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NON–EXISTENCE OF NATURAL OPERATORS

TRANSFORMING CONNECTIONS ON

Y → M INTO CONNECTIONS ON FY → Y

W. M. MIKULSKIAbstrat. Under some weak assumptions on a bundle functor F : FMm,n → FM

we prove that there is no FMm,n-natural operator transforming connections on
Y → M into connections on FY → Y .

Introduction

Let Mf be the category of manifolds and their maps. Let Mfn be the cate-
gory of n-dimensional manifolds and their local diffeomorphisms. Let FM be the
category of fibered manifolds and their fibered maps. Let FMm,n be the category
of fibered manifolds with m-dimensional bases and n-dimensional fibers and their
local fibered diffeomorphisms.

We recall that a (general) connection on a fibered manifold p : Y → M is a
smooth section Γ : Y → J1Y of the first prolongation of Y , which can be also
interpreted as the lifting map Γ : Y ×M TM → TY , see [1].

There are known the following facts, see e.g. [1]:

Fact 1. There is no first order FMm,n-natural operator transforming connections
on Y → M into connections on the vertical bundle V Y → Y .

Fact 2. There is no first order FMm,n-natural operator transforming connections
on Y → M into connections on the tangent bundle TY → Y .

Fact 3. There is no first order FMm,n-natural operator transforming connections
on Y → M into connections on J1Y → Y .

The purpose of this short note is the following general result:

Theorem 1. Let F : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle F̃ :Mfn → FM, F̃N = F (Rm×N), F̃ϕ = F (idRm ×ϕ),
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N ∈ Obj(Mfn), ϕ ∈ Morph(Mfn) is not of order 0. Then there is no FMm,n-
-natural operator transforming connections on Y → M into connections on
FY → Y .

That the assumption on F is essential is remarked. Applications of Theorem 1
are given. A generalization of Theorem 1 is proved.

All manifolds are assumed to be finite dimensional and of class C∞. All maps
between manifolds are assumed to be of class C∞.

1. Proof of Theorem 1

Lemma 1. Let G :Mfn → FM be a natural bundle of order r ≥ 1. Then any
natural operator V : TMfn

 TG of vertical type is of order r − 1.

Proof. Let X1, X2 ∈ X (N) be two vector fields with jr−1
x (X1) = jr−1

x (X2), x ∈
N . Let w ∈ GxN . Because of the regularity of V we can assume that X1(x) 6= 0.
There is an x-preserving local diffeomorphism ϕ : N → N such that jr

xϕ = id and
ϕ∗X1 = X2 near x, see [1]. Then V(X2)(w) = V(ϕ∗X1)(w) = TGx(ϕ) ◦ V(X1) ◦
Gx(ϕ

−1)(w) = V(X1)(w) because of Gx(ϕ) = id as G is of order r and jr
xϕ = id.

�

Proof of Theorem 1. Suppose D is such an operator. Then for any n-manifold
N we have the connection

ΓN = D(

m∑

i=1

dxi ⊗
∂

∂xi
) : F (Rm × N)×Rm×N T (Rm × N)→ TF (Rm × N)

on F (Rm × N) → Rm × N , where x1, . . . , xm are the usual coordinates on Rm.

Define a 0-order natural operator A : TMfn
 T F̃ by

A(X)w = ΓN (w, X(y)) ,

X ∈ X (N), w ∈ F(x,y)(R
m × N) ⊂ F̃N , (x, y) ∈ Rm × N , X(y) ∈ TyN =

{0x} × TyN ⊂ T(x,y)(R
m × N). Then A(X) is a projectable vector field covering

X . Then
A = F̃ + V ,

where F̃ : TMfn
 T F̃ is the flow operator and V : TMfn

 T F̃ is a natural

operator of vertical type. Let r ≥ 1 be the (minimal) order of F̃ . Any vertical

type natural operator V : TMfn
 T F̃ is of order r − 1 and F̃ is of (minimal)

order r. Then A is not of order r − 1. Contradiction. �

2. Essentiality of the assumption of Theorem 1

Example 1. Let F : FMm,n → FM be the trivial bundle functor with fiber R.
For any FMm,n-object Y we have the trivial connection D on FY = Y ×R→ Y .
D is an (absolute) natural operator transforming connections on Y → M into
connections on FY → Y .



NON–EXISTENCE OF NATURAL OPERATORS TRANSFORMING CONNECTIONS 3

3. Applications of Theorem 1

Corollary 1. Let F :Mf → FM be a non-trivial bundle functor with the point
property, e.g. the tangent functor T , the r-tangent functor T r, the Weil functor T A

corresponding to an r-order Weil algebra A, the vector r-tangent functor T (r) =
(Jr(.,R)0)

∗ for r ≥ 1, e.t.c. Write F : FMm,n → FM for the composition of
F with the forgetfull functor FMm,n → Mf . Then there is no FMm,n-natural
operator transforming connections on Y → M into connections on FY → Y . In
particular, for F = T we reobtain Fact 2 without any assumption on the order of
operators.

Corollary 2. Let F : Mfn → FM be a bundle functor of non-zero order,
e.g. the tangent functor T , the r-tangent functor, the Weil functor T A corre-
sponding to a Weil algebra A, the vector r-tangent functor T (r) = (Jr(.,R)0)

∗,
the r-cotangent functor T r∗ = Jr(.,R)0, e.t.c. Let V F : FMm,n → FM be the
vertical modification on F , V F Y =

⋃
x∈M F (Yx), V F ϕ =

⋃
x∈M F (ϕx). Then

there is no FMm,n-natural operator transforming connections on Y → M into
connections on FY → Y . In particular, for F = T we have V F = V and we
reobtain Fact 1 without any assumption on the order of operators.

Corollary 3. Let F = Jr : FMm,n → FM be the functor of r-jet prolongation,
r ≥ 1. Then there is no FMm,n-natural operator transforming connections on
Y → M into connections on JrY → Y . In particular, for r = 1 we reobtain Fact
3 without any assumption on the order of operators.

Clearly, the list of applications of Theorem 1 is not complete.

4. A generalization of Theorem 1

Theorem 2. Let H : FMm,n → FM be a bundle functor such that there is
u0 ∈ H(0,0)(R

m×Rn) with H(idRm ×ϕ)(u0) = u0 for any 0-preserving embedding
ϕ : Rn → Rn. Let F : FMm,n → FM be a bundle functor such that the

corresponding natural bundle F̃ : Mfn → FM, F̃N = F (Rm × N), F̃ϕ =
F (idRm ×ϕ), N ∈ Obj(Mfn), ϕ ∈ Morph(Mfn) is not of order 0. Then there is
no FMm,n-natural operator transforming sections of HY → Y into connections
on FY → Y .

Proof. Using u0 we produce a section σ0 of H(Rm × N) → Rm × N which is
invariant with respect to FMm,n-maps of the form idRm ×ϕ. Next we modify the

proof of Theorem 1 replacing connections
∑m

i=1 dxi ⊗ ∂
∂xi by σ0. �

5. Applications of Theorem 2

Corollary 4. Let F : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle F̃ :Mfn → FM, F̃N = F (Rm×N), F̃ϕ = F (idRm ×ϕ),
N ∈ Obj(Mfn), ϕ ∈ Morph(Mfn) is not of order 0. Then there is no FMm,n-
natural operator transforming pairs of an s-order connection on M and a connec-
tion on Y → M into connections on FY → Y .
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Corollary 5. Let F : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle F̃ :Mfn → FM, F̃N = F (Rm×N), F̃ϕ = F (idRm ×ϕ),
N ∈ Obj(Mfn), ϕ ∈ Morph(Mfn) is not of order 0. Then there is no FMm,n-
natural operator transforming a finite number of connections on Y → M into
connections on FY → Y .

Corollary 6. Let F : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle F̃ :Mfn → FM, F̃N = F (Rm×N), F̃ϕ = F (idRm ×ϕ),
N ∈ Obj(Mfn), ϕ ∈ Morph(Mfn) is not of order 0. Then there is no FMm,n-
natural operator transforming a finite number of (projectable) (1, k)-tensor fields
on Y into connections on FY → Y .

Corollary 7. Let F : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle F̃ :Mfn → FM, F̃N = F (Rm×N), F̃ϕ = F (idRm ×ϕ),
N ∈ Obj(Mfn), ϕ ∈ Morph(Mfn) is not of order 0. Then there is no FMm,n-
invariant connection on FY → Y . In particular for m = 0 we obtain that if
F : Mfn → FM is a natural bundle which is not of order 0 then there is no
canonical connection on FN → N .
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