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FIXED AND COINCIDENCE POINTS OF HYBRID MAPPINGS

H. K. PATHAK AND M. S. KHAN

The purpose of this note is to provide a substantial improvement and
appreciable generalizations of recent results of Beg and Azam; Pathak, Kang and
Cho; Shiau, Tan and Wong; Singh and Mishra.

In [6], Pathak, Kang and Cho obtained some results improving several known
results on coincidence and fixed point theorems. In this note, we wish to provide
a substantial improvement of their main results ([6, Theorems 2.1, 2.8, 3.1, 3.2
and 3.3]) by totally disregarding the assumptions of continuity of mappings and
replacing the completeness of the space by a set of weaker conditions. In our The-
orem 2 we also dropped the weak compatibility requirement from their Theorem
2.1.

Let (X, d) be a metric space. Let (CB(X), H) and (CL(X), H) denote respec-
tively the hyperspaces (cf. Nadler [8]) of nonempty closed bounded subsets of X,
and nonempty closed subsets of X, where H is the Hausdorff metric induced by
d, i.e.,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

for all A,B ∈ CB(X) (or CL(X)), where d(x,A) = inf
y∈A

d(x, y).

It is well known that (CB(X), H) and (CL(X), H) are complete metric spaces,
whenever (X, d) is complete. Of course, (CB(X), H) and (CL(X), H) are metric
spaces.

The following is the main result of Pathak et. al. [6, Theorem 2.1].

Theorem 1. Let (X, d) be a complete metric space, f : X → X, and T : X →
CB(X) be a f-weak compatible continuous mappings such that T (X) ⊂ f(X) and

(1) H(Tx, Ty) ≤ h[a ·L(x, y) + (1− a) ·N (x, y)]
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for all x, y in X, where 0 ≤ h < 1, 0 ≤ a ≤ 1,

L(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), 1
2 [d(fx, Ty) + d(fy, Tx)]}

and

N (x, y) = [max{d2(fx, fy), d(fx, Tx)d(fy, Ty), d(fx, Ty)d(fy, Tx),

1
2d(fx, Tx)d(fy, Tx), 1

2d(fx, Ty)d(fy, Ty)}]1
2 .

Then there exists a point t ∈ X such that ft ∈ Tf .

We now improve the above theorem substantially in the following two results.

Theorem 2. Let Y be an arbitrary non-empty set, (X, d) a metric space, f :
Y → X and T : Y → CL(X) such that T (Y ) ⊂ f(Y ), and (1) is satisfied for all
x, y in Y , 0 ≤ h < 1, 0 ≤ a ≤ 1. If one of T (Y ) or f(Y ) is a complete subspace
of X, then there exists a point t ∈ Y such that ft ∈ T t.
Proof. Let x0 ∈ Y be arbitrary. Choose a point x1 ∈ Y such that fx1 ∈ Tx0.
This choice is permissible since Tx0 ⊂ f(Y ). If h = 0, we obtain d(fx1, Tx1) ≤
k ·H(Tx0, Tx1) = 0, i.e., fx1 ∈ Tx1 since fx1 is closed. This is what we required
to prove. Assume that 0 < h < 1 and set k = 1√

h
. By Nadler’s remark in [7],

we may choose a point x2 ∈ Y such that d(fx2, fx1) ≤ k · H(Tx1, Tx0). In
general, having chosen xn ∈ Y , we may choose xn+1 ∈ Y such that fxn+1 ∈ Txn
and d(fxn+1, fxn) ≤ kH(Txn, Txn−1), n = 1, 2, . . . . Now setting x = xn+1 and
y = xn in (1), it can be easily verified that {fxn} is a Cauchy sequence in f(Y ).

If f(Y ) is a complete subspace of X, then {fxn} has a limit in f(Y ). Call it µ.
Let t ∈ f−1µ. Then ft = µ. By (1),

d(fxn+1, T t) ≤ H(Txn, T t)

≤ h
[
a ·max{d(fxn, ft), d(fxn, Txn), d(ft, T t), 1

2 [d(fxn, T t) + d(ft, Txn)]}
+ (1− a) max{d2(fxn, ft), d(fxn, Txn) · d(ft, T t), d(fxn, T t) · d(ft, Txn),

1
2d(fxn, Txn) · d(ft, Txn), 1

2d(fxn, T t) · d(ft, T t)} 1
2
]

≤ h
[
a ·max{d(fxn, ft), d(fxn, fxn+1), d(ft, T t), 1

2 [d(fxn, T t) + (ft, fxn+1)]}
+ (1− a){max{d2(fxn, ft), d(fxn, fxn+1) · d(ft, T t), d(fxn, T t) · d(ft, fxn+1),

1
2d(fxn, fxn+1) · d(ft, fxn+1), 1

2d(fxn, T t)d(ft, T t)} 1
2
]
.

Passing the limits as n→∞ we have

d(ft, T t) ≤ h ·
[
a · d(ft, T t) +

(1− a)√
2
· d(ft, T t)

]
.

Since h ·
[
a+ 1−a√

2

]
< 1, it follows that ft ∈ T t. When T (Y ) is a complete subspace

of X, by noting the fact that T (Y ) ⊂ f(Y ), this case essentially pertains to the
previous case. This completes the proof. �

Recall that a point z ∈ X is a hybrid fixed point of f : X → X and T : X →
CL(X) if fz ∈ Tfz.

We are now in a position to state and prove a hybrid fixed point theorem from
Theorem 2.
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Theorem 3. Let (X, d) be a metric space, f : X → X and T : X → CL(X) such
that T (X) ⊂ f(X), and (1) is satisfied for all x, y ∈ X, 0 ≤ h < 1, 0 ≤ a ≤ 1.
If T (X) or f(X) is a complete subspace of X, then there exists a point t ∈ X
such that ft ∈ T t. Further, if T is a f-weakly compatible and either f(ft) = ft,
or t ∈ T t, then f and T have a common fixed point, indeed, ft ∈ Tft.

Proof. By Theorem 2 (when Y = X), there exists a point t ∈ X such that
ft ∈ T t. If T is f-weakly compatible, then by Lemma 2.6 [6], fT t = Tft.

Now, if f(ft) = ft, then ft ∈ T t implies f(ft) ∈ f(T t) = Tft. Thus, if
f(ft) = ft, then ft is a fixed point of T .

Again, if t ∈ T t, then ft ∈ fT t = Tft; i.e., ft is a fixed point of T .
Hence, in either case, t is a common fixed point of f and T .
It is pertinent to say that Theorem 3 above has a big potential for applications

to Pareto type of maximization problems. In fact, Corley [3, Theorem 1] has shown
that a hybrid fixed point is a maximal in certain Pareto maximization problems
(see, [3, p. 529]). The following is an extension of the main results of Das and Naik
[4, Theorem 2.1] and Pathak [5, Theorem 4].

Theorem 4 ([6, Theorem 2.8]). Let (X, d) be a complete metric space, and let
f, T : X → X be f-weak compatible mappings such that T (X) ⊂ f(X) and

(2) d(Tx, Ty) ≤ h
[
a · L(x, y) + (1 − a)N (x, y)

]
for all x, y in X, where 0 ≤ h < 1, 0 ≤ a ≤ 1,

L(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}

and

N (x, y) =
[

max{d2(fx, fy), d(fx, Tx) · d(fy, Ty), d(fx, Ty) · d(fy, Tx),

d(fx, Tx) · d(fy, Tx), d(fy, Ty) · d(fx, Ty)}
] 1

2 .

If one of f or T is continuous, then there exists a unique common fixed point of
f and T .

We improve the above theorem by removing the assumptions of continuity of
either f or T and replacing the completeness of the space X by a set of weaker
conditions as follows.

Theorem 5. Let (X, d) be a metric space and let f, T : X → X be such that
T (X) ⊂ f(X) and (2) is satisfied for all x, y ∈ X and 0 ≤ h < 1, 0 ≤ a ≤ 1. If
one of T (X) or f(X) is a complete subspace of X, then there exists a point t ∈ X
such that ft = T t. Further,

(i) if there exist v, w ∈ X such that fv = Tv and fw = Tw, then fv = fw,
(ii) if T is f-weak compatible, then f and T have a unique common fixed

point.
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Proof. Let x0 ∈ X be arbitrary. Following the proof technique of [4], [5] and [6],
we find a Cauchy sequence {fxn} in f(X) where Txn = fxn+1, n = 0, 1, 2, . . . .
If f(X) is complete, then {fxn} has a limit in f(X) say u. Let t ∈ f−1u so that
ft = u. The construction of {Txn} shows that it also converges to ft. Setting
x = xn and y = t in (2) and passing the limit as n → ∞, we obtain d(ft, T t) ≤
h[a · d(ft, T t) + (1− a) d(ft, T t)]. So ft = T t.

Now assume that v, w ∈ X are such that fv = Tv and fw = Tw, then by (2),

d(fv, fw) = d(Tv, Tw) ≤ h · [ad(fv, fw) + (1− a) d[fv, fw)] ,

and so fv = fw. This proves (i).

Finally, if T is f-weak compatible, then appealing to the Lemma 2.6 of [6],
fT t = Tft. Since ft = T t, it follows that fft = fT t = Tft, and so ft is a
coincidence point of f and T . Therefore by (i), we have ft = fft proving that ft
is a common fixed point of f and T . By using (2), the uniqueness of the common
fixed point can be easily verified.

Let Y be an arbitrary non-empty set, (X, d) a metric space, f : Y → X and
T : Y → CL(X) such that T (Y ) ⊂ f(Y ) satisfying the following condition:

(3) Hr(Tx, Ty) ≤ α1(d(fx, Tx))dr(fx, Tx) + α2(d(fy, Ty))dr (fy, Ty)

for all x, y ∈ Y , where αi : R → [0, 1) (i = 1, 2) and r is some fixed positive real
number.

If there exists a sequence {xn} in Y such that lim
n→∞

d(fxn, Txn) = 0, then {xn}
is said to be asymptotically T -regular with respect to f . If Y = X and f = idX
(the identity map on X), then the sequence {xn} ⊂ X is said to be asymptotically
T -regular. �

We now state and prove the following theorem which improves the correspond-
ing result of Pathak, Kang and Cho [6, Theorem 3.1].

Theorem 6. Let Y be an arbitrary non-empty set, (X, d) a metric space, f :
Y → X and T : Y → CL(X) such that T (Y ) ⊂ f(Y ) and (3) is satisfied for all
x, y in Y , where αi : R→ [0, 1) and r is some fixed positive real number. If one of
T (Y ) or f(Y ) is a complete subspace of X and if there exists an asymptotically
T -regular sequence {xn} with respect to f in Y , then there exists a point x∗ ∈ Y
such that fx∗ ∈ Tx∗. Moreover, Txn → Tx∗ as n→∞.

Proof. Suppose f(Y ) is a complete subspace of X. By (3),

Hr(Txn, Txm) ≤ α1(d(fxn, Txn))dr(fxn, Txn)

+ α2(d(fxm, Txm))dr(fxm, Txm) .

Here right hand side tends to 0→ as n,m, →∞.
This show that {Txn} is a Cauchy sequence in T (Y ), but T (Y ) ⊂ f(Y ) and

f(Y ) is complete. It follows that {Txn} is a Cauchy sequence in a complete metric
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space (T (Y ), H). Hence there exists K∗ ∈ CL(X) such that H(Txn,K∗) → 0 as
n → ∞. Suppose k∗ ∈ K∗, and let x∗ ∈ F−1(k∗), then fx∗ = k∗ ∈ K∗. Again,
by (3)

d(fx∗, Tx∗) ≤ Hr(K∗, Tx∗) ≤ lim
n→∞

Hr(Txn, Tx∗)

≤ lim
n→∞

[α1(d(fxn, Txn))dr(fxn, Txn) + α2(d(fx∗, Tx∗))dr(fx∗, Tx∗)]

= α2(d(fx∗, Tx∗))dr(fx∗, Tx∗) ,

which yields (1− α2(d(fx∗, Tx∗)))dr(fx∗, Tx∗) ≤ 0, i.e., d(fx∗, Tx∗) = 0, and so
fx∗ ∈ Tx∗. Now

Hr(K∗, Tx∗) = lim
n→∞

Hr(xn, Tx∗) ≤ α2
(
d(fx∗, Tx∗)

)
dr(fx∗, Tx∗)

≤ dr(fx∗, Tx∗) = 0 .

Thus, we obtain Tx∗ = K∗ = lim
n→∞

Txn. The other case, when T (Y ) is a complete

subspace of X, essentially pertain to the previous case as T (Y ) ⊂ f(Y ). This
completes the proof. �
Remark. If Y = X and f = idx (the identity map of X), then we conclude
from the above theorem that T has a fixed point x∗ in X. Moreover, Txn → Tx∗

as n → ∞. Hence our result is a substantial generalization of the corresponding
Theorem 3.1 of Pathak, Kang and Cho [6].

Our next result improves Theorem 3.2 of Pathak, Kang and Cho [6].

Theorem 7. Let Y be an arbitrary non-empty set, (X, d) a metric space, f :
Y → X, T : Y → CL(X) such that T (Y ) ⊂ f(Y ) and (3) is satisfied for all x, y in
Y , where αi : R→ [0, 1) and r is some fixed positive real number. If one of T (Y )
or f(Y ) is a complete subspace of X and there exists an asymptotically T -regular
sequence {xn} in Y with respect to f and Txn is compact, for all n ∈ N , then
there exists a point t ∈ Y such that ft ∈ T t.
Proof. Let yn ∈ Txn be such that d(fxn, yn) = d(fxn, Txn). Since this sequence
{xn} in Y is asymptotically T -regular with respect to f , it follows that a cluster
point of {fxn} is cluster point of {fxn} and {yn}. Suppose that y∗ is such a cluster
point of {fxn} and {yn}. Then as in Theorem 6, there exists a point x∗ ∈ Y such
that fx∗ ∈ Tx∗. Now by (3)

dr(y∗, Tx∗) ≤ lim
n→∞

Hr(Txn, Tx
∗)

≤ lim
n→∞

[
α1(d(fxn, Txn))dr(fxn, Txn) + α2(d(fx∗, Tx∗))dr(fx∗, Tx∗)

]
= lim
n→∞

[
α1(d(fxn, Txn))dr(fxn, Txn)

]
,

which implies that y∗ ∈ Tx∗. Let t ∈ f−1y∗. Then ft = y∗. By (3) again, we have

dr(y∗, T t∗) ≤ Hr(Tx∗, T t)

≤ α1(d(fx∗, Tx∗))dr(fx∗, Tx∗) + α2(d(ft, T t))dr(ft, T t) ,
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which implies that
(1− α2(d(ft, T t)))dr(ft, T t) ≤ 0 .

We, therefore, have ft ∈ T t. This completes the proof. �
Remark 2. If Y = X and f = idx (the identity map ofX), then we conclude from
the above theorem that each cluster point of {xn} is a fixed point of T , indeed,
y∗ ∈ Ty∗. Thus, our Theorem 7 is a legitimate and appreciable generalization of
corresponding Theorem 3.2 of Pathak, Kang and Cho [6].

Theorem 8. Let Y be an arbitrary non-empty set, (X, d) a metric space, f :
Y → Xand T : Y → CL(X) such that T (Y ) ⊂ f(Y ) and (3) is satisfied for all
x, y in Y with α1(d(fx, Tx)) + α2(d(fy, Ty)) ≤ 1. If inf{d(fx, Tx) : x ∈ Y } = 0,
then there exists a point t ∈ Y such that ft ∈ T t.
Proof. By virtue of Theorem 7, it suffices to show that there exists an asymptot-
ically T -regular sequence {xn} in Y with respect to f .

Pick x0 ∈ X and consider a sequence {xn} ⊂ Y such that fxn ∈ Txn−1 for all
n ∈ N . By (3),

dr(fxn, Txn) ≤ Hr(Txn−1, Txn)

≤ α1(d(fxn−1, Txn−1))dr(fxn−1, Txn−1)

+ α2(d(fxn, Txn))dr(fxn, Txn)

i.e.

dr(fxn, Txn) ≤ α1(d(fxn−1, Txn−1))
1− α2(d(fxn, Txn))

dr(fxn−1, Txn−1) ≤ dr(fxn−1, Txn−1) .

It follows from the above inequality that the sequence {d(fxn, Txn)} is decreasing.
Therefore, d(fxn, Txn) → inf{d(fxn, Txn) : n ∈ N}, and so d(fxn, Txn) → 0.
Hence {xn} is asymptotically T -regular with respect to f . This completes the
proof. �
Remark 3. If Y = X and f = idx (the identity map of (X)), then we conclude
from the above theorem that T has a fixed point in X. Thus, our Theorem 8 is a
proper generalization of corresponding Theorem 3.3 of Pathak, Kang and Cho [6].

Finally, we conclude that our Theorems 6, 7 and 8 also generalize the main
results of Shiau, Tan and Wong [9], and Beg and Azam [1, 2]. In these theorems,
we have dropped the hypothesis of compactness of Tx (cf. Theorem 1 in [9]).
Moreover, we have consider the domain of our mappings an arbitrary set rather
than a metric space. This shows the very general nature of our results in contrast
to other known results in the literature.

Moreover, the following example give an insight view of our results and ap-
plicable superiority over those of [6]. We call the sequence {fxn} (resp. {Txn})
constructed in the proof of Theorem 5 as orbit of f with respect to T (resp. the
orbit of T with respect to f) (see also, [10] for the motivation of the following
examples).
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Example 1. Let Y = X = {x : 0 ≤ x ≤ 1, x ∈ Q} be endowed with the usual
metric. Let Tx = {0, 1}, fx = 1 − x, x ∈ X, then T (X) = {0, 1} ⊂ f(X) = X.
It is easy to see that all the hypothesis of Theorem 2 are satisfied and ft ∈ T t,
t = 0, 1. However, Theorem 1 can not be applied as X is not complete. Note that
T (X) = {0, 1} is complete.

The multiple functions play significant role in several branches of mathematics.
In particular, the doubling function D (cf. below) finds significance in chaotic
dynamical theory (see, e.g. Devaney [11, p. 24]). We now introduce an auxillary
function T to make the orbit of D with respect to T behave nicely (refer to
Theorem 5).

Example 2. Let X = [0, 1] be endowed with the usual metric. Let D,T : X → X
be defined by

Dx = 2x mod 1 and Tx =

{ x
4 if 0 ≤ x ≤ 1

2
x
4 −

1
8 if 1

2 ≤ x ≤ 1
.

Then T (X) =
[
0, 1

8

]
⊂ D(X) = X, and |Tx−Ty| =

(
1
8

)
|Dx−Dy| for all x, y ∈ X.

Clearly, Theorem 5 applies and 0 is the unique common fixed point of T and D.
Moreover, the orbit of D with respect to T for any x0 ∈ X; i.e., the sequence
{Dxn : Dxn = Txn−1, n = 1, 2, . . .} converges to 0. In particular, if 0 ≤ x0 <

1
2 ,

then Dxn = 2x0
8n , n = 1, 2, . . . . However, it is interesting to note that Theorem 4

cannot be applied to T and f = D, since both the mappings are discontinuous.
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