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COMMUTATIVE NONSTATIONARY STOCHASTIC FIELDS

Hatamleh Ra’ed

The present paper is devoted to further development of commuta-
tive nonstationary field themes; the first studies in this area were performed by
K. Kirchev and V. Zolotarev [4, 5].

In this paper a more complicatedvariant of commutative field with nonstationary
rank 2, carrying into more general situation for correlation function is studied. A
condition of consistency (see (7) below) for commutative field is placed in the basis of
the method proposed in [4, 5] and developed in this paper. The following semigroup
structures of correlation theory for disturbances and semigroups are used in this
case: Tt(ε) = exp(itAε), Aε = A1 + εA2, |ε| � 1.

1. In this section we will present the main preliminary information [4, 5].
Let us consider a two-dimensional curve Tt = exp(it1A1 + it2A2) in Hilbert

space H. From now on we will assume that the system of linear bounded operators
{A1, A2} is a commutative one, [A1, A2] = 0, and there hold true:

(1)

1) (A2)IH ⊂ (A1)IH ;

2) (A1)I ≥ 0 ;

3) (A1)I |(A1)IH
is restrictedly invertible.

As it is known [7], the system {A1, A2} can be included in the commutative colli-
gation

(2) ∆ = (A1, A2, H,Φ, E, σ1, σ2, γ, γ̃) .

Where: E is Hilbert space; Φ : H → E;σ1, σ2, γ, γ̃ are selfadjoint operators in E
and also the next colligation relationships are valid:

(3)

1) Ak − A∗k = iΦ∗σkΦ (k = 1, 2) ;

2) γΦ = σ1ΦA∗2 − σ2ΦA∗1 ;

3) γ̃ = γ + i(σ1ΦΦ∗σ2 − σ2ΦΦ∗σ1)
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From now on we will study only the case of finite-dimensional space E. From the
assumptions (1) follows that we can conclude that σ1 = IE ; i.e., A1 is dissipative.
This means that the semigroup Tt when t2 = 0 is contractive. It is evident that
when ε is small enough then the operator Aε = A1 + εA2 is also dissipative and
the semigroup Tt(ε) = exp(itAε); (t1 = t, t2 = εt) is contractive. We will study CF
and ICF of semigroup of contractions Tt(ε) as a function of the variables t and ε.
Similarly to [2] it is easy to prove that there exists the limit

(4) S · lim
t→∞

T ∗t (ε)Tt(ε) = Kε

and also 0 ≤ Kε ≤ I.

Proposition 1. For every x and s from R there holds true

(5) eisA
∗
xKεe

isAx = Kε , where Ax = A1 + xA2 .

Proof. It is evident that

e−isA
∗
xKεe

isAx = s · lim
t→∞

e−i(sA
∗
x+tA∗ε) ei(tAε+sAx)

= S · lim
t→∞

ei
s(x−ε)
t+s A∗ε e−i(t+s)A

∗
ε ei(t+s)Aε ei

s(x−ε)
t+s A2 = Kε

because of strong continuity of semigroup eiδA2 which tends to I when δ → 0. �
Corollary 1. In this way for every small enough ε(|ε| << 1) we can assert that
A∗1Kε = KεA1, A∗2K2 = KεA2. From the existence of the limit Kε, (5), there fol-
lows that for the correlation function Kε(t, s) = 〈Tt(ε)Ψ, Ts(ε)Ψ〉 the next formula
is valid

(6) Kε(t, s) = Vε(t− s) +
∫ ∞

0
Wε(t+ τ, s + τ ) dτ

where, as usual, ICF is defined by the formula

Wε(t, s) = −(∂t + ∂s)Kε(t, s)

and

Vε(t − s) = 〈Kεei(t−s)AεΨ,Ψ〉 .

Let us now notice the ICF, Wε(t, s), which, obviously, has the form

Wε(t, s) = 2〈(Aε)ITt(ε)Ψ, Ts(ε)Ψ〉 = 〈σεΦΨε(t, ·),ΦΨε(s, ·)〉 ,

here Ψε(t, ·) = Tt(ε)Ψ, σε = σ1 + εσ2, (Aε)I = (2i−1)(Aε −A∗ε).



COMMUTATIVE NONSTATIONARY STOCHASTIC FIELDS 163

Proposition 2. The function f(ε, t) = ΦΨε(t) is a solution of the equation (7):

(7) [σ2iσt − it−1σ−1
ε σε − γ̃] f(ε, t) = 0 .

Proof. As far as γ̃Φ = σεΦA2 − σ2ΦAε, so

γ̃f = σεΦA2Ψ− σ2ΦAεΨ = σεΦA2e
itAεΨ − σ2ΦAεeitAεΨ

= σε(it)−1ΦσεeitAεΨ − σ2(i−1)ΦσteitAεΨ = σ2iσtf − it−1σεσεf ,

which proves the assertion. �
Therefore, knowing the function f(t) (when ε = 0) we can compute also the

function f(ε, t) as a solution of the next Cauchy problem:

(8)

{
iσεf(ε, t) = tσε[σ2iσt − γ̃] f(ε, t)

f(ε, t)|ε=0 = f(t)

2. Let dimE = 2 and the operators σ1, σ2, γ̃ are of the form

(9) σ1 =

(
1 0
0 1

)
, σ2 =

(
0 m
m σ

)
, γ̃ =

(
α β
β α

)
where α, β ∈ R; m ∈ C .

In the Hilbert space L2
(0,`)(E

2, dx), we consider a model operator system

(10)
A1fx = i

∫ `

x

fζ dζ

A2fx = fx

(
α β
β α

)
+ i

∫ `

x

fx

(
0 m
m 0

)
dζ ,

where fx = (f1(x), f2(x)) ∈ L2
(0,`)(E

2, dx).
Further, we consider a contractive semigroup

(11) f(t, x) = Tt(ε)fx = eitAεfx

with 1 − ε|m|2 > 0, i.e., ε � |m|−1. Then f(t, x) is a solution of the Cauchy
problem

(12)

 d
dxf(t, x) = fx(t, x)iε

(
α β

β α

)
−
∫ `
x
f(t, ζ) dζ

(
1 εm

εm 1

)
f(0, x) = fx

We introduce in the consideration a vector-function F (t, x) such that

(13) F (t, x) = f(t, x) exp
{
−itε

(
α β
β α

)}
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Then the Cauchy problem (12) for F (t, x) takes the form

(14)

{
Ft(t, x) = −

∫ `
x F (t, ζ) dζbt

F (0, t) = f(x)

where the matrix bt has the form

bt = e
itε

α β

β α

(
1 εm
εm 1

)
e
−itε α β

β α

= e
itε

α β

β α U

(
1 + εm 0

0 1− εm

)
U∗e

−itε α β

β α

and the unitary matrix U has the form

U =
1√
2

(
1 1
1 −1

)
.

We calculate the expression

e
iεt

α β
β α U = e

iεt
α 0
0 α e

iεt
0 β
β 0 U

=
eitεα√

2

(
cos tεβ i sin tεβ
i sin tεβ cos tεβ

)(
1 1
1 −1

)
=
eitεα√

2

(
eitεβ e−itεβ

eitεβ −e−itεβ
)

Therefore,

bt =
1
2

(
eitεβ e−itεβ

eitεβ −e−itεβ
)(

1 + εβ 0
0 1− εβ

)(
e−itεβ e−itε

eitεβ −e−itε
)

=
(

1 εm
εm 1

)
Thus we obtain bt is independent on t.

Finally, let us determine an explicit form of F (t, x) (13).
For this purpose we represent F (t, x) in the form

(15) F (t, x) = exp

{
t

∫ `

x

· dζ
}
· exp

{
−tεm

∫ `

x

· dζ
(

0 1
1 1

)}
f(x)

First we calculate

exp

(
−t
∫ `

x

· dζ
)
f =

∞∑
0

(−t)n
n!

(∫ `

x

· dζ
)n

f(x)

= f(x) − t

n!

∫ `

x

fζ dζ +
t2

2!

∫ `

x

(ζ − x)fζ dζ −
t3

3!

∫ `

x

(ζ − x)2

2!
fζ dζ + · · · =
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Assuming then that f′ exists and belongs to L2
(0,`)(E

2, dx) with f` = 0, we obtain
after integration by parts

(16) exp

(
−t
∫ `

x

· dζ
)

= −
∫ `

x

f ′ζy0

(
2
√
t(ζ − x)

)
dζ

where J0(z) =
∞∑
0

(−1)k( z2 )2k

k!k! the Bessel function of zero order.

Now we calculate

exp

{
−tεm

∫ `

x

· dζ
(

0 1
1 0

)}
f =

∞∑
0

(−tεm)n

n!

(∫ `

x

· dζ
(

0 1
1 0

))n
f

= f(x)
t2ε2m2

2!

∫ `

x

(ζ − x)fζ dζ +
t4ε4m4

4!

∫ ζ

x

(ζ − x)3

3!
fζdζ + · · ·

−
{
tεm

1!

∫ `

x

fζ dζ +
t3ε3m3

3!

∫ `

x

(ζ − x)2

2!
fζ dζ + · · ·

}(
0 1
1 0

)
.

Selecting as earlier f(x) from a dense set in L2
(0,`)(E

2, dx) such that f′(x) exists
and is in L2

(0,`)(E
2, dx) with f(`) = 0, we obtain after integration by parts

exp

{
−tεm

∫ `

x

· dζ
(

0 1
1 0

)}
f = −

∫ `

x

f ′ζ

∞∑
0

(tεm)2k(ζ − x)2k

(2k)!(2k)!
dx

+
∫ `

x

fζ

∞∑
0

(tεm)2k+1(ζ − x)2k+1

(2k + 1)!(2k + 1)!
dζ

(
0 1
1 0

)
.

Further we make use of

J0(2
√
x) + I0(2

√
x) = 2

∞∑
0

x2k

2k!2k!

where I0(x) is the modified Bessel function of zero order:

I0(x) = J0(ix) .

Finally, we have

exp

{
−tεm

∫ `

x

· dζ
(

0 1
1 0

)}
f = −1

2

∫ `

x

f ′ζ dζ(17)(
J0(2

√
tεm(ζ−x)) +I0(2

√
tεm(ζ− x)); J0(2

√
tεm(ζ−x)) −I0(2

√
tεm(ζ − x))

J0(2
√
tεm(ζ−x))−I0(2

√
tεm(ζ−x)); J0(2

√
tεm(ζ−x)) +I0(2

√
tεm(ζ−x))

)
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A last, using expressions (16) and (17), we determine the form of function F (t, x)
(15).

To this end, it is necessary to calculate the following integrals:

(18)

I1 =
∫ `

x

J0(2
√
t(ζ − x))

d

dζ

∫ `

ζ

f ′ηJ0(2
√
tεm(η − ζ)) dη

I2 =
∫ `

x

J0(2
√
t(ζ − x))

d

dζ

∫ `

ζ

f ′ηI0(2
√
tεm(η − ζ)) dη

To simplify the first of them (the second is calculated simplify) we make use of
integration by parts:

I1 =
∫ `

x

f ′ζJ0(2
√
tεm(ζ − x)) dζ

−
∫ `

x

dζJ−1(2
√
t(ζ − x))

√
t√

ζ − x

∫ `

ζ

f ′ηJ0(2
√
tεm(η − ζ)) dη

=
∫ `

x

f ′ζJ0(2
√
tεm(ζ − x)) dζ

−
√
t

∫ `

x

f ′η dη

∫ `

x

J−1(2
√
t(ζ − x))J0(2

√
tεm(η − ζ)) dζ√

ζ − x

Using the following formula [1]

∫ t

0

√
τ − 1J−1(α

√
τ )J0(β

√
t− τ ) = 2α−1J0(t

√
α2 + β2)

we obtain∫ η

x

J−1(2
√
t(ζ − x)J0(2

√
tεm))

dζ√
ζ − x

=
1√
t
J0
(
(η − x)2

√
t+ tεm

)
.

Thus

(19) I1 =
∫ `

x

f ′ζ

{
J0(2

√
tεm(ζ − x))− J0

(
(ζ − x)2

√
t+ tεm

)}
dζ .

In a similar manner we obtain

I2 =
∫ `

x

f ′ζ

{
I0(2

√
tεm(ζ − x)) − J0

(
(ζ − x)2

√
t− tεm

)}
dζ .
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Taking into account the expressions (16), (17) and (19), we obtain that the com-
ponents of vector-function F (t, x) = (F1(t, x);F 2(t, x)) (13) are as follows:
(20)

F 1(t, x) =
1
2

∫ `

x

{
[∂ζf1(ζ) + ∂ζf2(ζ)](J0(2

√
t(ζ − x))− J0((ζ − x)2

√
t+ tεm))

+ [∂ζf1(ζ)− ∂ζf2(ζ)](I0 (2
√
tεm(ζ−x))− J0((ζ−x)2

√
t+ tεm))

}
dζ

F 2(t, x) =
1
2

∫ `

x

{
[∂ζf1(ζ) + ∂ζf2(ζ)](J0(2

√
t(ζ − x))− J0((ζ − x)2

√
t+ tεm))

+[∂ζf1(ζ)− ∂ζf2(ζ)](I0(2
√
tεm(ζ−x)) − J0((ζ−x)2

√
t− tεm))

}
dζ

Finally it remains to take into account (13):

f(t, x) = F (t, x) exp
{
it

(
α β
β α

)}
= F (t, x)eitα

(
cos tεβ i sin tεβ
i sin tεβ cos tεβ

)
hence

(21)
f1(t, x) = eitα[F 1(t, x) cos tεβ + F2(t, x)i sin tεβ]

f2(t, x) = eitα[F 1(t, x)i sin tεβ + F2(t, x) cos tεβ]

Accounting the asymptotic of Bessel function [1] J0(z) when z →∞(| arg z| < π)
we will obtain that f(t, x)→ 0 when t→∞. So Tt(ε) is asymptotically decaying
function and hence Vε(t− s) = 0.

Theorem 1. The limit correlation function Vε(t − s) for the stochastic field
Tt(ε) = exp it(A1 + εA2), when A1, A2 have the form (10) (|ε| < 1

m
) is equal

to zero Vε(t− s) = 0. Therefore infinitesimal correlation function Wε(t, s) has the
form

(22) Wε(t, s) = (1 + εm)Φ1(t, ε)Φ1(s, ε) + (1− εm)Φ2(t, ε)Φ2(s, ε)

where it is obvious that

Φ1(t, ε) =
1
2

∫ `

0
(f1(t, x) + f2(t, x)) dx

Φ2(t, ε) =
1
2

∫ `

0
(f1(t, x)− f2(t, x)) dx

The Cauchy problem (7) for this case and the function Φ(t, ε) = (Φ1(t, ε),Φ2(t, ε))
has the form 

∂εΦ(t, ε) = t

{
m

(
1 + εm 0

0 εm − 1

)
∂t

+2i
(

(α+ β)(1 + εm) 0
0 (α− β)(1 − εm)

)}
Φ(t, ε)

Φ(t, 0) = (Φ1(t),Φ2(t))

(23)
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where Φ(t, 0) is determined by a dissipative process with a spectrum at zero and

(24)
Φ1(t) =

1
2

∫ `

0
(f1(ζ) + f2(ζ))J0(2

√
tζ) dζ

Φ2(t) =
1
2

∫ `

0
(f1(ζ) − f2(ζ))J0(2

√
tζ) dζ

One can write the equation of Cauchy problem (23) in the following form:

(25)
Φ1
ε = (1 + εm)(mtΦ1

t + 2i(α+ β)Φ1)

Φ2
ε = (εm − 1)(mtΦ2

t + 2i(β − α)Φ2)

where Φkε = ∂εΦk, Φkt = ∂tΦk, (k = 1, 2); therefore it is necessary to solve in a
general form the equation

∂εΦ = (εm + a)(mt∂tΦ + ibΦ) ,

where a, b,m ∈ R. It is easy to see that a general solution of this equation has the
form

Φ(t, ε) = e
ib
4m ((a+εm)2−2 ln t)G(2 ln t+ (εm + a)2)

where G(x) is an arbitrary differentiable function.
Taking into account the initial condition of the problem (23), it is easy to obtain

(26)
Φ1(t, ε) = e

i(α+β)
2 ε(εm+4)Φ1(e

2t+ε2m2+2εm
2 )

Φ2(t, ε) = e
i(α−β)

2 ε(εm−4)Φ2(e
2t+ε2m2−2εm

2 )

where Φk(t) has the form of (24).

Thus, the following theorem is proved.

Theorem 2. The correlation function of stochastic field Tt(ε) for the commuta-
tive system of operators A1, A2 (10) has the form

Kε(t, s) =
∫ ∞

0
Wε(t+ τ, s + τ ) dτ

where Wε(t, s) has the form (22) and Φk(t, ε) is represented in the form (26).
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