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SIMPLICIAL TYPES AND POLYNOMIAL ALGEBRAS

FRANCISCO GÓMEZ

This paper shows that the simplicial type of a finite simplicial complex
K is determined by its algebra A of polynomial functions on the baricentric coordi-
nates with coefficients in any integral domain. The link between K and A is done
through certain admissible matrix associated to K in a natural way. This result was
obtained for the real numbers by I. V. Savel’ev [5], using methods of real algebraic
geometry. D. Kan and E. Miller had shown in [2] that A determines the homotopy
type of the polyhedron associated to K and not only its rational homotopy type as
it was previously proved by D. Sullivan in [6].

§1. Introduction

D. Kan and E. Miller [2] proved that for every finite simplicial complex K and
any unique factorization domain with unit R the Sullivan’s algebra of polynomial
0-forms with coefficients in R, A0

R(K), determines the homotopy type of the asso-
ciated polyhedron |K| and not only its rational homotopy type as was previously
proven by D. Sullivan [6]. Later I. V. Savel’ev, using methods of real algebraic
geometry, proved in a paper published in 1991, [5], that actually one can deduce
from A0

R(K), for R being the real numbers, the whole structure of the simplicial
complex K and not just its homotopy type.

The purpose of this paper is to show by a different method that the use of
the real field is not essential and any integral domain R could be used to recover
from A0

R(K) the simplicial complex K, up to simplicial equivalence, and therefore
contains all the information about the topological type of |K|, see Theorem (3.9).

The link between the finite simplicial complex K and its algebra of polynomial
0-forms A0

R(K) is done here through a certain admissible matrix ϕK , associated
to K in a natural way.

Corollary (3.7) of this paper gives also a more direct proof of how to obtain
Sullivan’s de Rham complex from its 0-forms, see [3], and the Example (3.8) shows
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(FQM0213).
Received July 10, 2000.



28 F. GÓMEZ

that the cohomology of the algebraic de Rham complex of A0
R(K) does not give

the “correct” cohomology of |K|.
In this paper R will be any commutative integral domain with unit and algebras

are supposed to be commutative with a unit which is preserved by morphisms.
Exterior power is denoted by Λ and if A is an R−algebra, ΩR(A) denotes then

the A−module of Kähler differentials, i.e. ker µ/(ker µ)2 where µ : A ⊗R A→ A
is the multiplication.

We have d : A→ ΩR(A) given by da =class of (a⊗ 1− 1⊗ a) and the standard
extension of d to obtain the algebraic de Rham complex on A, (Λ∗AΩR(A), d).

§2. Simplicial complexes and admissible matrices

Let K be a finite simplicial complex with maximal simplices σ 1, . . . , σr and
let us denote by PK the set of simplices appearing as intersections of maximal
simplices of K and so the simplices of K are subsets of members of PK .

Define a partition ΣK of K by especifying that two vertices v and w are in
the same class if and only if for each maximal simplex σ i either {v, w} ⊂ σi or
{v, w} ∩ σi = ∅.

It is clear that ΣK can be regarded as the set of vertices of a simplicial complex
with maximal simplices σ̄ i = {ω ∈ ΣK |ω ⊂ σi}, i = 1, . . . , r. Then ΣΣK = ΣK and
we have simplicial maps f : K → ΣK and g : ΣK → K such that f◦g is the identity
and g ◦ f induces a map homotopic to the identity in the associated polyhedron.
In fact, just define f(v) as the member of ΣK containing v and g(w) ∈ w for all
w ∈ ΣK .

(2.1) Observe that if σ ∈ PK and we consider σ̃ = σ − ∪σi 6⊃σσi, either σ̃ = ∅ or
σ̃ ∈ ΣK and clearly ΣK coincides with the set of nonempty σ̃ for all σ ∈ PK.

The following formula is deduced easily for the number of elements of σ̃

|σ̃| =
∑
ω

(−1)|ω||ω|

where ω in the sum runs through the members of PK of the form σ ∩ σi, for
i = 1, . . . , r and | | denotes number of elements.

(2.2) Define then a matrix ϕK = (aij) of r rows and s columns by especifying that
aij is either 1 or 0 according to ωj being or not a subset of σi.

Here ΣK = {ω1, . . . , ωs}.
We also consider the integer vector nK = (n1, . . . , ns) where ni is the number

of elements of ωi, i = 1, . . . , s.
We say that (nK , ϕK) is an admissible couple for K.

Remarks.
i) The number of vertices of K is n1 + · · ·+ ns
ii) The number of elements of σi is

∑s
j=1 aijnj

iii) The simplices σ ∈ PK are determined by the sequence 〈σ, ω1〉, . . . , 〈σ, ωs〉,
where 〈σ, ωj〉 is 1 or 0 depending on whether or not ωj is a subset of σ.
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iv) It is clear the the couple (nK , ϕK) is determined by K once we have chosen
an order ω1, . . . , ωs of ΣK together with an order σ1, . . . , σr of the set of maxi-
mal simplices of K. Therefore (nK , ϕK) is determined by K up to an arbitrary
permutation of rows of ϕK or any permutation of the components of nK and the
same permutation of the columns of ϕK .

v) If (nK , ϕK) is an admissible couple for K, then the corresponding couple for
the simplicial complex ΣK is (nΣ, ϕΣ), with ϕΣ = ϕK and nΣ = (1, . . . , 1).

vi) The associated polyhedron |K| is not connected if and only if it has an
admissible couple of the form (nK , ϕK) with

ϕK =
(
A 0
0 B

)

(2.3) The following properties of an admissible couple (nK, ϕK) for a simplicial
complex K are clear:

(a) ni are integers greater than 0.
(b) All the numbers aij are either 0 or 1.
(c) Each column contains at least an 1.
(d) No row is obtained from another row by turning some 1‘s into 0‘s.
(e) Any two columns are different.

(2.4) Definition. We say that a couple (n, ϕ), where n = (n1, . . . , ns) and ϕ
is an r × s matrix, is admissible if and only if satisfies the above properties and
two admissible couples are said to be equivalent if and only if one is obtained
from the other by permutation of rows or any permutation of the ni and the same
permutation of the columns of ϕ.

(2.5) Proposition. Admissible couples of equivalent finite simplicial complexes are
equivalent and the map that associates to each equivalence class of finite simplicial
complexes the equivalence class of its admissible couple is a bijection with the set
of equivalence classes of admissible couples.

In fact, let K and K′ be equivalent finite simplicial complexes. Therefore we
have a one to one map f : K → K′ sending the maximal simplices σ1, . . . , σr of
K to the maximal simplices f(σ1), . . . , f(σr) of K′.

Let ΣK = {ω1, . . . , ωs}, then ΣK′ = {f(ω1), . . . , f(ωs)} is the partition corre-
sponding to K′. It is then obvious that K and K′ have equivalent couples.

Suppose now that (n, ϕ) is admissible and consider the following finite simplicial
complex with n = n1 + · · ·+ ns vertices: K = {1, . . . , n}, ΣK = {ω1, . . . , ωs}
with ω1 = {1, . . . , n1}, . . . , ωs = {n1 + · · ·+ns−1 +1, . . . , n} and maximal simplices
σi = ∪{j|aij=1}ωj, i = 1, . . . , r. The number of elements of σi being

∑s
j=1 aijnj .

It is clear that K is a finite complex whose associated admissible matrix is the
given one up to equivalence.



30 F. GÓMEZ

§3. de Rham complexes on a simplicial complex

Let K be a finite simplicial complex with admissible (nK , ϕK) and let R be any
conmutative integral domain with unit.

We may consider K = {1, . . . , n}, n = n1 + · · · + ns, ω1 = {1, . . . , n1}, . . . ,
ωs = {n1 + · · ·+ ns−1 + 1, . . . , n} and the maximal simplices σ i = ∪{j|aij=1}ωj,
i = 1, . . . , r.

If σ is a simplex of K, its j-th face, j ∈ σ, is the simplex ∂ jσ obtained by
deleting j from σ.

Associated to each simplex σ of K we define a ring

Rσ = R[Xi]i∈σ/(
∑
i∈σ

Xi − 1)

and we have face maps ∂j : Rσ → R∂jσ given by sending Xj to zero.
It is clear that each Rσ is a polynomial ring, ∂ j is surjective with kernel the

ideal generated by the class of Xj and the following relations hold

∂i∂j = ∂j∂i ∀ {i, j} ⊂ σ

Define next A0
R(K) as follows: an element f ofA0

R(K) associates to each simplex
σ of K an element f(σ) ∈ Rσ such that f(∂jσ) = ∂j(f(σ)) for all j ∈ σ.

Note that A0
R(K) has an obvious structure of R-algebra. It is the algebra of

polynomial functions on the barycentric coordinates of K with coefficients in R.

We have the algebraic de Rham complex on A0
R(K)

(A∗R(K), d) = (ΛA0
R(K)ΩR(A0

R(K)), d)

and Sullivan’s de Rham complex (Ã∗R(K), d) defined as follows, see chapter 13
of [1]: an element Φ ∈ ÃpR(K), p ≥ 0, is a family {Φσ}σ∈K such that Φσ ∈
ΛpRσΩR(Rσ) and Ω(∂i)(Φσ) = Φ∂iσ for each face map ∂i : Rσ → R∂iσ, where
Ω(∂i) is the induced map

Ω(∂i) : ΛRσΩR(Rσ)→ ΛR∂iσΩR(R∂iσ) .

It is obvious that Ã0
R(K) = A0

R(K).

We also have a natural homomorphism of commutative graded differential al-
gebras

ϕ : A∗R(K)→ Ã∗R(K)

given by
ϕ(Φ)(σ) = Ω(ρKσ )(Φ) ∈ ΛpRσΩR(Rσ)

for any simplex σ of K and Φ ∈ ApR(K).
Here, ρKσ : A0

R(K)→ Rσ is the restriction epimorphism, ρKσ (f) = f(σ), and

Ω(ρKσ ) : ApR(K) → ΛpRσΩR(Rσ)
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is the corresponding induced map.
It is easy to find examples showing that ϕ : A∗R(K) → Ã∗R(K) is not injective

in general, but we have the following result.

(3.1) Proposition. If K is a finite simplicial complex ϕ : A∗R(K) → Ã∗R(K)
defined above, is an epimorphism.

To prove (3.1) we need the following lemma.

(3.2) Extension lemma (see Proposition 13.8 of [1]). Let σ = (1, . . . ,m) be an
m − 1-simplex and suppose we are given Φi ∈ ΛpR∂iσΩR(R∂iσ), i = 1, . . . ,m, such
that

Ω(∂i)(Φj) = Ω(∂j)(Φi) , {i, j} ⊂ {1, . . . ,m} .
There exists then Φ ∈ ΛpRσΩR(Rσ) such that Ω(∂i)(Φ) = Φi, i = 1, . . . ,m.

Proof. The proof is that of Proposition 13.8 given in [1], except that one has
to consider for a certain step in the proof the ring of fractions of Rσ by the
multiplicatively closed subset {(1− X̄m)q}q≥0 and use the fact that formation of
fractions commutes with exterior power and Kähler differentials. �

(3.3) Proof of Proposition (3.1). Let ∆n−1 be the simplicial complex of all
finite subsets of the set of vertices of K Thus K is a subcomplex of ∆n−1.

An abvious step by step procedure and induction on the dimension of the
simplices, using the extension lemma (3.2), shows that the restriction map ρ̄K :
A∗R(∆n−1)→ Ã∗R(K) is surjective.

This implies that ϕ is also surjective by the commutativity of the diagram

A∗R(∆n−1)
ρK

ρ̄K

A∗R(K)
ϕ

Ã∗R(K)

where ρK is induced by the restriction A0
R(∆n)→ A0

R(K). �

(3.4) Proposition. The kernel of ρK : A0
R(∆n−1) → A0

R(K) is generated by the
set of elements

∏
i∈σ X̄i for all simplices σ of ∆n−1 not being simplices of K.

Proof. If σ is a simplex of ∆n−1 we write Xσ =
∏
i∈σXi and denote by X̄σ =∏

i∈σ X̄i its class in A0
R(∆n−1).

It is clear that the elements X̄σ, for all simplices σ of ∆n−1 that are not simplices
of K, belong to the kernel of ρK : A0

R(∆n−1)→ A0
R(K).

It remains to be proved that the above elements X̄σ generate ker ρK and this
is done by induction on the number of maximal simplices of K. �

(3.5) Corollary. The algebra A0
R(K) is obtained directly from the admissible

couple (nK , ϕK), up to isomorphism, as follows:

A0
R(K) = R[X1, . . . , Xn]/(X1 + · · ·+Xn − 1, (Xα

t )α,t)
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where n = n1 + · · ·+ ns, Xα
t = Xα1

t1 . . .Xαs
ts , α = α1, . . . , αs is a sequence with

each αi being either 0 or 1, 1 ≤ t1 ≤ n1; . . . ;n1 + . . . ns−1 + 1 ≤ ts ≤ n, and α
and t satisfy the following two conditions:

a) For all i ∈ {1, . . . , r} there exists ρ(i) ∈ {1, . . . , s} such that αρ(i) = 1 but
aiρ(i) = 0

b) If αj = 1 there exists i ∈ {1, . . . , r} such that aik = 0, k 6= j ⇒ αk = 0

Proof. For each α, t as above, define a simplex σ of ∆n−1 by

σ ∩ ωk =
{ {tk} if αk = 1

∅ if αk = 0

Condition (a) tells us that σ is not contained in any of the maximal simplices
σi of K, i.e. σ is not a simplex of K, and condition (b) says that σ is minimal
among the simplices of ∆n−1 that are not simplices of K, i.e. we obtain a simplex
of K by deleting any vertex of σ.

The proof of this corollary is now an obvious consequence of our previous propo-
sition. �

(3.6) Theorem. Let K be a finite simplicial complex, σ1, . . . , σr the maximal
simplices of K and pi, i = 1, . . . , r the kernels of the restriction epimorphisms
ρKσi : A0

R(K)→ Rσi . Then :

a) For any homomorphism of algebras µ : A0
R(K)→ P , P being any polynomial

algebra on R with a finite number of variables, there exists i ∈ {1, . . . , r} and a
homomorphism of algebras µi : A0

R(K)/pi → P such that µ = µi ◦ πi, where
πi : A0

R(K)→ A0
R(K)/pi is the canonical projection.

b) p1, . . . ,pr is the set of minimal ideals of A0
R(K) having the property that

the quotients A0
R(K)/pi are polynomial algebras on R with a finite number of

variables.

c) For all I ⊂ {1, . . . , r},
∑
i∈I pi = ker ρKσI if σI = ∩i∈Iσi 6= ∅ and

∑
i∈I pi =

A0
R(K) if ∩i∈Iσi = ∅.
d) For any couple of subsets I, J of {1, . . . , r},

∑
i∈I pi =

∑
j∈J pj if and only

if ∩i∈Iσi = ∩j∈Jσj.

Observe that c) and d) establishes a one to one correspondence from the set of
simplices of K appearing as intersections of maximal simplices σ1, . . . , σr and the
set of ideals of A0

R(K) that are sums of minimal ideals p1, . . . ,pr.

Proof. a) Let ∆n−1 be the simplicial complex of all finite subsets of K0 and
consider the algebra homomorphism

µ ◦ ρK : A0
R(∆n−1) = R[X1, . . . , Xn]/(

n∑
i=1

Xi − 1)→ P .

Define a simplex σ of ∆n−1 by i ∈ σ ⇔ µ(ρK(X̄i)) 6= 0
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Observe that σ is not empty : otherwise, µ(ρK (X̄i)) = 0, i = 1, . . . , n and so

0 = µ(ρK (
n∑
i=1

X̄i)) = µ(ρK(1)) = 1 ,

which is a contradiction.

Moreover, σ is a simplex of K. In fact, if σ were not so, Proposition (3.4) would
imply that ρK (

∏
i∈σ X̄i) = 0. But then

∏
i∈σ µ(ρK(X̄i)) = 0 and, since R has no

zero-divisors, we would have µ(ρK (X̄i)) = 0 for some i ∈ σ, which contradicts the
definition of σ.

Consider then the unique algebra homomorphism µ̄ making commutative the
following diagram

A0
R(∆n−1)

ρσ

ρK

Rσ
µ̄

A0
R(K)

µ
P

Note that µ̄ is well defined because, by definition of σ,

µ(ρK (
∑
i∈σ

X̄i)) = µ(ρK(
n∑
i=1

X̄i)) = 1 .

On the other hand the following diagram commutes

A0
R(K)

ρKσ

µ

Rσ
µ̄

P

In fact,
µ̄ ◦ ρKσ ◦ ρK = µ̄ ◦ ρσ = µ ◦ ρK

and since ρK : A0
R(∆n−1)→ A0

R(K) is surjective, we have µ̄ ◦ ρKσ = µ.

Choose now any maximal simplex σ i of K such that σ ⊂ σi and let µi be the
composite

A0
R(K)/pi

∼=−→Rσi −→ Rσ
µ̄−→P

Clearly we have µi ◦ πi = µ as desired.

b) Let p be any ideal of A0
R(K) such that the quotient A0

R(K)/p is isomorphic
to some polynomial algebra on R with a finite number of variables.

By (a), there exist j ∈ {1, . . . , r} and µj : A0
R(K)/pj → A0

R(K)/p, homomor-
phism of algebras, such that the projection A0

R(K)→ A0
R(K)/p is the composite

A0
R(K)

ρKσj−→A0
R(K)/pj

µj−→A0
R(K)/p

This shows that pj ⊂ p.
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On the other hand if pi ⊂ pj for i, j in {1, . . . , r}, we have then σj ⊂ σi. In fact
if there is a k ∈ σj − σi we have

ρKσi (ρK (X̄k)) = ρσi (X̄k) = 0 ,

but
ρKσj (ρK (X̄k)) = ρσj (X̄k) 6= 0 .

Therefore ρK (X̄k) ∈ pi and ρK (X̄k) /∈ pj, which contradicts the hypothesis
pi ⊂ pj.

Thus σi ⊂ σj, and since σi and σj are maximal simplices of K, we have σi = σj
and so pi = pj.

c) For any simplex σ of K we have ker ρKσ = ρK (ker ρσ) because of the relation
ρKσ ◦ ρK = ρσ and the surjectivity of ρK .

According to Proposition (3.4), the set of elements X̄i ∈ A0
R(∆n−1), for all

i /∈ σ, generate ker ρσ and so the elements ρK (X̄i) ∈ A0
R(K), for all i /∈ σ,

generate ker ρKσ .
If we take now σ = σI = ∩i∈Iσi for some I ⊂ {1, . . . , r} and we assume σI 6= ∅,

then we have that ker ρKσI is generated by the elements ρK(X̄i) for all i /∈ σI, i.e.

ker ρKσI =
∑
i∈I

ker ρKσi =
∑
i∈I

pi .

Finally, if ∩i∈Iσi = ∅, for any i ∈ {1, . . . , n} there exists j ∈ I such that i /∈ σj.
Therefore ρK (X̄i) ∈ ker ρKσj = pj and so

∑
i∈I pi = A0

R(K).

d) If σI = σJ , then ker ρKσI = ker ρKσJ and so
∑
i∈I pi = ker ρKσI = ker ρKσJ =∑

j∈J pj.

Conversely if
∑
i∈I pi =

∑
j∈J pj, then ker ρKσI = ker ρKσJ . Assume k is an

element of σI − σJ , then ρK (X̄k) /∈ ker ρKσI . However ρK(t̄k) ∈ ker ρKσJ , which is
a contradiction. Hence σI = σJ . �
(3.7) Corollary. For any finite simplicial complex K and any ring R the algebra
of Sullivan 0-forms A0

R(K) determines the Sullivan’s de Rham complex Ã∗R(K).

Proof. Consider the epimorphism ϕ : A∗R(K) → Ã∗R(K) and we have to show
that its kernel can be deduced directly from A0

R(K). �

Let p1, . . . ,pr be the set of minimal ideals of A0
R(K) having the property that

the quotients A0
R(K)/pi are polynomial algebras on R with a finite number of

variables. This set is completly determined by the algebra A0
R(K).

But Theorem (3.6) says, in particular, that {p1, . . . ,pr} = {ker ρKσ1
, . . . , kerρKσr},

where σ1, . . . , σr are the maximal simplices of K.
Therefore we have

ker ϕ = ∩si=1 ker Ω(ρKσi ) = ∩si=1 ker Ω(πi) ,
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where πi : A0
R(K) → A0

R(K)/pi are the canonical projections and Ω(πi) the
corresponding induced maps for the algebraic de Rham complexes.

It is interesting to observe, as the following example shows, that ϕ does not
induce in general an isomorphism in cohomology. Therefore, to compute the coho-
mology of Ã∗R(K), which for R being a field of characteristic zero is the “correct”
cohomology of K, one cannot simply compute the cohomology of the algebraic De
Rham complex of A0

R(K).

(3.8) Example. Let K be the simplicial complex having three 0-simplices 1, 2, 3
and three 1-simplices 12, 23, 31. The geometric realization of K is, of course, S1.
A0
R(K) is the quotient of the polynomial ring R[X1, X2, X3] by the ideal gen-

erated by X1X2X3, X1 + X2 + X3 − 1.
Then

ϕ∗ : H1(A∗R(K))→ H1(Ã∗R(K))

is not an isomorphism.

In fact, one checks easily that Φ = X̄2
1 X̄

2
2dX̄3 satisfies: Φ ∈ ker ϕ, dΦ = 0

and Φ 6= 0. In particular, Φ represents a cohomology class in H1(A∗R(K)) which
applies to 0 in H1(Ã∗R(K)).

However, if we had Φ = df for some f ∈ A0
R(K) then one deduces by applying

ϕ that d̃f = 0, where d̃ denotes the differential in Ã∗R(K), and so f ∈ R and
therefore Φ = df = 0, which is not true.

(3.9) Theorem. A finite simplicial complex K is determined up to simplicial
equivalence either by its associated admissible couple (nK, ϕK) or by its algebra of
polynomial functions with coefficient R on the baricentric coordinates of K.

Proof. Observe that as a consequence of Theorem (3.6) we deduce from the alge-
bra A = A0

R(K) the set of minimal ideals p1, . . . ,pr with respect to the property
that the quotients A/pi are polynomial algebras and so we have the set PA of
ideals appearing as sum of some of the ideals p1, . . . ,pr and in particular for such
ideals p we know the number n(p)−1 of variables of the polynomial algebra A/p.

For each p ∈ PA use (2.1) to define the number

np =
∑
q

(−1)n(q)n(q)

where q in the sum runs through the members of PA of the form p + pi, for
i = 1, . . . , r.

Let q1, . . . ,qs be all the members of PA such that nqi > 0 and define numbers
ni = nqi , i = 1, . . . , s and aij = 1 or 0 depending on whether pi ⊂ qj or pi 6⊂ qj.

Therefore we obtain an admissible couple (n, ϕ) which clearly coincides with
(nK , ϕK).

Finally we use Proposition (2.5) to complete the proof of our theorem. �
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