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CONFORMALLY FLAT SEMI-SYMMETRIC SPACES

GIOVANNI CALVARUSO

Abstract. We obtain the complete classification of conformally flat semi-
symmetric spaces.

1. Introduction

Conformally flat manifolds represent a classical field of investigation in Rie-
mannian geometry. A survey on conformally flat spaces would be too long a task
for this Introduction. For the purpose of this paper, it suffices to recall only some
problems related with symmetry. Locally symmetric conformally flat spaces are
well-known, they have been classified by P. Ryan [R] (see also [K]), who proved
the following

Theorem 1.1 ([R]). Let M be an n-dimensional conformally flat space with par-

allel Ricci tensor. Then M has as its simply connected Riemannian covering one

of the following spaces:

R
n, Sn(k), Hn(−k), R × Sn−1(k), R × H

n−1(−k), Sp(k) × H
n−p(−k) ,

where by Sn(k) we denote a Euclidean n-sphere with constant curvature k > 0,
and by H

n(−k) we denote an n-dimensional simply connected, connected space

with constant curvature −k < 0.

Semi-symmetric spaces are a well-known and natural generalization of locally
symmetric spaces. A semi-symmetric space is a Riemannian manifold (M, g) such
that its curvature tensor R satisfies the condition

R(X, Y ) · R = 0 ,

for all vector fields X , Y on M , where R(X, Y ) acts as a derivation on R [S]. Such a
space is called “semi-symmetric” since the curvature tensor Rp of (M, g) at a point
p ∈ M is the same as the curvature tensor of a symmetric space (which may change
with the point p). So, locally symmetric spaces are obviously semi-symmetric, but
the converse is not true, as was proved by H. Takagi [T]. In any dimension greater
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than two there exist examples of semi-symmetric spaces which are not locally
symmetric (we refer to [BKV] for a survey). Nevertheless, semi-symmetry implies
local symmetry in several cases and it is an interesting problem, given a class of
Riemannian manifolds, to decide whether inside that class semi-symmetry implies
local symmetry or not (see for example [B], [BC], [CV]).

In this paper, we classify conformally flat semi-symmetric spaces, generalizing
the result of Ryan. To do this, we use the very special geometry of the conformally
flat spaces and the local structure of a semi-symmetric space as described by Szabó
[S]. We prove the following

Main Theorem. A conformally flat semi-symmetric space M (of dimension

n > 2) is either locally symmetric or it is locally irreducible and isometric to a

semi-symmetric real cone.

The paper is organized in the following way. In Section 2, we recall some basic
facts and results about conformally flat Riemannian manifolds and semi-symmetric
spaces. Then, in the Sections 3 and 4 we prove the main result on conformally flat
semi-symmetric spaces, dealing respectively with the locally irreducible case and
with the locally reducible case.

Acknowledgements. The author wishes to express his gratitude towards Dr.
E. Boeckx for his precious help during the preparation of this paper and to Prof.
O. Kowalski and L. Vanhecke for revising the manuscript.

2. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n > 2 and R its curvature
tensor, taken with the sign convention R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ], for all vector
fields X, Y on M , where ∇ denotes the Levi Civita connection of M . By ̺, Q
and τ we denote respectively the Ricci tensor, the Ricci operator associated to ̺
through g and the scalar curvature of M . Let p be a point of M and {e1, . . . , en}
an orthonormal basis of the tangent space TpM . The components of R and ̺ with
respect to {e1, . . . , en} are denoted respectively by Rijkh and ̺ik. As is well-known,
for a conformally flat space we have

Rijkh =
1

n − 2
(gih̺jk + gjk̺ih − gik̺jh − gjh̺ik)(2.1)

−
τ

(n − 1)(n − 2)
(gihgjk − gikgjh) .

Moreover, (2.1) characterizes conformally flat Riemannian manifolds of dimension
n ≥ 4, while it is trivially satisfied by any three-dimensional manifold. Conversely,
the condition

∇i̺jk −∇j̺ik =
1

2(n − 1)
(gjk∇iτ − gik∇jτ) ,(2.2)

which characterizes three-dimensional conformally flat spaces, is trivially satisfied
by any conformally flat Riemannian manifold of dimension greater than three.
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We now recall some basic facts about semi-symmetric spaces. Let (M, g) be a
smooth, connected Riemannian manifold. As already mentioned in the Introduc-
tion, (M, g) is said to be semi-symmetric if its curvature tensor R satisfies

R(X, Y ) · R = 0 ,(2.3)

for all vector fields X , Y and where R(X, Y ) acts as a derivation on R. This is
equivalent to the fact that Rp is, for each p ∈ M , the same as the curvature tensor
of a symmetric space. This last space may vary with p. We recall the following

Definition 2.1. The nullity vector space of the curvature tensor at a point p of
a Riemannian manifold (M, g) is given by

E0p = {X ∈ TpM | R(X, Y )Z = 0 for all Y, Z ∈ TpM} .

The index of nullity at p is the number ν(p) = dimE0p. The index of conullity at

p is the number u(p) = dim M − v(p).

By means of the index of nullity and the index of conullity, Szabó [S] classi-
fied locally irreducible semi-symmetric spaces, proving that such a space must be
locally isometric to one of the following spaces:

(1) a symmetric space when ν(p) = 0 at each point p, or

(2) a real cone when ν(p) = 1 and u(p) = n − 1 > 2 at each point p, or

(3) a Kählerian cone when ν(p) = 2 and u(p) = n − 2 > 2 at each point p, or

(4) a Riemannian manifold foliated by Euclidean leaves of codimension two
when ν(p) = n − 2 and u(p) = 2 at each point p of a dense open subset U of M .

Remark 2.2. Note that real cones also exist in dimension three, as cones over
two-dimensional manifolds of constant curvature (see the description of real cones
in the following section 3). Such spaces do not appear explicitly in Szabó’s classi-
fication, since they are special cases of (4), that is, Riemannian manifolds foliated
by Euclidean leaves of codimension two.

The following result describes the local structure of a semi-symmetric space
(M, g).

Theorem 2.3 ([S]). There exists an open dense subset U of M such that around

every point of U the manifold is locally isometric to a Riemannian product of type

R
k × M1 × · · · × Mr ,(2.4)

where k ≥ 0, r ≥ 0 and each Mi is either a symmetric space, a two-dimensional

manifold, a real cone, a Kählerian cone or a Riemannian space foliated by Eu-

clidean leaves of codimension two.

The decomposition (2.4) may vary in the different connected components Uα

of U , while it is constant on each Uα. While proving the Main Theorem, we
shall come back to the description of these factors of the local decomposition of a
semi-symmetric space. For more details and references we refer to [BKV].
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3. Irreducible conformally flat semi-symmetric spaces

We open this Section by proving the following result, which will be used through-
out the rest of the paper.

Theorem 3.1. Let (M, g) be a Riemannian manifold satisfying (2.1), of dimen-

sion n ≥ 3 (that is, either dimM = 3 or M is conformally flat). Then, at each

point p of M , the index of nullity is either ν(p) = 0, 1 or n.

Proof. Fix a point p ∈ M . If the curvatur tensor Rp at p vanishes, then ν(p) = n
and the conclusion follows. So, we now assume Rp 6= 0 and we prove that ν(p) ≤ 1.
For this purpose, it is enough to show that if ν(p) 6= 0, then ν(p) = 1.

Suppose then ν(p) 6= 0. Let e0 ∈ E0p be a unit vector and {e0, e1, . . . , en−1} an
orthonormal basis of TpM . Since e0 ∈ E0p, R0jkh = 0 for all j, k, h, from which
it also follows that ̺0k = −

∑

j R0jkj = 0 for all k. Therefore, from (2.1) we have

0 = R0jkh =
1

n − 2
(δ0h̺jk − δ0k̺jh) −

τ

(n − 1)(n − 2)
(δ0hδjk − δjhδ0k) ,

for any choice of j, k, h. Choosing k = 0 and h 6= 0, we then get

̺jh −
τ

n − 1
δjh = 0 .

Hence, the Ricci tensor at p is described by






̺ij = τ
n−1 if i = j ≥ 1,

̺ij = 0 in all the other cases.
(3.1)

Clearly, if ν(p) > 1, we can choose at least two mutually orthogonal unit vectors
in E0p, say e0, e1, and an orthonormal basis {e0, e1, . . . , en−1} containing them.
But then, since e1 is a nullity vector, from (3.1) we have

0 = ̺11 =
τ

n − 1
,

that is, τ = 0 and so, again by (3.1), ̺ij = 0 for all i, j. Then (2.1) yields that
Rp = 0, contrary to our assumption. Therefore, ν(p) = 1 and this completes the
proof.

Remark 3.2. In the proof of Theorem 3.1, we showed that if (M, g) is a Rie-
mannian manifold satisfying (2.1) and p a point of M with ν(p) 6= 0, then either
Rp = 0 or ̺ is described by (3.1).

Theorem 3.1 restricts the research of conformally flat semi-symmetric spaces to
the ones having index of nullity equal to 0, 1 or n. The most interesting case is the
one of a semi-symmetric space having nullity index equal to 1, since if the nullity
index is constant and equal to 0 (respectively, to n), then the space is locally
symmetric (respectively, flat).

For this reason, we now give a short description of real cones, which will turn
out to be the only examples of conformally flat semi-symmetric spaces which are
not locally symmetric. We refer to [BKV] for more details.
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Consider a Riemannian manifold (M̄, ḡ). Let µ(t) be the unique solution of

the differential equation dµ
dt

= −µ2 with initial condition µ(0) = µ0 > 0, that is,

µ(t) = (t + (1/µ0))
−1. Put R+ = {x ∈ R | x > −1/µ0} and on the product

manifold R+ × M̄ consider the Riemannian metric

g = dx0 ⊗ dx0 + µ(x0)−2π∗g ,

where x0 is the natural coordinate on R+ and π : R+ × M̄ → M̄ the projection
on the second factor. The manifold (R+ × M̄, g) is called a Riemannian cone over

(M̄, ḡ). Let T = ∂/∂x0 denote the unit vector field tangent to R+ in R+ × M̄ .
The curvature tensor of M = R+ × M̄ is described by (see [BKV])

R(X, Y )Z = g(B0(Y ), Z)B0(X) − g(B0(X), Z)B0(Y )(3.2)

+ (π∗R̄)(X, Y )Z ,

for all tangent vectors X , Y , Z to M̄ , where B0(X) := ∇XT = µ(X − g(X, T )T ).
Any semi-symmetric real cone (M = R+ × M̄, g) is locally isometric to some

maximal cone Mc(M̃, µ0), where (M̃, g̃) is a real space form of constant curvature
c [BKV]. Note that at any point of M , T ∈ E0. If M is locally irreducible and
c 6= 1, then at each point of M the index of nullity is equal to one and the index of
conullity coincides with the dimension of M̄ . We include the case when dimM̄ = 2.
In [BKV], this case was excluded, since a three-dimensional real cone is a special
case of three-dimensional Riemannian manifold foliated by Euclidean leaves of
codimension two (briefly, a Riemannian manifold of conullity two).

At any point p of a semi-symmetric real cone M , fix an orthonormal basis of
tangent vectors {e0, e1, . . . , er}, with e0 = Tp and e1, . . . , er tangent to the real

space form (M̃ r, g̃) (r = n − 1). Then, using (3.2) to compute the components of
the curvature tensor, we get

{

Rijkh = 0 if 0 ∈ {i, j, k, h} ,

Rijkh = µ2(c − 1)(δikδjh − δjkδih) otherwise.
(3.3)

Computing the Ricci components and the scalar curvature of M starting from
(3.3), it is easy to check that (2.1) is satisfied and, if dimM ≥ 4, this implies that
M is conformally flat. If dim M = 3, one can check that (2.2) holds and so, M
is conformally flat also in this case. Therefore, a real semi-symmetric cone M is
a conformally flat (semi-symmetric) Riemannian manifold, with scalar curvature
τ = r(r − 1)(c − 1)µ2. Note that τ cannot be constant, as µ depends on t and so,
M is never locally symmetric.

We can now classify locally irreducible conformally flat semi-symmetric spaces,
by proving the following

Theorem 3.3. A locally irreducible conformally flat Riemannian manifold (M, g)
is semi-symmetric if and only if it is locally symmetric or locally isometric to a

(semi-symmetric) real cone.

Proof. The “if” part is trivial, since a Riemannian manifold which is locally
symmetric or locally isometric to a real cone is clearly semi-symmetric. We now
prove the “only if” part. According to Szabó’s classification, M must be locally
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isometric to one of the spaces (1)–(4) listed before Remark 2.2. Since M is locally
irreducible, M cannot be flat. So, let p be a point of M with Rp 6= 0. Theorem 3.1
then implies that either ν(p) = 0 or 1. This excludes the case (3), while case (4) is
only possible when n = 3. If ν(p) = 0, then M is locally isometric to an irreducible
symmetric space and the conclusion follows. In order to complete the proof, we
have to show that a three-dimensional conformally flat Riemannian manifold of
conullity two is isometric to a real cone. Note that a more general classification
result for three-dimensional locally irreducible pseudo-symmetric spaces of con-
stant type was proved by N. Hashimoto and M. Sekizawa in [HSk]. (This was
pointed out to the author by O. Kowalski after the first version of this paper was
submitted.) Nevertheless, to keep the paper more self-contained, we shall present
here an alternative proof.

Let N be a three-dimensional conformally flat Riemannian manifold of conullity
two. We refer to [BKV] for a detailed description of such a space. Here, we just
recall that, with respect to a suitable system of coordinates {x, y, w}, N admits a
local orthonormal frame {E1, E2, E3} whose dual coframe is of the form

ω1 = f(w, x, y) dw , ω2 = A(w, x, y) dx + C(w, x, y) dw , ω3 = dy + H(w, x) dw .

The curvature tensor of N is given by

R = 4kω1 ∧ ω2 ⊗ ω1 ∧ ω2 ,(3.4)

the Ricci tensor and its covariant derivative are respectively given by

̺ = k(ω1 ⊗ ω1 + ω2 ⊗ ω2)

and

∇̺ = dk ⊗ (ω1 ⊗ ω1 + ω2 ⊗ ω2)(3.5)

− k((aω1 + bω2) ⊗ (ω1 ⊗ ω3 + ω3 ⊗ ω1) +

+ (cω1 + dω2) ⊗ (ω2 ⊗ ω3 + ω3 ⊗ ω2)) .

Assuming that N is conformally flat, (2.2) holds. We can use (3.5) to compute
the components of ∇̺ with respect to {E1, E2, E3} and then apply (2.2). After
some routine calculations we get a = e, b = c = 0 and E1(k) = E2(k) = 0.

In order to proceed, we need to go deeper into the theory of foliated semi-
symmetric spaces as developed in [BKV]. It is shown there that there exist four
types of foliated semi-symmetric spaces, according to the number of asymptotic

distributions they admit. In the three-dimensional situation — the one we are
interested in —, asymptotic distributions are given by the solutions of the equation

c(ω1)2 + (e − a)ω1ω2 − b(ω2)2 .(3.6)

Since we found that a = e and b = c = 0, it follows that N admits infinitely many
asymptotic distributions, that is, N is a planar foliated semi-symmetric space. We
refer to Section 5.1 of [BKV] for details.
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The metric of a locally irreducible three-dimensional planarly foliated semi-
symmetric space N is of “cone type”, since it is locally determined by an or-
thonormal coframe of the form

ω1 = t(w, x) dw , ω2 = y dx ω3 = dy

(see [BKV, Theorem 6.4]), and its curvature tensor is described by (3.4), with

k = −y−2
( t′′xx

t
+ 1

)

. As E1(k) = E2(k) = 0,
t′′xx

t
is independent of w and x

and so, it is constant. Therefore, N turns out to be a Riemannian cone over a
two-dimensional Riemannian manifold of constant curvature and this completes
the proof.

4. Reducible conformally flat semi-symmetric spaces

First of all, we need the following Lemma, which clarifies the relation between
the index of nullity of a reducible Riemannian manifold and that of its components.

Lemma 4.1. Let (M, g) be a Riemannian manifold, locally isometric to a Rie-

mannian product M1 × M2. Then, at any point p = (p1, p2) of M , we have

ν(p) = ν(p1) + ν(p2) .

Proof. As is well known, TpM = Tp1
M1 ⊕ Tp2

M2, that is, TpM splits into the
direct sum of Tp1

M1 and Tp2
M2. Using the fact that the curvature of a Riemannian

product is given by R = R1 + R2, it is easy to show that E0p = E0p1
⊕E0p2

, from
which the conclusion follows at once.

Remark 4.2. One can easily extend the result of Lemma 4.1 to the case when
M is locally isometric a Riemannian product M1 × · · · × Mk, obtaining, for any
point p = (p1, . . . , pk),

ν(p) = ν(p1) + · · · + ν(pk) .

Note that, in particular, ν(p) = 0 implies ν(p1) = .. = ν(pk) = 0, while ν(p) = 1
implies that there exists an index j such that ν(pj) = 1 and ν(pi) = 0 for all i 6= j.

Proposition 4.3. Let M be a semi-symmetric conformally flat Riemannian man-

ifold. If M is locally isometric to a Riemannian product M ′×M̃, with dimM ′ = 2,
then M is locally symmetric.

Proof. Fix a local orthonormal frame {e1, e2, v1, . . . , vm} of vector fields of M ,

with e1, e2 tangent to M ′ and v1, . . . , vm to M̃ . From (2.1), we get

R1212 = −
1

n− 2
(̺22 + ̺11) +

τ

(n − 1)(n − 2)
.(4.1)

On the other hand, since R = R′ + R̃, where R′ and R̃ denote respectively the
curvature tensors of M ′ and M̃ , we have

R1212 = R′

1212 = −K ,
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where K denotes the Gaussian curvature of M ′. Moreover, again by R = R′ + R̃,
we easily get ̺11 = ̺22 = K. Therefore, from (4.1) we get

τ = −(n2 − 5n + 4)K .

On the other hand, τ = τ ′ + τ̃ = 2K + τ̃ and so,

τ̃ = −(n2 − 5n + 6)K .(4.2)

Since τ̃ and K depend respectively of the points of M̃ and M ′, (4.2) implies that
τ̃ and K are constant, unless n2 − 5n + 6 = 0, which can only occur for (n = 2
and) n = 3. So, the possible cases are the following:

a) If n > 3, then τ̃ and K are constant. Therefore, τ = 2K + τ̃ is constant and
(2.2) implies that ̺ is a Codazzi tensor. Hence, M is locally symmetric, as was
proved by E. Boeckx in [B].

b) If n = 3, then M is locally isometric to R×M ′ and {e0 = v1, e1, e2} is a local
orthonormal frame of vector fields on M . Applying (2.2), taking into account that
e0 ∈ E0, we get

0 = ∇0̺10 −∇1̺00 = −
1

4
∇1τ ,

0 = ∇0̺20 −∇2̺00 = −
1

4
∇2τ .

Moreover, ∇0τ = 0, since τ = τ0 + τ ′ with τ0 = 0 and τ ′ constant along R.
Therefore, τ is constant and, applying again the result of [B], we can conclude
that M is locally symmetric.

The following result ends the proof of the Main Theorem.

Theorem 4.4. A locally reducible conformally flat Riemannian manifold is semi-

symmetric if and only if it is locally symmetric.

Proof. Since locally symmetric spaces are always semi-symmetric, it is enough to
prove the “only if” part. Let (M, g) be a locally reducible conformally flat semi-
symmetric space. According to Theorem 2.3, there exists an open dense subset U
of M such that each point p ∈ U admits a neighborhood which is isometric to a
Riemannian product of type (2.4), and such decomposition remains constant on
each connected component Uα of U . If we prove that each Uα is locally symmetric,
then we can conclude by a continuity argument that M itself is locally symmetric.

We consider the three-dimensional case first. Taking into account (2.4), each
Uα is either flat (and hence, locally symmetric), or it is isometric to a Riemannian
product R×M ′ and so, Uα is again locally symmetric, as follows from Proposition
4.3.

Next, suppose that n = dimM > 3 and let Uα be a connected component of
U , locally isometric to a Riemannian product of type (2.4).

a) If Uα is flat, then it is clearly locally symmetric.

b) Being an open subset of M , Uα itself is semi-symmetric and conformally flat.
If one of the factors of the decomposition (2.4) of Uα is a two-dimensional space,
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then applying Proposition 4.3 we can conclude that Uα is locally symmetric. So,
in the sequel we shall assume that Uα is not flat and none of the factors in (2.4)
is two-dimensional.

Since Uα is conformally flat and not flat, Theorem 3.1 implies that the nullity
index ν on Uα is either equal to 0 or to 1. So, one of the following remaining cases
occurs.

c) If ν = 0, then k = 0 in (2.4), since each vector tangent to R
k belongs to

the nullity vector space. Moreover, ν = 0 on each Mi (and none of them is two-
dimensional), as follows from Lemma 4.1 and Remark 4.2. Therefore, each Mi

is a symmetric space, since all the other irreducible semi-symmetric spaces have
nullity index at least 1. So, Uα is locally symmetric.

d) If ν = 1, then one of the factors in (2.4) has nullity index 1 and all the
others have nullity index 0 (see again Remark 4.2). If k 6= 0, then k = 1 and (2.4)
becomes

R × M1 × · · · × Mr ,

where each Mi has nullity index 0 and is not two-dimensional. Thus, each Mi is
a symmetric space and we can conclude that Uα is locally symmetric.

If k = 0, then by (2.4) and Remark 4.2 it follows that Uα is locally isometric to
a Riemannian product

M1 × MS ,

where M1 is an irreducible semi-symmetric space with nullity index 1 and MS

is a (reducible or irreducible) symmetric space. We prove that this case cannot
occur. In order to do this, we use some well-known curvature formulas for the
Riemannian product M1 × MS.

First of all, since M1 is an irreducible semi-symmetric space with nullity index
1, either M is a three-dimensional Riemannian manifold of conullity two, or it is a
real cone. In both cases, M1 satisfies (2.1). We shall denote by n1 the dimension
of M1 and by R′, ̺′ and τ ′ the curvature tensor, the Ricci tensor and the scalar
curvature of M1, respectively.

Fix a local orthonormal frame {e1, . . . , en1
} on M1, with e1 ∈ E0. The Ricci

tensor ̺′ is described by (3.1) and from (2.1) we get

R′(ei, ej , ei, ej) = −
1

n1 − 2
(̺′jj + ̺′ii) +

1

(n1 − 1)(n1 − 2)
τ ′ ,(4.3)

for all i, j. On the other hand, the curvature tensor and the Ricci tensor of
the Riemannian product M1 × MS are respectively given by R = R′ + RS and
̺ = ̺′ + ̺S . Therefore, we have

R′(ei, ej , ei, ej) = R(ei, ej, ei, ej)(4.4)

−
1

n − 2
(̺jj + ̺ii) +

1

(n − 1)(n − 2)
τ .

Taking into account (3.1), from (4.3) and (4.4) we respectively get

R′(ei, ej , ei, ej) = −
τ ′

(n1 − 1)(n1 − 2)
(4.5)
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and

R′(ei, ej , ei, ej) = −
τ

(n − 1)(n − 2)
.(4.6)

Comparing (4.5) and (4.6), we get

τ

(n − 1)(n − 2)
=

τ ′

(n1 − 1)(n1 − 2)
.(4.7)

Moreover, on the Riemannian product M1 × MS we have τ = τ ′ + τS , where
τS is constant since MS is a symmetric space. So, differentiating (4.7) by ei,
i = 1, . . . , n1, we get

∇ei
τ ′

(n − 1)(n − 2)
=

∇′

ei
τ ′

(n1 − 1)(n1 − 2)
.(4.8)

Since ∇ei
= ∇′

ei
for all i and n 6= n1, from (4.8) it follows that ∇′

ei
τ ′ = 0 for all i,

that is, τ ′ is constant. Since τS is also constant, τ is constant and so, as M1 ×MS

satisfies (2.2), the Ricci tensor ̺ of M1 × MS is a Codazzi tensor, which implies
that M1 ×MS is locally symmetric [B]. But then, since MS is a symmetric space,
M1 itself should be locally symmetric, which cannot occur and this ends the proof.
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