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OSCILLATORY PROPERTIES OF FOURTH ORDER

SELF-ADJOINT DIFFERENTIAL EQUATIONS

SIMONA FIŠNAROVÁ

Abstract. Oscillation and nonoscillation criteria for the self-adjoint linear
differential equation

(tαy′′)′′ −
γ2,α

t4−α
y = q(t)y, α 6∈ {1, 3} ,

where

γ2,α =
(α − 1)2(α − 3)2

16
and q is a real and continuous function, are established. It is proved, using
these criteria, that the equation

`

t
α

y
′′

´

′′

−

„

γ2,α

t4−α
+

γ

t4−α ln2 t

«

y = 0

is nonoscillatory if and only if γ ≤ α
2
−4α+5

8
.

1. Introduction

In this paper we investigate oscillatory and asymptotic properties of the fourth
order differential equation

(1) (tαy′′)′′ − γ2,α

t4−α
y = q(t)y,

where

γ2,α =
(α − 1)2(α − 3)2

16
, α 6∈ {1, 3}

and q is a real and continuous function. Recently, several papers dealing with
oscillatory properties of 2n-th order two-terms differential equation

(2) (−1)n(tαy(n))(n) = q(t)y

appeared, where (2) is viewed as a perturbation of the Euler differential equation

(−1)n(tαy(n))(n) − γn,α

t2n−α
y = 0
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and where

γn,α := (−1)n

n−1
∏

j=0

(λ − j)(λ + α − j − n)|λ= 2n−1−α
2

, α 6∈ {1, 3, . . . , 2n − 1} ,

see [4] and the references given therein.
Our paper can be regarded as a continuation of the investigation of [3], where

the case α = 0 in (1) has been studied. We show that the results of [3] can be
extended to the general case α 6∈ {1, 3} and we also show that the sign restriction
on q assumed in that paper can be removed.

The paper is arranged as follows. In the next section we recall necessary defi-
nitions and we present some auxiliary results. Section 3 contains the main results
of the paper – oscillation and nonoscillation criteria for (1) and the last section is
devoted to some remarks concerning open problems and possibilities of extension
of our results.

2. Preliminary results

In this section we recall some basic concepts of the theory of fourth order self-
adjoint differential equations. These concepts can be formulated for arbitrary even
order self-adjoint equations, but in order to simplify formulations, we present them
here for fourth order equations only.

Consider the fourth order equation

(3) L(y) := (r2(t)y
′′)′′ − (r1(t)y

′)′ + r0(t)y = 0, r2(t) > 0 ,

where r0, r1, r2 are continuous functions. We use the relationship between (3) and
the linear Hamiltonian system (further referred to as LHS)

(4) x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u ,

where A, B, C are 2× 2 matrices, B, C symmetric. If y is a solution of (3) and if
we set

x =

(

y

y′

)

, u =

(

−(r2(t)y
′′)′ + r1(t)y

′

r2(t)y
′′

)

,

then (x, u) is a solution of (4) with

A =

(

0 1
0 0

)

, B(t) =

(

0 0
0 r−1

2 (t)

)

, C(t) =

(

r0(t) 0
0 r1(t)

)

and we say that the solution (x, u) of (4) is generated by the solution y of (3).
Moreover, if the columns of the matrix solution (X, U) of (4) are generated by the
solutions y1, y2 of (3), then (X, U) is said to be generated by y1, y2.

Oscillatory properties of (3) and (4) are defined using the concept of conjugate
points. We say, that two different points t1, t2 are conjugate relative to LHS (4),
if there exists a nontrivial solution (x, u) of (4) such that x(t1) = 0 = x(t2) and
x(t) 6≡ 0 on [t1, t2]. According to the substitution which converts (3) into (4),
points t1, t2 are conjugate relative to (3) if there exists a nontrivial solution y of
(3) such that y(i)(t1) = 0 = y(i)(t2) for i = 0, 1. Equation (3) (system (4)) is said
to be oscillatory if for every T ∈ R there exist points t1, t2 ∈ [T,∞) which are
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conjugate relative to equation (3) (system (4)). Otherwise we say that equation
(3) (system (4)) is nonoscillatory.

The equation

(5) L(y) = w(t)y ,

where w is a positive and continuous function and L is a nonoscillatory operator
given by (3), is said to be conditionally oscillatory, if there exists λ0 > 0 (the
so called oscillation constant of (5)) such that the equation L(y) = λw(t)y is
oscillatory for λ > λ0 and nonoscillatory for λ < λ0.

A matrix solution (X, U) of (4) is said to be a conjoined basis of (4) if it satisfies
XT (t)U(t) = UT (t)X(t) and rank(XT , UT )T = 2. We say that a conjoined basis
(X, U) of (4) is the principal solution of (4) if X(t) is nonsingular for large t and for
any other conjoined basis (X̄, Ū) such that the matrix X̄T U − ŪT X is nonsingular
limt→∞ X̄−1(t)X(t) = 0 holds. This limit equals zero if and only if

lim
t→∞

(∫ t

X−1(s)B(s)XT −1
(s) ds

)−1

= 0 .

A principal solution of (4) is determined uniquely up to a right multiple by a
constant nonsingular 2×2 matrix. If (X, U) is the principal solution, any conjoined
basis (X̄, Ū) such that the (constant) matrix X̄T U − ŪT X is nonsingular is said
to be a nonprincipal solution of (4). Solutions of y1, y2 of (3) are said to form a
principal (nonprincipal) system of solutions if the solution (X, U) of (4) generated
by these solutions is principal (nonprincipal).

Now we formulate some auxiliary statements which we use in the proofs of our
main results.

Lemma 1 ([6]). Equation (3) is nonoscillatory if and only if there exists T ∈ R

such that

F(y; T,∞) :=

∫ ∞

T

[

r2(t)y
′′2(t) + r1(t)y

′2(t) + r0(t)y
2(t)

]

dt > 0

for any nontrivial y ∈ W 2,2(T,∞) with compact support in (T,∞).

Lemma 2 ([7] (Wirtinger inequality)). Let y ∈ W 1,2(T,∞) have compact support
in (T,∞) and let M be a positive differentiable function such that M ′(t) 6= 0 for
t ∈ [T,∞). Then

(6)

∫ ∞

T

|M ′(t)|y2(t) dt ≤ 4

∫ ∞

T

M2(t)

|M ′(t)|y
′2(t) dt .

Now we recall some properties of the general n-order linear differential equation.
The linear n-order differential equation

(7) y(n) + p1(t)y
(n−1) + · · · + pn(t)y = 0 ,

is said to be disconjugate on an interval I if every nontrivial solution of (7) has less
than n zeros on I, multiple zeros being counted according to their multiplicities.
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The functions y1, . . . , yn ∈ Cn are said to form a Markov system on interval I

if the Wronskians

W (y1, . . . , yk) =

∣

∣

∣

∣

∣

∣

∣

y1 · · · yk

...
...

...

y
(k−1)
1 · · · y

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

, k = 1, . . . , n ,

are positive throughout I.
Note, that if y1, . . . , yn ∈ Cn and yi = o(yi+1) as t → ∞, then there exists

T ∈ R such that y1, . . . , yn is the Markov system on [T,∞), see [1]. Moreover, the
following statement holds.

Lemma 3. ([1]) The equation (7) has a Markov fundamental system of solutions
on an interval I, if and only if, it is disconjugate on I.

Lemma 4 ([1]). Suppose that equation (3) is disconjugate on an interval I ⊆ R

and let y1, y2, y3, y4 be a fundamental system of solutions of this equation. Then
the operator L given by (3) admits the factorization

L(y) =
1

a0(t)





1

a1(t)

(

r2(t)

a2
2(t)

(

1

a1(t)

(

y

a0(t)

)′
)′)′



′

on I, where

a0 = y1 , a1 =

(

y2

y1

)′

, a2 = (a0a1)
−1 .

Lemma 5. For any y sufficiently smooth

(8) (tαy′′)′′ − γ2,α

t4−α
y =

1

t
3−α

2







t1+
√

2β

2

[

t1−
√

2β

(

t1+
√

2β

2

(

y

t
3−α

2

)′
)′]′







′

and for any y ∈ W 2,2(T,∞), T ∈ R, with compact support in (T,∞)

(9)

∫ ∞

T

[

tαy′′2(t) − γ2,α

t4−α
y2(t)

]

dt =

∫ ∞

T

t1−
√

2β

{[

t1+
√

2β

2

(

y(t)

t
3−α

2

)′
]′}2

dt ,

where β = α2 − 4α + 5.

Proof. Since the fundamental system of solutions of

(10) (tαy′′)′′ − γ2,α

t4−α
y = 0

is

y1(t) = t
3−α

2 , y2(t) = t
3−α−

√

2β

2 , y3(t) = t
3−α

2 ln t, y4(t) = t
3−α+

√

2β

2 ,
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formula (8) follows from Lemma 4. The relation (9) we prove using (8) and
integration by parts

∫ ∞

T

[

tαy′′2(t) − γ2,α

t4−α
y2(t)

]

dt =

∫ ∞

T

y(t)
[

(tαy′′(t))
′′ − γ2,α

t4−α
y(t)

]

dt

=

∫ ∞

T

y(t)

(

1

t
3−α

2

{

t1+
√

2β

2

[

t1−
√

2β
(

t1+
√

2β

2

( y(t)

t
3−α

2

)′)′]′}′
)

dt

=

∫ ∞

T

t1−
√

2β
{[

t1+
√

2β

2

( y(t)

t
3−α

2

)′]′}2

dt .

�

3. Oscillation and nonoscillation criteria for (1)

Theorem 1. Suppose that

(11)

∫ ∞(

q(t) − α2 − 4α + 5

8t4−α ln2 t

)

t3−α ln t dt = ∞ .

Then equation (1) is oscillatory.

Proof. Let T ∈ R be arbitrary, T < t0 < t1 < t2 < t3. We construct a function
0 6≡ y ∈ W 2,2(T,∞), with compact support in (T,∞), as follows

y(t) =



























0 , t ≤ t0 ,

f(t) , t0 ≤ t ≤ t1 ,

h(t) , t1 ≤ t ≤ t2 ,

g(t) , t2 ≤ t ≤ t3 ,

0 , t ≥ t3 ,

where f ∈ C2[t0, t1] is any function such that

f(t0) = 0 = f ′(t0) , f(t1) = h(t1) , f ′(t1) = h′(t1) ,

h(t) = t
3−α

2

√
ln t

and g is the solution of (10) satisfying

(12) g(t2) = h(t2) , g′(t2) = h′(t2) , g(t3) = 0 = g′(t3) .

We show that for y defined in this way

F(y; T,∞) :=

∫ ∞

T

[

tαy′′2(t) −
( γ2,α

t4−α
+ q(t)

)

y2(t)
]

dt ≤ 0 ,

if t2, t3 are sufficiently large and thus equation (1) is oscillatory according to
Lemma 1.
Denote

K :=

∫ t1

t0

[

tαf ′′2(t) −
( γ2,α

t4−α
+ q(t)

)

f2(t)
]

dt

and consider the interval [t1, t2]. Since

h′′2(t) = t−1−α

[

γ2,α ln t +
(1 − α)(2 − α)(3 − α)

4
+

β

8 ln t
− 2 − α

4 ln2 t
+

1

16 ln3 t

]

,
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by a direct computation we have

∫ t2

t1

(

tαh′′2(t) − γ2,α

t4−α
h2(t)

)

dt =
(1 − α)(2 − α)(3 − α)

4
(ln t2 − ln t1)

+
β

8

∫ t2

t1

dt

t ln t
+

∫ t2

t1

(

1

16t ln3 t
− 2 − α

4t ln2 t

)

dt

=
(1 − α)(2 − α)(3 − α)

4
ln t2

+
β

8

∫ t2

t1

dt

t ln t
+ L + o(1) ,

where L is a real constant and β = α2 − 4α + 5. By the symbol o(F (t)) we mean

any function G(t) satisfying limt→∞
G(t)
F (t) = 0.

Concerning the last interval [t2, t3], if we denote

x =

(

g

g′

)

, u =

(

−(tαg′′)′

tαg′′

)

, h̃ =

(

h

h′

)

,

then system (4) with

A =

(

0 1
0 0

)

, B(t) =

(

0 0
0 t−α

)

, C(t) =

(

− γ2,α

t4−α 0
0 0

)

is the LHS associated with equation (10). Using this relationship between (4) and
(10) and conditions (12) we have

∫ t3

t2

[

tαg′′2(t) − γ2,α

t4−α
g2(t)

]

dt =

∫ t3

t2

[uT (t)B(t)u(t) + xT (t)C(t)x(t)] dt

=

∫ t3

t2

[uT (t)(x′(t) − Ax(t)) + xT (t)C(t)x(t)] dt

= uT (t)x(t)|t3t2 +

∫ t3

t2

xT (t)[−u′(t) − AT u(t) + C(t)x(t)] dt

= − uT (t2)x(t2) .

Let (X, U) be the principal solution of the LHS associated with (10). Since (X̄, Ū)
defined by

X̄(t) = X(t)

∫ t3

t

X−1(s)B(s)XT−1(s) ds,

Ū(t) = U(t)

∫ t3

t

X−1(s)B(s)XT−1(s) ds − XT−1(t)
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is also a conjoined basis of this LHS, by using (12) we get

x(t) = X(t)

∫ t3

t

X−1(s)B(s)XT−1(s) ds

×
(∫ t3

t2

X−1(s)B(s)XT−1(s) ds

)−1

X−1(t2)h̃(t2) ,

u(t) =

(

U(t)

∫ t3

t

X−1(s)B(s)XT−1(s) ds − XT−1(t)

)

×
(∫ t3

t2

X−1(s)B(s)XT−1(s) ds

)−1

X−1(t2)h̃(t2)

and hence

−uT (t2)x(t2) = h̃T (t2)X
T−1(t2)

(∫ t3

t2

X−1(s)B(s)XT−1(s) ds

)−1

X−1(t2)h̃(t2)

− h̃T (t2)U(t2)X
−1(t2)h̃(t2) .

Since the principal solution of LHS associated with (10) is generated by y1(t) =

t
3−α−

√

2β

2 , y2(t) = t
3−α

2 , we have

X(t) =

(

t
3−α−

√

2β

2 t
3−α

2

3−α−
√

2β
2 t

1−α−

√

2β

2
3−α

2 t
1−α

2

)

,

U(t) =

(

(3−α−
√

2β)(1−α−
√

2β)(1−α+
√

2β)
8 t

α−3−
√

2β

2
(3−α)(1−α)2

8 t
α−3

2

(3−α−
√

2β)(1−α−
√

2β)
4 t

α−1−
√

2β
2

(3−α)(1−α)
4 t

α−1

2

)

,

h̃(t) =

(

t
3−α

2

√
ln t

1
2 t

1−α
2

[

(3 − α)
√

ln t + 1√
ln t

]

)

and by a direct computation we obtain

h̃T (t)U(t) X−1(t)h̃(t) =
(3 − α)(2 − α)(1 − α)

4
ln t

+
α2 − 4α + 3

4
+

4 − 2α −
√

2β

8 ln t
.

Next we show that the function g
h

is decreasing on interval [t2, t3]. To show this
fact we proceed similarly as in [2]. The system of functions

y1(t) = t
3−α−

√

2β

2 , y2(t) = t
3−α

2 , h(t) = t
3−α

2

√
ln t ,

y3(t) = t
3−α

2 ln t , y4(t) = t
3−α+

√

2β

2

is a Markov system as can be verified by a direct computation, and using the
rules for computations of Wronskians or again directly, it is possible to show that

the system of functions −
(

y1

h

)′
,−
(

y2

h

)′
,
(

y3

h

)′
,
(

y4

h

)′
is also a Markov system,

hence a fundamental system of solutions of a disconjugate fourth order linear
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differential equation. Consequently, if t2 < t3 are sufficiently large, any solution

of this equation, particularly
(

g
h

)′
, has at most three zeros on [t2, t3]. Therefore,

to prove that g
h

is decreasing on [t2, t3] it suffices to show that

(13)
( g

h

)′′
(t2) < 0 and

( g

h

)′′
(t3) > 0 .

Indeed, if (13) holds and since
(

g
h

)′
(t2) = 0 =

(

g
h

)′
(t3), then

(

g
h

)′
has even number

of zeros on (t2, t3). This, together with the fact that
(

g
h

)′
can have at most three

zeros on [t2, t3] implies that
(

g
h

)′
(t) < 0, t ∈ (t2, t3). To show that (13) really

holds we proceed as follows. Using (12), it is easy to verify that

( g

h

)′′
(t2) =

g′′ − h′′

h
(t2) and

( g

h

)′′
(t3) =

g′′

h
(t3)

and since h(t) > 0, we have to show that g′′(t2) − h′′(t2) < 0 and g′′(t3) > 0.

We have

u(t2) = U(t2)X
−1(t2)h̃(t2) − XT−1(t2)

×
(∫ t3

t2

X−1(s)B(s)XT−1(s) ds

)−1

X−1(t2)h̃(t2) .

Since (X, U) is the principal solution of LHS generated by y1, y2, the second term
of this relation tends to zero as t3 → ∞, t2 being fixed, hence

u(t2) =

(

−(tα2 g′′(t2))
′

tα2 g′′(t2)

)

∼ U(t2)X
−1(t2)h̃(t2)

and consequently

g′′(t2) ∼
(y′′

1 y′
2 − y′′

2y′
1)h + (y′′

2y1 − y′′
1 y2)h

′

W (y1, y2)
(t2) ,

where W (y1, y2) is the Wronskian of y1, y2. By a direct computation

g′′(t2) ∼
(3 − α)(1 − α)

4
t
−1−α

2

2

√

ln t2 +
4 − 2α −

√
2β

4
t
−1−α

2

2

1√
ln t2

and

h′′(t2) =
(3 − α)(1 − α)

4
t
−1−α

2

2

√

ln t2 +
2 − α

2
t
−1−α

2

2

1√
ln t2

− 1

4
t
−1−α

2

2

1
√

ln3 t2
.

It follows from the last two equalities that

g′′(t2) − h′′(t2) ∼ −
√

2β

4
t
−1−α

2

2

1√
ln t2

+
1

4
t
−1−α

2

2

1
√

ln3 t2
< 0

for t2 sufficiently large. Next we have

u(t3) = −XT−1(t3)

(
∫ t3

t2

X−1(s)B(s)XT−1(s)ds

)−1

X−1(t2)h̃(t2) ,
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which implies

g′′(t3) = − t−α
3

W (y1, y2)(t3)

(−y2(t3)

y1(t3)

)T

×
(∫ t3

t2

X−1(s)B(s)XT−1(s) ds

)−1

X−1(t2)h̃(t2) .

One can verify directly that

(

∫ t3

t2

X−1(s)B(s)XT−1(s) ds
)−1

=
β

2d









ln t3
t2

2√
2β

(

t

√

2β

2

3 − t

√

2β

2

2

)

2√
2β

(

t

√

2β

2

3 − t

√

2β

2

2

)

1√
2β

(

t
√

2β
3 − t

√
2β

2

)









,

where

d =
β2

4
det

(∫ t3

t2

X−1(s)B(s)XT−1(s)ds

)

=
1√
2β

(

t

√

2β

2

3 − t

√

2β

2

2

)[(

t

√

2β

2

3 + t

√

2β

2

2

)

ln
t3

t2
− 4√

2β

(

t

√

2β

2

3 − t

√

2β

2

2

)]

> 0

and

X−1(t2)h̃(t2) =





− 1√
2β ln t2

t

√

2β

2

2√
ln t2 + 1√

2β ln t2



 .

Thus, again by a direct computation we get

g′′(t3) =

1
2

(√
ln t2 + 1√

2β ln t2

)

t
2
√

2β−α−1

2

3 + o

(

t
2
√

2β−α−1

2

3

)

d
> 0 .

Now, since g
h

is monotone on [t2, t3], using the second mean value theorem of
integral calculus there exists ξ ∈ [t2, t3] such that

∫ t3

t2

q(t)g2(t) dt =

∫ t3

t2

q(t)h2(t)
( g

h

)2

(t) dt

=
( g

h

)2

(t2)

∫ ξ

t2

q(t)h2(t) dt +
( g

h

)2

(t3)

∫ t3

ξ

q(t)h2(t) dt

and consequently, according to conditions (12)

∫ t2

t1

q(t)h2(t) dt +

∫ t3

t2

q(t)g2(t) dt =

∫ ξ

t1

q(t)h2(t) dt .
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Thus, we may summarize

F(y; t0, t3) = K +
(1 − α)(2 − α)(3 − α)

4
ln t2 +

β

8

∫ t2

t1

dt

t ln t
+ L

+ o(1) −
∫ ξ

t1

q(t)h2(t) dt + h̃T (t2)X
T−1(t2)

×
(∫ t3

t2

X−1(s)B(s)XT−1(s) ds

)−1

X−1(t2)h̃(t2)

− (1 − α)(2 − α)(3 − α)

4
ln t2 −

(α − 1)(α − 3)

4
− o(1) .

According to (11), t2 > t1 be such that
∫ t2

t1

β

8t ln t
dt −

∫ ξ

t1

q(t)h2(t) dt =

∫ ξ

t1

(

α2 − 4α + 5

8t4−α ln2 t
− q(t)

)

t3−α ln t dt

−
∫ ξ

t2

α2 − 4α + 5

8t ln t
dt < −(K + L + 2)

and the sum of all terms o(1) in the previous computation is less than 1.
Using the fact that (X, U) is the principal solution,

h̃T (t2)X
T−1(t2)

(∫ t3

t2

X−1(s)B(s)XT−1(s)ds

)−1

X−1(t2)h̃(t2) → 0

as t3 → ∞, t2 being fixed. This enables to choose t3 > t2 such that

h̃T (t2)X
T−1(t2)

×
(∫ t3

t2

X−1(s)B(s)XT−1(s)ds

)−1

X−1(t2)h̃(t2) <
(α − 1)(α − 3)

4
+ 1 .

For t2, t3 chosen in this way we have

F(y; T,∞)

< K − (K + L + 2) + L + 1 +
(α − 1)(α − 3)

4
+ 1 − (α − 1)(α − 3)

4
= 0 .

And it means that equation (1) is oscillatory. �

Note that when α = 0 this statement was proved in [3], where the additional
condition q(t) ≥ 0 was assumed. In our proof, since we have shown the monotony

of q
h
, the term

∫ t3

t2
q(t)g2(t)dt can be removed from the computations and the sing

restriction on the function q may be relaxed.

Theorem 2. If the second order linear differential equation

(14) (tz′)′ +
2

α2 − 4α + 5
t3−αq(t)z = 0

is nonoscillatory, then equation (1) is also nonoscillatory.
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Proof. Let T ∈ R and y ∈ W 2,2(T,∞) with compact support in (T,∞) be
arbitrary. Using (9) from Lemma 5 and Wirtinger inequality (6) we have

∫ ∞

T

(

tαy′′2(t) − γ2,α

t4−α
y2(t)

)

dt =

∫ ∞

t

t1−
√

2β

{[

t1+
√

2β

2

(

y(t)

t
3−α

2

)′
]′}2

dt

≥ β

2

∫ ∞

T

t

[

(

y(t)

t
3−α

2

)′
]2

dt ,

where β = α2 − 4α + 5. Denote z = yt
α−3

2 . Since (14) is nonoscillatory, then,
using the similar result for the second order equations as in Lemma 1

∫ ∞

T

(

tz′2(t) − 2

β
t3−αq(t)z2(t)

)

dt > 0 ,

if T is sufficiently large and by the above inequality
∫ ∞

T

[

tαy′′2(t) −
( γ2,α

t4−α
+ q(t)

)

y2(t)
]

dt ≥ β

2

∫ ∞

T

t
[

Big(
y(t)

t
3−α

2

)′]2
dt−

∫ ∞

T

q(t)y2(t) dt

=
β

2

∫ ∞

T







t

[

(

y(t)

t
3−α

2

)′
]2

− 2

β
t3−αq(t)

(

y(t)

t
3−α

2

)2






dt > 0 .

Therefore, again by Lemma 1, equation (1) is nonoscillatory. �

Corollary 1. The equation

(15) (tαy′′)
′′ −

(

γ2,α

t4−α
+

γ

t4−α ln2 t

)

y = 0

is nonoscillatory if and only if γ ≤ α2−4α+5
8 .

Proof. If γ > α2−4α+5
8 , then, for q(t) = γ

t4−α ln2 t
, condition (11) takes the form

∫ ∞ γ − α2−4α+5
8

t ln t
= ∞

and hence (15) is oscillatory according to Theorem 1. Conversely, since the equa-
tion

(tz′)
′
+

µ

t ln2 t
z = 0

is nonoscillatory for µ ≤ 1
4 , we have the nonoscillation of

(tz′)′ +
2

α2 − 4α + 5
t3−α γ

t4−α ln2 t
z = 0

for γ ≤ α2−4α+5
8 and thus the nonoscillation of (15) follows from Theorem 2. �



468 S. FIŠNAROVÁ

4. Notes and remarks

(a) We have excluded from our investigations the case α ∈ {1, 3} for the follow-
ing reason. The solutions of

(16) (tαy′′)′′ − γ

t4−α
y = 0

are in the form y(t) = tλ, where λ is a root of the polynomial P2,α(λ) − γ with

P2,α(λ) = λ(λ − 1)(λ + α − 2)(λ + α − 3) .

There is one positive maximum of P2,α(λ) for λ = 3−α
2 . Thus, if γ2,α := P2,α(3−α

2 ),
then the polynomial P2,α(λ) − γ2,α has four real roots with the double root in
λ = 3−α

2 . If α ∈ {1, 3}, then P2,α(3−α
2 ) = 0 and there is no positive constant γ for

which (16) is nonoscillatory.
As an analogy of (10) in case α ∈ {1, 3} we can take the equation

(tαy′′)′′ − γ

t4−α ln2 t
y = 0 ,

see [5]. However, since we are not able to find solutions of this equation explicitly,
we have not succeeded in extending the results to this case, but this problem is a
subject of the present investigation.

(b) Oscillation and nonoscillation criteria presented in this paper are closely related
to the problem of conditional oscillation of (15). Equation (15) is conditionally
oscillatory with

(17) L(y) = (tαy′′)
′′ − γ2,α

t4−α
y, w(t) =

1

t4−α ln2 t

and with the oscillation constant

λ0 =
α2 − 4α + 5

8
.

Conditionally oscillatory of differential equations has applications in the spectral
theory of differential operators. In particular, next statement holds, see [6].

Proposition 1. The spectrum of the operator 1
w

L in the Hilbert space

L2
w = {y :

∫ ∞

w(t)y2(t)dt < ∞}

is discrete and bounded below (the so called property B-D) if and only if the equation
L(y) = λw(t)y is nonoscillatory for every λ ∈ R.

With the respect to the previous statement and Corollary 1, the differential

operator 1
w

L given by (17) does not have the property B-D, since for λ > α2−4α+5
8

equation (15) is oscillatory and it is nonoscillatory for λ ≤ α2−4α+5
8 .
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