \alpha$ and choose n_{1} so that

$$
\sum_{s=n_{1}+1}^{\infty}\left|u_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right) \leq \frac{|c|^{-1}}{2}
$$

and

$$
\left|\Delta^{i} u_{n}\right| \sum_{s=n_{1}+1}^{n}\left|v_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right) \leq \frac{1}{2} \alpha r_{n}^{i}|c|^{-1}
$$

for $n_{1} \geq n_{0},(i=0,1)$.
Let $T: B_{\rho}\left(n_{1}+1\right) \rightarrow B_{\rho}\left(n_{1}+1\right)$ be an operator. $T \varphi=\left[T_{0} \varphi, T_{1} \varphi\right], \varphi=\left\lfloor\varphi^{0}, \varphi^{1}\right\rfloor$ where

$$
\begin{gathered}
\left(T_{i} \varphi\right)(n)=\Delta^{i} x_{n}-c \Delta^{i} u_{n} \sum_{s=n_{1}+1}^{n} v_{s} f\left(s, \varphi_{s}^{0}, \varphi_{s}^{1}\right)-c \Delta^{i} v_{n} \sum_{s=n+1}^{\infty} u_{s} f\left(s, \varphi_{s}^{0}, \varphi_{s}^{1}\right) \\
i=0,1
\end{gathered}
$$

The convergence in Φ is the uniform convergence on every compact subinterval on $\left\langle n_{1}+1, \infty\right)$.

Let $\varphi \in B_{\rho}\left(n_{1}+1\right)$, then

$$
\left|\left(T_{i} \varphi\right)(n)\right| \leq \alpha r_{n}^{i}+\frac{1}{2}|c| \cdot \alpha \cdot|c|^{-1} r_{n}^{i}+\frac{1}{2}|c| \cdot \alpha \cdot|c|^{-1} r_{n}^{i}=2 \alpha r_{n}^{i} \leq \rho r_{n}^{i}
$$

for $n \geq n_{1}+1, i=0,1$. Therefore $T B_{\rho}\left(n_{1}+1\right) \subset B_{\rho}\left(n_{1}+1\right)$.
Next, we will verify that the transformation T is continuous.
Let $\left\{\varphi_{n i}\right\}_{i=1}^{\infty}$ be a sequence of element $B_{\rho}\left(n_{1}+1\right)$ such that $\varphi_{n i} \underset{i \rightarrow \infty}{\longrightarrow} \varphi_{n 0}$ in the Frechet space Φ.

Let $n_{2}>n_{1}+1$ and $\varepsilon>0$. Denote $d=\max r_{n}^{0}$ for $n \in\left\langle n_{1}+1, n_{2}+1\right\rangle$. Choose $n_{3}>n_{2}+1$ such that

$$
\sum_{s=n_{3}}^{\infty}\left|u_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right)<\frac{|c|^{-1} \varepsilon}{8 d}
$$

Put

$$
\Theta=\min \left\{\frac{\varepsilon|c|^{-1}}{2 d \sum_{s=n_{1}+1}^{n_{2}}\left|v_{s}\right|}, \frac{\varepsilon|c|^{-1}}{4 d \sum_{s=n_{1}+1}^{n_{3}}\left|u_{s}\right|}\right\}
$$

Since f is continuous and $\varphi_{n i} \rightarrow \varphi_{n 0}$ convergent uniformly on $\left\langle n_{1}+1, n_{3}\right\rangle$, there exists a positive constant N_{0} such that if $i \geq N_{0}$, then

$$
\left|f\left(n, \varphi_{n i}^{0}, \varphi_{n i}^{1}\right)-f\left(n, \varphi_{n 0}^{0}, \varphi_{n 0}^{1}\right)\right|<\Theta
$$

for $n \in\left\langle n_{1}+1, n_{3}\right\rangle$. Thus

$$
\begin{aligned}
\mid\left(T_{0} \varphi_{i}\right)(n) & -\left(T_{0} \varphi_{0}\right)(n) \mid \\
\leq & |c|\left|u_{n}\right| \sum_{s=n_{1}+1}^{n}\left|v_{s}\right|\left|f\left(s, \varphi_{s i}^{0}, \varphi_{s i}^{1}\right)-f\left(s, \varphi_{s o}^{0}, \varphi_{s o}^{1}\right)\right| \\
& +|c|\left|v_{n}\right| \sum_{s=n+1}^{\infty}\left|u_{s}\right|\left|f\left(s, \varphi_{s i}^{0}, \varphi_{s i}^{1}\right)-f\left(s, \varphi_{s o}^{0}, \varphi_{s o}^{1}\right)\right| \\
\leq & |c|\left|u_{n}\right| \sum_{s=n_{1}+1}^{n}\left|v_{s}\right| \mid f\left(s, \varphi_{s i}^{0}, \varphi_{s i}^{1}\left(-f\left(s, \varphi_{s o}^{0}, \varphi_{s o}^{1}\right) \mid\right.\right. \\
& +|c|\left|v_{n}\right| \sum_{s=n+1}^{n_{3}}\left|u_{s}\right| \mid f\left(s, \varphi_{s i}^{0}, \varphi_{s i}^{1}\left(-f\left(s, \varphi_{s o}^{0}, \varphi_{s o}^{1}\right) \mid\right.\right. \\
& +|c|\left|v_{n}\right| \sum_{s=n_{3}+1}^{\infty}\left|u_{s}\right| \mid f\left(s, \varphi_{s i}^{0}, \varphi_{s i}^{1}\left(-f\left(s, \varphi_{s o}^{0}, \varphi_{s o}^{1}\right) \mid\right.\right. \\
\leq & |c| d \Theta \sum_{s=n_{1}+1}^{n}\left|v_{s}\right|+|c| d \Theta \sum_{s=n+1}^{n_{3}}\left|u_{s}\right|+2|c| d \sum_{s=n_{3}+1}^{\infty}\left|u_{s}\right| F\left(s, r_{s}^{0}, r_{s}^{1}\right)<\varepsilon
\end{aligned}
$$

for $i \geq N_{0}$ and $n \in\left\langle n_{1}+1, n_{2}+1\right\rangle$.
Therefore, the mapping T_{0} is continuous. The same is true for T_{1}. This implies that T is continuous. Since $T B_{\rho}\left(n_{1}+1\right) \subset B_{\rho}\left(n_{1}+1\right)$, then $T B_{\rho}\left(n_{1}+1\right)$ is uniformly bounded for each n.

It suffices to prove that elements of $T B_{\rho}\left(n_{1}+1\right)$ satisfy Cauchy's condition uniformly on $T B_{\rho}\left(n_{1}+1\right)$. In fact, let $\varphi \in B_{\rho}\left(n_{1}+1\right)$ and $n>m \in N\left(n_{1}+1\right)$. Then we have

$$
\begin{aligned}
\mid\left(T_{0} \varphi\right)(n) & -\left(T_{0} \varphi\right)(m) \mid \\
\leq & \left|x_{n}-x_{m}\right|+|c| \mid u_{n} \sum_{s=n_{1}+1}^{n} v_{s} f\left(s, \varphi_{s}^{0}, \varphi_{s}^{1}-u_{m} \sum_{s=n_{1}+1}^{m} v_{s} f\left(s, \varphi_{s}^{0}, \varphi_{s}^{1}\right) \mid\right. \\
& +|c|\left|v_{n} \sum_{s=n+1}^{\infty} u_{s} f\left(x, \varphi_{s}^{0}, \varphi_{s}^{1}\right)-v_{m} \sum_{s=m+1}^{\infty} u_{s} f\left(s, \varphi_{s}^{0}, \varphi_{s}^{1}\right)\right| \\
\leq & |c|\left\{\left|u_{n}\right| \sum_{s=m+1}^{n}\left|v_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right)+\left|u_{n}\right| \sum_{s=n_{1}+1}^{n}\left|v_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right)\right. \\
& \left.+\left|u_{m}\right| \sum_{s=n_{1}+1}^{m}\left|v_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right)+\left|v_{n}\right| \sum_{s=m+1}^{\infty}\left|u_{s}\right| F\left(s, \rho r_{s}^{0}, \rho r_{s}^{1}\right)\right\} .
\end{aligned}
$$

By assumptions of Theorem for given $\varepsilon>0$, there exists $n_{4} \in N\left(n_{1}+1\right)$ such that

$$
\left|\left(T_{0} \varphi\right)(n)-\left(T_{0} \varphi\right)(m)\right|<\varepsilon
$$

for all $n, m \in N\left(n_{4}\right)$.
The same is true for T_{1}. By Ascoli's theorem $T B_{\rho}\left(n_{1}+1\right)$ is relatively compact in Φ. Therefore as $B_{\rho}\left(n_{1}+1\right)$ is convex and closed in $\Phi . T$ has a fixed point in $B_{\rho}\left(n_{1}+1\right)$. This assertion is due to Tychonoff's fixed theorem - see e.g. [3], p. 45. At the same time, we have proved that the system (12) has a solution. The relations (11^{i}) and (12) imply that (3) and (3^{\prime}) hold.

Theorem 4. Suppose that (7) holds and let for any $\alpha \geq 0$

$$
\sum_{s=n_{0}+1}^{\infty}\left(\left|u_{s}\right|+\left|v_{s}\right|\right) F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)<\infty
$$

Let for each $y \in M_{2}\left(10^{i}\right)$ hold.
If F does not depend on u or v, the assumption $\left(10^{i}\right)$ can be omitted. Then the equations (1) and (2) are strongly (μ^{0}, μ^{1})-asymptotically equivalent for each pair of functions μ^{0}, μ^{1} such that for any $\alpha \geq 0$

$$
\sum_{s=n+1}^{\infty}\left(\left|\Delta^{i} u_{n} \cdot v_{s}\right|+\left|u_{s} \cdot \Delta^{i} v_{n}\right|\right) F\left(s, \alpha r_{s}^{0}, \alpha r_{s}^{1}\right)=o\left(\mu_{s}^{i}\right), \quad i=0,1
$$

Proof. In an aim to prove this theorem one should consider the equations

$$
y_{n}=x_{n}+c^{-1} u_{n} \sum_{s=n}^{\infty} v_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)-c^{-1} v_{n} \sum_{s=n}^{\infty} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)
$$

and

$$
\Delta y_{n}=\Delta x_{n}+c^{-1} \Delta u_{n} \sum_{s=n+1}^{\infty} v_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)-c^{-1} \Delta v_{n} \sum_{s=n+1}^{\infty} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)
$$

and follow an analogous way as in the case Theorem 3.

4. Special cases of perturbations

Suppose that

$$
\begin{equation*}
|f(n, u, v)| \leq h_{n}|u| \tag{13}
\end{equation*}
$$

or

$$
|f(n, u, v)| \leq g_{n}|v|
$$

where $h, g N\left(n_{0}\right) \rightarrow\langle 0, \infty)$ are nonnegative.

Lemma 1. Let (8), (13) and $\sup l_{0}\left(r_{n}^{0}\right)^{2} h_{n} \leq \gamma<1$ hold, where l_{0} is a positive constant, then each solution of the equation (2) exists on $N\left(n_{0}\right)$ and

$$
y_{n}=O\left(r_{n}^{0} \exp \left(\sum_{s=n_{0}+1}^{n-1} \frac{l_{0}}{1-\gamma}\left(r_{s}^{0}\right)^{2} h_{s}\right)\right)
$$

Proof. From the relation (5), assumption of theorem and generalised Gronwall's inequality we obtain the needed estimate.
Lemma 2. Let (8) and (13') hold, then each solution of the equation (2) exists on $N\left(n_{0}\right)$ and

$$
\Delta y_{n}=O\left(r_{n}^{1} \exp \left(\sum_{s=n_{0}}^{n-1} \overline{l_{0}} g_{s+1} r_{s+1}^{0} r_{s}^{1}\right)\right)
$$

where $\overline{l_{0}}$ is a positive constant.
Proof. In an aim to prove this Lemma one sholud consider the equation

$$
\begin{aligned}
\Delta y_{n}= & c_{1} \Delta u_{n}+c_{2} \Delta v_{n}-c^{-1} \Delta u_{n} \sum_{s=n_{0}+1}^{n} v_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)+ \\
& +c^{-1} \Delta v_{n} \sum_{s=n_{0}+1}^{n} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)
\end{aligned}
$$

and follow an analogous way as in the case of Lemma 1.
Lemma 3. Assume that
1° (7) holds,
2° for any $\lambda \geq 0, \sum_{n=n_{0}+1}^{\infty} r_{n}^{0} F\left(n, \lambda r_{n}^{0}, \lambda r_{n}^{1}\right)<\infty$,
3° there exists $\lambda_{0}>0$ such that

$$
\begin{equation*}
\sup _{\lambda \in\left\langle\lambda_{0}, \infty\right)} \frac{1}{\lambda} \sum_{n=n_{1}+1}^{\infty} r_{n}^{0} F\left(n, \lambda r_{n}^{0}, \lambda r_{n}^{1}\right)=S<|c| \tag{14}
\end{equation*}
$$

for an appropriate $n_{1} \geq n_{0}$.
Then each solution y of the equation (2) exists for $n \geq n_{1}+1$ and $\Delta^{i} y_{n}=$ $O\left(r_{n}^{i}\right), i=0,1$.
Proof. As

$$
\begin{aligned}
y_{n}= & c_{1} u_{n}+c_{2} v_{n}-c^{-1} u_{n} \sum_{s=n_{0}+1}^{n} v_{s}\left(s, y_{s}, \Delta y_{s-1}\right) \\
& +c^{-1} v_{n} \sum_{s=n_{0}+1}^{n} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta y_{n}= & c_{1} \Delta u_{n}+c_{2} \Delta v_{n}-c^{-1} \Delta u_{n} \sum_{s=n_{0}+1}^{n} v_{s}\left(s, y_{s}, \Delta y_{s-1}\right) \\
& +c^{-1} \Delta v_{n} \sum_{s=n_{0}+1}^{n} u_{s} f\left(s, y_{s}, \Delta y_{s-1}\right)
\end{aligned}
$$

then for $n \in\left\langle n_{1}+1, N^{0}\right), n_{1} \geq n_{0}, N^{0}<\infty$ we have

$$
\left|\Delta^{i} y_{n}\right| \leq K r_{n}^{i}+|c|^{-1} r_{n}^{i} \sum_{s=n_{1}+1}^{n} r_{s}^{0} F\left(s,\left|y_{s}\right|,\left|\Delta y_{s-1}\right|\right), \quad i=0,1
$$

K is a positive constant.
Denote

$$
\begin{equation*}
z_{m}=K|c|+\sum_{s=n_{1}+1}^{m} r_{s}^{0} F\left(s,\left|y_{s}\right|,\left|\Delta y_{s-1}\right|\right), \quad i=0,1 \tag{15}
\end{equation*}
$$

for $m \in\left\langle n_{1}+1, N^{0}\right)$.
Then

$$
\begin{equation*}
\left|\Delta^{i} y_{n}\right| \leq|c|^{-1} r_{n}^{i} z_{m} \quad \text { for } \quad n \in\left\langle n_{1}+1, m\right\rangle, \quad i=0,1 \tag{16}
\end{equation*}
$$

If $z_{m}<|c| \lambda_{0}$ for each $m \in\left\langle n_{1}+1, N^{0}\right)$ then

$$
\begin{equation*}
\left|\Delta^{i} y_{n}\right| \leq \lambda_{0} r_{n}^{i}, \quad n \in\left\langle n_{1}+1, N^{0}\right), \quad i=0,1 \tag{17}
\end{equation*}
$$

If there exists $m_{0} \in\left\langle n_{1}+1, N^{0}\right)$ such that $z_{m_{0}} \geq|c| \lambda_{0}$ then $z_{m} \geq|c| \lambda_{0}$ for $m \in\left\langle m_{0}, N^{0}\right)$. From relation (14) we obtain

$$
\sup _{\left.\lambda \in\rangle \lambda_{0}, \infty\right)} \frac{1}{\lambda} \sum_{s=n_{1}+1}^{m} r_{n}^{0} F\left(n, \lambda r_{s}^{0}, \lambda r_{s}^{1}\right)=S_{1} \leq S<|c|
$$

Put $\lambda=|c|^{-1} z_{m}$ for $m \in\left\langle m_{0}, N^{0}\right)$, then

$$
\sum_{s=n_{1}+1}^{m} r_{n}^{0} F\left(s,|c|^{-1} z_{m} r_{s}^{0},|c|^{-1} z_{m} r_{s}^{1}\right) \leq|c|^{-1} S z_{m}
$$

Now from (15) and (16) we obtain

$$
z_{m} \leq K|c|+|c|^{-1} S z_{m}, \quad m \in\left\langle m_{0}, N^{0}\right)
$$

Therefore

$$
z_{m} \leq \frac{K|c|}{1-|c|^{-1} S}
$$

since $|c|^{-1} S<1$.
Relation (16) implies

$$
\begin{equation*}
\left|\Delta^{i} y_{n}\right| \leq \frac{K}{1-|c|^{-1} S} r_{n}^{i}, \quad \text { for } \quad n \in\left\langle n_{1}+1, m\right), m \in\left\langle m_{0}, N^{0}\right), \quad i=0,1 \tag{18}
\end{equation*}
$$

But this estimate does not depend on m, thus (18) holds for each $n \in\left\langle n_{1}+1, N^{0}\right)$.
As (17) or (18) holds, we get $\Delta^{i} y_{n}(i=0,1)$ are bounded on $\left\langle n_{1}+1, N^{0}\right)$. This is a contradiction and hence necessarily $N^{0}=\infty$. At the same time we have obtained that

$$
\left|\Delta^{i} y_{n}\right|=O\left(r_{n}^{i}\right), \quad i=0,1
$$

Theorem 5. Let the assumptions of Lemma 3 hold. Then the equations (1) and (2) are strongly $\left(r^{0}, r^{1}\right)$-asymptotically equivalent.

Proof. The proof is a consequence of Theorem 4 and Lemma 3.
Using Theorem 4 and Lemmas 1 and 2 we obtain
Theorem 6. In addition to the assumptions of Lemma 1, suppose that

$$
\sum_{n=n_{0}+1}^{\infty}\left(r_{n}^{0}\right)^{2} h_{n}<\infty
$$

Then the equations (1) and (2) are r^{0}-asymptotically equivalent.
Theorem 7. In addition to the assumptions of Lemma 2, suppose that

$$
\sum_{n=n_{0}+1}^{\infty} r_{n}^{0} r_{n}^{1} g_{n}<\infty
$$

Then the equations (1) and (2) are r^{1}-asymptotically equivalent.

References

[1] Brauer, F., Wang, J. S., On the asymptotic relationship between solutions of two systems of ordinary differential equation, J. Differential Equations 6 (1969), 527-543.
[2] Hallam, T. G., Asymptotic relationskips between the solutions of two second order differential equations, Ann. Polon. Math. 24 (1971), 295-300.
[3] Lakshmikantham, V., Leela, S., Differential and Integral Ineqalities, vol. I, New York and London, Academic Press 1969.
[4] Morchało, J., Asymptotic equivalence of Volterra difference systems, Publ. Mat. 39 (1995), 301-312.
[5] Morchało, J., Asymptotic equivalence of difference equations, Math. Slovaca 48 (1998), 57-68.
[6] Morchało, J., Asymptotic equivalence of second-order difference equations, J. Math. Anal. Appl. 238 (1999), 91-100.
[7] Onuchic, N., Relationship among the solutions of two systems or ordinary differential equation, Michigan Math. J. 10 (1963), 129-139.
[8] Ráb, M., Asymptotic relationships between the solutions of two systems of differential equations, Ann. Polon. Math. 30 (1974), 119-124.
[9] Svec, M., Asymptotic relationship between solutions of two systems of differential equations, Czechoslovak Math. J. 24 (99), No. 1 (1974), 44-58.
[10] Talpalaru, P., Asymptotic behaviour of perturbed difference equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Ser. VIIILXIV (1979), 563-571.
[11] Kuben, J., Asymptotic equivalence of second order differential equations, Czechoslovak Math. J. 34 (109) (1984), 189-201.

Institute of Mathematics, Poznan University of Technology
60-965 Poznań, ul. Piotrowo 3a
POLAND
E-mail: Jmorchal@math.put.poznan.pl

[^0]: 2000 Mathematics Subject Classification: 39A10, 34K15.
 Key words and phrases: asymptotic equivalence, difference inequalities.
 Received July 3, 2000.

