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PROJECTIVE REPARAMETRIZATION OF HOMOGENEOUS

CURVES

BORIS DOUBROV

Abstract. We study the conditions when locally homogeneous curves in ho-
mogeneous spaces admit a natural projective parameter. In particular, we
prove that this is always the case for trajectories of homogeneous nilpotent
elements in parabolic spaces. On algebraic level this corresponds to the gen-
eralization of Morozov–Jacobson theorem to graded semisimple Lie algebras.

1. Symmetry algebras of orbits of virtual subgroups

Let M = G/G0 be a real smooth homogeneous space, o = eG0 an origin in M
and (g, g0) the corresponding pair of Lie algebras. In the sequel we always assume
that the homogeneous space G/G0 is locally effective, i.e. the set of all elements of
G acting trivially on M forms a discrete subgroup of G.

We can identify g with the Lie algebra of vector fields on M generated by actions
of one-parameter subgroups in G. Then the subalgebra g0 consists precisely of
those elements of g that vanish at the origin.

Let L be any submanifold in M . Then the symmetry algebra sym(L) is defined
as the set of all vector fields of g that are tangent to L:

sym(L) = {X ∈ g | Xp ∈ TpL for all p ∈ L} .

We say that L is locally homogeneous if the restriction of sym(L) to L is transitive,
i.e. if the space sym(L)p = {Xp | X ∈ sym(L)} coincides with TpL for all p ∈ L.
The class of connected locally homogeneous submanifolds coincides with open
connected subsets of orbits of virtual subgroups in G [4].

Consider any virtual subgroup H ⊂ G and its orbit L = H.o through the origin.
It is clear that L is a homogeneous submanifold in M , but its complete symmetry
algebra can be larger then the subalgebra h of the subgroup H . The following
result from [3, 4] describes the complete symmetry algebra of L.
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Theorem 1. 1. The subalgebra sym(L) is the largest among all subalgebras a such

that h ⊂ a ⊂ h + g0.

2. Consider the decreasing sequence of subalgebras a0 = g0, ai+1 = {x ∈
ai | [x, h] ⊂ h + ai}. Let r be the smallest integer such that ar = ar+1. Then

sym(L) = ar + h.

Note that ar coincides with all vector fields in sym(L) that vanish at the origin.
Hence, the pair of Lie algebras (ar + h, ar) determines the action of sym(L) on L
up to local equivalence. In particular, dim(ar + h)/ar = dimL. However, the pair
(ar + h, ar) in general does not need to be effective. Its non-effectiveness ideal, i.e.
the maximal ideal of ar + h lying in ar, consists of all vector fields of g that vanish
at all points of L.

2. Parameterization of homogeneous curves

Let, as above, M = G/G0 be a homogeneous space of the Lie group G and let
L be a trajectory of some one-parameter transformation group exp(tx) ⊂ G gen-
erated by a nilpotent element in x ∈ g (i.e., the endomorphism adg x is nilpotent).
We will assume that L contains the origin o, that is L = {exp(tx)G0}. In the
previous section we have shown how to compute the complete symmetry algebra
of L. The aim of this section is to determine when the restriction of sym(L) to
L gives us the three-dimensional Lie algebra, which is locally equivalent to the
algebra of all projective transformations of the line.

As above, let h be a one-dimensional subalgebra generated by the element
x ∈ g and let {ai} be the decreasing sequence of subalgebras constructed in
Theorem 1. Then the pair (h + ar, ar) has codimension one. Denote by m its
ideal of non-effectiveness. Then the pair ((h + ar)/m, ar/m) corresponds to some
one-dimensional real homogeneous space, and it is well-known (see, for example
the original Sophus Lie proof [8] or its modern versions in [6, 5]) that this pair is
isomorphic to one of the following:

1. (R, {0});
2. (〈h, e〉, 〈h〉), where [h, e] = e;
3. (sl2(R), st2(R)), where st2(R) is the subalgebra consisting of all upper trian-

gular matrices in sl2(R).

In the first two cases we shall say that the homogeneous curve L admits an affine

reparametrization, while in the the third case we shall say that it admits a projective

reparametrization (see [5]).
The main result of the paper connects the existence of projective parameteri-

zations with the notion of sl2-triples in Lie algebras. Recall that an sl2-triple is
the triple of elements {x, h, y} in a Lie algebra g forming a canonical basis of a
subalgebra isomorphic to sl2(R) (i.e., [h, x] = 2x, [h, y] = −2y, [x, y] = h).

Theorem 2. Let x be an arbitrary element of the Lie algebra g not contained in

g0. Suppose there exists an element z in g0 such that [x, z] ∈ g0 and [x, [x, z]] = x.

Then

(i) there exist elements h, y ∈ g0 that complete x to sl2-triple;
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(ii) the trajectory L = exp(tx).o admits a projective reparametrization.

Proof. Let h = −2[x, z]. Then we have [h, x] = 2x. Hence, the subalgebra
g′ = 〈x, h〉 is solvable and x ∈ [g′, g′]. From Lie theorem applied to the g′-module
g we see that the element x is nilpotent.

Denote by y′ the element −2z, so that we have [x, y′] = h. Consider the kernel
n of adg x and its subspace n0 = n∩g0. Let us show that [h, y′]+2y′ ∈ n0. Indeed,
we have

[x, [h, y′] + 2y′] = [[x, h], y′] + [h, [x, y′]] + 2[x, y′] = −2[x, y′] + 2[x, y′] = 0 ,

so that [h, y′] + 2y′ ∈ n. On the other hand, it is clear, that [h, y′] and y′ lie in g0.
Next, since [adg h, adg x] = 2 adg x, we see that both subspaces n and n0 are

stable with respect to adg h. Let us show that the restriction of adg h + 2 to n0 is
nondegenerate.

Let Mn = (adg x)ng for any n ≥ 0. As in [1, Ch. VIII, §11, Lemma 6], we see
that for any n > 0

[adg y′, (adg x)n] = n((adg h) − n + 1)(adg x)n−1.

Hence, for any u ∈ Mn−1 we have

n((adg h) − n + 1)u ∈ (adg y′)(adg x)u + Mn .

Since n is stable with respect to adg h, we see that

((adg h) − n + 1)(n ∩ Mn−1) ⊂ n ∩ Mn .

Since the endomorphism adg x is nilpotent, we have Mn = {0} for sufficiently large
n. Hence, all eigenvalues of adg h|n and adg h|n0

are integral and non-negative.
Therefore, the restriction of adg h+2 to n0 is non-degenerate. In particular, there
exists an element y′′ ∈ n0 such that

[h, y′] + 2y′ = [h, y′′] + 2y′′ .

Let y = y′ − y′′. Then y ∈ g0, [h, y] = −2y and [x, y] = [x, y′] = h. This completes
the proof of item (i) of the theorem.

Let {x, h, y} be an sl2-triple existing by (i). As above, denote by {ai} the
decreasing sequence of subalgebras constructed by the subalgebra h = 〈x〉 in g.
Let us prove by induction that h and y lie in ai for all i ≥ 0. For i = 0 this is a
part of the theorem assumption. Since [x, h] = −2x ∈ h ⊂ h+ai then by definition
of ai+1 we have h ∈ ai+1. Similarly, since h ∈ ai and [x, y] = h ∈ ai ⊂ h + ai, we
see that y ∈ ai+1.

This implies that h and y lie also in the symmetry algebra s = sym(L) of L. Let
s0 be the subalgebra of all vector fields in s vanishing at the origin and let m be
the non-effectiveness ideal of the pair (s, s0). Then the pair (s/m, s0/m) is effective
and is isomorphic to one of the three pairs of codimension one listed above.

Let us prove that (adg x)2
s/m

6= 0, which is only possible if s/m is isomorphic to

sl2(R). Indeed, we have

(adg x)2
s/m

(y + m) = −2x + m 6= 0 ,

which completes the proof.
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Example 1. Let us show that the statement (ii) of Theorem 2 can not be inverted.
Indeed, consider the homogeneous space M = RP1 × RP1 with respect to the
action of G = PSL(2, R) × PSL(2, R). Then we have g = sl(2, R) × sl(2, R)
and g0 = st(2, R) × st(2, R), where st(2, R) is a subalgebra of all upper triangular
matrices in sl(2, R).

Consider the nilpotent element x = (( 0 0
1 0 ) , ( 0 1

0 0 )) ∈ g. Then the trajectory of
exp(tx) through the point (o, o) ∈ M , o = [1 : 0] ∈ RP1, coincides with RP1 ×{o}
and has the symmetry algebra equal to sl(2, R)×st(2, R). It is clear that it admits
a projective reparametrization. Yet it is easy to see that x does not lie in (adg x)2g0

and, hence, there is no such element z ∈ g0 that [x, [x, z]] = x.

The well-known Jacobson-Morozov theorem [7, Ch. III, Th. 17] states that any
nilpotent element x in a semisimple Lie algebra over the field of zero characteristic
can be included into an sl2-triple {x, h, y}. This allows us to prove the following
general result concerning the reparametrizations of distinguished curves in the
parabolic geometries (cf. [2]).

Theorem 3. Let M = G/P be a parabolic homogeneous space corresponding to

the real or complex graded semisimple Lie algebra g =
∑k

j=−k gj. Suppose x is an

arbitrary nonzero element in g−i, i > 0. Then

(i) there exist h ∈ g0 and y ∈ gi such that {x, h, y} is an sl2-triple;

(ii) the trajectory exp(tx).o admits a projective reparametrization.

Remark. Item (i) of this theorem for the field of complex numbers is proved in [9].
Our proof holds true for any semisimple graded Lie algebra over any field of zero
characteristic.

Proof. Indeed, x is a nilpotent element in the semisimple Lie algebra g. Hence, it
can be included into some sl2-triple {x, h′, y′}, where each of the elements h′ and
y′ decomposes into the sum of homogeneous elements: h′ =

∑

j h′
j, y′ =

∑

j y′
j

(h′
j , y

′
j ∈ gj). Then the elements h = h′

0 and y′′ = y′
i satisfy the relations [h, x] =

2x and [x, y′′] = h.
Similarly to the proof of Theorem 2, we can consider the kernel n of adg x and

prove that the restriction of adg h + 2 on n is nondegenerate. We can decompose
n as n =

∑

j nj, nj = n ∩ gi. Then since h ∈ g0 and [h, x] = 2x, we see that each
subspace nj is stable with respect to adg h. Again, as in the proof of Theorem 2
we see that [h, y′′] + 2y′′ lies in ni. Hence, there exists an element y′′′ ∈ ni such
that

[h, y′′] + 2y′′ = [h, y′′′] + 2y′′′.

Thus, the element y = y′′ − y′′′ lies in gi and, together with x and h, forms an
sl2-triple.

The second part of the theorem follows immediately from Theorem 2(ii).

Example 2. Consider the flag manifold M = F1,2(R
3) of all flags {0} ⊂ V1 ⊂

V2 ⊂ R
3, dim Vi = i, which is a homogeneous space with respect to the natural

action of the Lie group G = SL(3, R). Then M is a parabolic homogeneous space,
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and g = sl(3, R) =
∑2

j=−2
gj is a graded Lie algebra, such that the subalgebra

∑

j≥0
gj coincides with st(3, R). Take x =

(

0 0 0
1 0 0
1 1 0

)

, which is a nilpotent element in

g, but is not homogeneous with respect to this grading. The direct computation
shows that in this case a3 = {0} and the symmetry algebra of the trajectory
exp(tx).o coincides with Rx. Hence, this trajectory does not admit a projective
reparametrization. So, we see that the homogeneity condition of the nilpotent
element x can not be dropped in Theorem 3.
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simples déployées, Actualités scientifiques et industrielles, 1364, Paris, Hermann 1975.
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