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ON A QUESTION OF HONG XUN YI

INDRAJIT LAHIRI

Abstract. In the paper we prove a uniqueness theorem for meromorphic
functions which provides an answer to a question of H. X. Yi.

1. Introduction and Definitions

Let f be a nonconstant meromorphic function defined on the open complex
plane C . Let S be a set of distinct complex numbers and Ef(S) = ∪a∈S{z :
f(z) − a = 0}, where a zero of f − a of multiplicity m is repeated m times in
Ef(S).

Gross [3] proved that there exist three finite sets Sj(j = 1, 2, 3) such that any
two entire functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1, 2, 3 must be
identical.

For meromorphic functions Yi [11, 12] proved the following two theorems.

Theorem A [11]. Let S1 = {z : zn − 1 = 0}, S2 = {a, b}, S3 = {∞}, where
n(≥ 7) be a positive integer, a and b be constants such that ab 6= 0, an 6= bn,
a2n 6= 1, bn 6= 1 and anbn 6= 1. If f and g are nonconstant meromorphic functions
satisfying Ef (Sj) = Eg(Sj) for j = 1, 2, 3 then f ≡ g.

Theorem B [12]. Let S = {z : zn+azn−m+b = 0}, where n and m are two positive
integers such that m ≥ 2, n ≥ 2m+ 7 with n and m having no common factor, a
and b be two nonzero constants such that zn +azn−m+ b = 0 has no multiple root.
If f and g are nonconstant meromorphic functions satisfying Ef(S) = Eg(S) and
Ef({∞}) = Eg({∞}) then f ≡ g.

One may note that the range set S in Theorem B contains at least eleven
elements which corresponds to m = 2.

In [12] Yi asked the following question: “What can be said if m = 1 in Theorem
B?”

To answer this question Yi [12] proved the following theorem.
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Theorem C [12]. Let S = {z : zn + azn−1 + b = 0}, where n(≥ 9) be a positive
integer and a, b be two nonzero constants such that zn + azn−1 + b = 0 has no
multiple root. If f and g are two nonconstant meromorphic functions such that
Ef(S) = Eg(S) and Ef({∞}) = Eg({∞}) then either f ≡ g or

f ≡ −aH(Hn−1 − 1)
Hn − 1

and g ≡ −a(Hn−1 − 1)
Hn − 1

,

where H is a nonconstant meromorphic function.

Since one can verify that [12] H ≡ f/g, Theorem C is not much significant.
Lahiri [5] proved the following result which provides an answer to the question

of Yi.

Theorem D [5]. Let S = {z : zn + azn−1 + b = 0}, where n(≥ 8) be a positive
integer and a, b be two nonzero constants such that zn + azn−1 + b = 0 has no
multiple root. If f and g are two nonconstant meromorphic functions having no
simple pole such that Ef (S) = Eg(S) and Ef({∞}) = Eg({∞}) then f ≡ g.

Recently Fang and Lahiri [2] improved Theorem D and proved the following
result.

Theorem E [2]. Let S = {z : zn + azn−1 + b = 0}, where n(≥ 7) be a positive
integer and a, b be two nonzero constants such that zn + azn−1 + b = 0 has no
multiple root. If f and g are two nonconstant meromorphic functions having no
simple pole such that Ef (S) = Eg(S) and Ef({∞}) = Eg({∞}) then f ≡ g.

Considering S = {z : z7 − z6 − 1 = 0} and

f =
ez + e2z + · · ·+ e6z

1 + ez + e2z + · · ·+ e6z
and g =

1 + ez + e2z + · · ·+ e5z

1 + ez + e2z + · · ·+ e6z

it is verified that for the validity of Theorem E f and g must not have any simple
pole. We further note that for these functions Θ(∞; f) = Θ(∞; g) = 0.

If two functions f and g have no simple pole then clearly Θ(∞; f)+Θ(∞; g) ≥ 1.
In the paper we show that if Θ(∞; f)+Θ(∞; g) > 1 then Theorem E remains valid
even if f and g posses simple poles. Also we relax the nature of sharing the sets in
Theorem E. To this end we explain the notion of weighted sharing as introduced
in [6, 7].

Definition 1. [6, 7] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then zo is a
zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with
multiplicity m(≤ k) and zo is a zero of f − a with multiplicity m(> k) if and only
if it is a zero of g− a with multiplicity n(> k) where m is not necessarily equal to
n.
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We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or
(a,∞) respectively.

Definition 2. [6] For S ⊂ C ∪{∞}, we define Ef(S, k) asEf(S, k) = ∪a∈SEk(a; f),
where k is a nonnegative integer or infinity.

Clearly Ef(S) = Ef(S,∞).

Definition 3. [6] If s is a positive integer, we denote by N (r, a; f |= s) the count-
ing function of those a-points of f whose multiplicity is s, where each a-point is
counted according to its multiplicity.

Definition 4. [6] If s is a positive integer, we denote by N (r, a; f |≥ s) the count-
ing function of those a-points of f whose multiplicities are greater than or equal
to s, where each a-point is counted only once.

Definition 5. [1, 6, 8] If s is a nonnegative integer, we denote by Ns(r, a; f) the
counting function of a-points of f where an a-point with multiplicitym is counted
m times if m ≤ s and s times if m > s.

We put N∞(r, a; f) ≡ N (r, a; f).

Definition 6. [6] Let f, g share a value a IM. We denote by N ∗(r, a; f, g) the
counting function of those a-points of f whose multiplicities are different from
multiplicities of the corresponding a-points of g, where each a-point is counted
only once.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).
In the paper we do not explain the standard notations and definitions of the

value distribution theory as those are available in [4, 10]. Unless otherwise stated
throughout the paper we denote by f, g two nonconstant meromorphic functions.

Following is the main result of the paper which provides an answer of the
question of Yi [12].

Theorem 1. Let S = {z : zn +azn−1 + b = 0}, where n(≥ 7) be a positive integer
and a, b be two nonzero constants such that zn+azn−1+b = 0 has no multiple root.
If Θ(∞; f) + Θ(∞; g) > 1 and Ef(S, 2) = Eg(S, 2), Ef({∞},∞) = Eg({∞},∞)
then f ≡ g.

2. Lemmas

In this section we discuss some lemmas which will be required in the sequel.
Also we denote by H a meromorphic function defined as follows

H =
(
f ′′

f ′
− 2f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
.

Lemma 1. If f, g share (1, 1) and H 6≡ 0 then

N (r, 1; f |= 1) = N (r, 1; g |= 1) ≤ N (r,H) + S(r, f) + S(r, g) .
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Proof. Since f , g share (1, 1), it follows that a simple 1-point of f is a simple
1-point of g and conversely. Let zo be a simple 1-point of f and g. Then in some
neighbourhood on zo we get by a simple calculation

H(z) = (z − zo)φ(z) ,

where φ is analytic at zo.
Hence by the first fundamental theorem and Milloux theorem ([4], p. 55) we

get

N (r, 1; f |= 1) ≤ N (r, 0;H) ≤ N (r,H) + S(r, f) + S(r, g) ,

from which the lemma follows because N (r, 1; f |= 1) = N (r, 1; g |= 1). This
proves the lemma.

Lemma 2. Let f , g share (1, 0), (∞,∞) and H 6≡ 0. Then

N (r,H) ≤ N(r, 0; f |≥ 2) +N (r, 0; g |≥ 2) +N∗(r, 1; f, g)

+No(r, 0; f ′) + No(r, 0; g′) ,

where No(r, 0; f ′) is the reduced counting function of those zeros of f′ which are
not the zeros of f(f − 1) and No(r, 0; g′) is similarly defined.

Proof. One can easily verify that possible poles of H occur at (i) multiple zeros
of f , g; (ii) zeros of f −1, g−1; (iii) zeros of f ′ which are not the zeros of f(f −1);
and (iv) zeros of g′ which are not the zeros of g(g − 1).

Let zo be a zero of f − 1 and g − 1 with multiplicities m and n respectively.
Then in some neighbourhood of zo we get

H(z) =
(m − n)φ(z)

z − zo
+ ψ(z) ,

where φ, ψ are analytic at zo and φ(zo) 6= 0.
This shows that if m = n then zo is not a pole of H and if m 6= n then zo is a

simple pole of H. Since all the poles of H are simple, the lemma is proved.

Lemma 3. If f , g share (1, 2) then

No(r, 0; g′) +N (r, 1; g |≥ 2) + N∗(r, 1; f, g)

≤ N(r,∞; g) + N (r, 0; g) + S(r, g) .

Proof. Remembering the definition of N o(r, 0; g′) and noting that N∗(r, 1; f, g) ≤
N (r, 1; g |≥ 3) because f , g share (1,2), we get

No(r, 0; g′) +N (r, 1; g |≥ 2) + N∗(r, 1; f, g) + N (r, 0; g)−N (r, 0; g)(1)

≤ No(r, 0; g′) +N (r, 1; g |≥ 2) +N (r, 1; g |≥ 3)

+N (r, 0; g)−N (r, 0; g)

≤ N (r, 0; g′) .
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By the first fundamental theorem and Milloux theorem ([4], p. 55)

N (r, 0; g′) ≤ N (r, 0;
g′

g
) +N (r, 0; g)−N (r, 0; g)(2)

≤ N (r,
g′

g
) + N (r, 0; g)−N (r, 0; g) + S(r, g)

= N (r,∞; g) +N (r, 0; g) + N (r, 0; g)−N (r, 0; g) + S(r, g)

= N (r,∞; g) +N (r, 0; g) + S(r, g) .

Now the lemma follows from (1) and (2). This proves the lemma.

Lemma 4. [9] Let P (f) =
∑n
j=0 ajf

j , where ao, a1, . . . , an(6≡ 0) are such that
T (r, aj) = S(r, f) for j = 0, 1, 2, . . . , n. Then

T (r, P (f)) = nT (r, f) + S(r, f) .

Lemma 5. If f , g share (∞, 0) then for n ≥ 2

fn−1(f + a)gn−1(g + a) 6≡ b2 ,
where a, b are finite nonzero numbers.

Proof. If possible let

fn−1(f + a)gn−1(g + a) ≡ b2 .(3)

If f and g have no pole, from (3) it follows that f has no zero and −a-point, which
is impossible.

If zo is a pole of f , by (3) it follows that zo is either a zero or an −a-point of g
and this contradicts the fact that f , g share (∞, 0). This proves the lemma.

Lemma 6. If Θ(∞; f) + Θ(∞; g) > 1 then for n ≥ 6

fn−1(f + a) ≡ gn−1(g + a)

implies f ≡ g, where a is a finite nonzero number.

Proof. Let

fn−1(f − 1) ≡ gn−1(g − 1) .(4)

and suppose f 6≡ g. We consider two cases:
(a) y = g/f is a constant. Then from (4) it follows that y 6= 1, yn−1 6= 1, yn 6= 1
and

f ≡ −a1− yn−1

1− yn = constant,

which leads to a contradiction.
(b) y = g/f is not a constant. We can rewrite f ≡ −a1−yn−1

1−yn in the form

f ≡ a

(
yn−1

1 + y + y2 + · · ·+ yn−1
− 1
)
.(5)
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From (5) we get by the first fundamental theorem and Lemma 4

T (r, f) = T (r,
n−1∑
j=0

1
yj

) + S(r, y)

= (n− 1)T (r,
1
y

) + S(r, y)

= (n− 1)T (r, y) + S(r, y) .

Now we note that any pole of y does not contribute any pole of {yn−1/
∑n−1
j=1 y

j}−
1. So from (5) it follows that

n−1∑
k=1

N (r, uk; y) ≤ N (r,∞; f) ,

where uk = exp(2kπi
n ), for k = 1, 2, . . . , n− 1.

By the second fundamental theorem we get

(n − 3)T (r, y) ≤
n−1∑
k=1

N (r, uk; y) + S(r, y)(6)

≤ N (r,∞; f) + S(r, y)

< (1 −Θ(∞; f) + ε)T (r, f) + S(r, y)

= (n − 1)(1− Θ(∞; f) + ε)T (r, y) + S(r, y) ,

where ε(> 0).
Again putting y1 = 1

y , noting that T (r, y) = T (r, y1) + O(1) and proceeding as
above we get

(n− 3)T (r, y) ≤ (n− 1)(1−Θ(∞; g) + ε)T (r, y) + S(r, y) ,(7)

where ε(> 0).
From (6) and (7) we get in view of the given condition

2(n− 3)T (r, y) ≤ (n − 1)(2− Θ(∞; f)− Θ(∞; g) + 2ε)T (r, y) + S(r, y)

< (n − 1)(1 + 2ε)T (r, y) + S(r, y) ,

which implies a contradiction for all sufficiently small ε(> 0) because n ≥ 6.
Hence f ≡ g and this completes the proof of the lemma.

3. Proof of Theorem 1

Let F = −1
b
fn−1(f + a) and G = −1

b
gn−1(g+ a). We first show that following

inequality does not hold:

T (r) ≤ N2(r, 0;F ) + N2(r, 0;G) + N (r,∞;F ) + N (r,∞;G)(8)

+ S(r, F ) + S(r,G) ,

where T (r) = max{T (r, F ), T (r,G)}.
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By Lemma 4 we see that

T (r, F ) = nT (r, f) + S(r, f) and T (r,G) = nT (r, g) + S(r, g) .(9)

Now

N2(r, 0;F ) +N2(r, 0;G) +N (r,∞;F ) + N(r,∞;G) + S(r, F ) + S(r,G)

≤ 2N (r, 0; f) +N2(r, 0; f + a) + 2N (r, 0; g) +N2(r, 0; g+ a)

+N (r,∞; f) +N (r,∞; g) + S(r, F ) + S(r,G)

< 3T (r, f) + 3T (r, g) + {1−Θ(∞; f) + ε}T (r, f)

+ {1− Θ(∞; g) + ε}T (r, g) + S(r, F ) + S(r,G) ,

where ε(> 0) is given.
In view of (9) and the given condition we get

N2(r, 0;F ) +N2(r, 0;G) +N (r,∞;F ) + N(r,∞;G) + S(r, F ) + S(r,G)

<
1
7
{8−Θ(∞; f) − Θ(∞; g) + 2ε}T (r) + S(r, F ) + S(r,G)

= (1 − α)T (r) + S(r, F ) + S(r,G) ,

where α(> 0) and ε(> 0) are so chosen that 7α = Θ(∞; f) + Θ(∞; g)− 1− 2ε
> 0. This shows that (8) does not hold. Let

H =
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

We note that F , G share (1, 2) and (∞,∞) because Ef (S, 2) = Eg(S, 2) and
Ef({∞},∞) = Eg({∞},∞).

Let H 6≡ 0. Then by Lemma 1, Lemma 2 and Lemma 3 we obtain

N (r, 1;F |= 1) ≤ N (r, 0;F |≥ 2) +N (r, 0;G |≥ 2) + N(r,∞;G)(10)

+N (r, 0;G)−N (r, 1;G |≥ 2) + No(r, 0;F ′) + S(r,G) .

By the second fundamental theorem we get

T (r, F ) ≤ N (r,∞;F ) + N (r, 0;F ) +N (r, 1;F )(11)

−N (r, 0;F ′) + S(r, F ) .

Since F , G share (1, 2) we see that

N (r, 1;F ) = N (r, 1;F |= 1) +N (r, 1;F |≥ 2)(12)

= N (r, 1;F |= 1) +N (r, 1;G |≥ 2) .

From (10), (11) and (12) we get

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N (r,∞;F )(13)

+N (r,∞;G) + S(r, F ) + S(r,G) .

Similarly we obtain

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) +N (r,∞;F )(14)
+N (r,∞;G) + S(r, F ) + S(r,G) .
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We see that (13) and (14) together imply (8) which does not hold. Hence H ≡ 0
and so

F ′′

F ′
− 2F ′

F − 1
≡ G′′

G′
− 2G′

G− 1
i.e.,

(logF ′)′ − (2 log(F − 1))′ ≡ (logG′)′ − (2 log(G− 1))′ .

From this equation we get

F ≡ AG+ B

CG+D
,(15)

where A,B,C,D are complex numbers such that AD − BC 6= 0.
From (15) it follows that

T (r, F ) = T (r,G) + O(1) .(16)

We now consider the following cases.

Case I Let AC 6= 0. Then

F − A

C
≡
B − AD

C

CG+ D

and so by the second fundamental theorem we get

T (r, F ) ≤ N (r, 0;F ) +N (r,∞;F ) + N (r, A/C;F ) + S(r, F )

= N (r, 0;F ) +N (r,∞;F ) + N (r,∞;G) + S(r, F ) .

This by (16) implies (8) which does not hold.

Case II Let AC = 0. Since AD − BC 6= 0, it follows that A and C are not
simultaneously zero.

Let A = 0. Then from (15) we get

G+
D

C
≡ B

CF
,(17)

where BC 6= 0.
If D 6= 0, from (17) we get by the second fundamental theorem

T (r,G) ≤ N (r, 0;G) +N (r,∞;F ) +N (r,−D/C;G) + S(r,G)

= N (r, 0;G) +N (r,∞;G) + N(r,∞;F ) + S(r,G) .

This by (16) implies (8) which does not hold.
Let D = 0. Then from (17) we get

FG ≡ B

C
.(18)

Since F , G share (∞,∞), it follows from (18) that F has no zero and pole. Hence
there exists zo ∈ C such that F (zo) = G(zo) = 1 because F , G share (1, 2). So
from (18) we get B

C
= 1 and so FG ≡ 1 i.e.

fn−1(f + a)gn−1(g + a) ≡ b2
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which is impossible by Lemma 5.
Let C = 0. Then from (15) we get

F ≡ A

D
G+

B

D
,(19)

where AD 6= 0.
If B 6= 0, from (19) we get by the second fundamental theorem

T (r, F ) ≤ N (r, 0;F ) + N (r,∞;F ) +N (r,B/D;F ) + S(r, F )

= N (r, 0;F ) + N (r,∞;F ) +N (r, 0;G) + S(r, F ) .

This by (16) implies (8) which does not hold.
Let B = 0. Then from (19) we get

F ≡ AG

D
.(20)

If F has no 1-point, by the second fundamental theorem we get

T (r, F ) ≤ N(r, 0;F ) +N (r,∞;F ) + S(r, F ) .

This by (16) implies (8) which does not hold.
Let F (zo) = 1 for some zo ∈ C . Since F , G share (1, 2), we get G(zo) = 1 and

so from (20) it follows that A
D

= 1. Therefore F ≡ G i.e.

fn−1(f + a) ≡ gn−1(g + a)

which implies by Lemma 6 that f ≡ g. This proves the theorem.
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