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ON THE DEGENERATION OF HARMONIC SEQUENCES

FROM SURFACES INTO COMPLEX GRASSMANN

MANIFOLDS

WU BING YE

Abstract. Let f : M → G(m, n) be a harmonic map from surface into
complex Grassmann manifold. In this paper, some sufficient conditions for
the harmonic sequence generated by f to have degenerate ∂′-transform or
∂′′-transform are given.

1. Introduction

Let G(m, n) be the Grassmann manifold of all m-dimensional subspaces Cm

in complex space Cn, M be a connected Riemannian surface. Given a harmonic
map f : M → G(m, n), Chern-Wolfson obtain the following sequence of harmonic
maps by using the ∂′-transforms and ∂′′-transforms:

f = f0
∂′

→ f1
∂′

→ · · · ∂′

→ fα
∂′

→ . . . ,

f = f0
∂′′

→ f−1
∂′′

→ · · · ∂′′

→ f−α
∂′′

→ . . . ,(1.1)

(1.1) is called the harmonic sequence generated by f = f0. It is important to
ask when the harmonic sequence (1.1) includes degenerate ∂′-transform or ∂′′-
transform. If m = 1, then the degeneration of ∂′-transform or ∂′′-transform is
equivalent to the isotropy of f . We know that the harmonic sequence (1.1) must
have degenerate ∂′-transform or ∂′′-transform for an arbitrary harmonic map f :
M → G(m, n) if one of the following conditions holds:

(i) g = 0, i.e., M is homeomorphic to the 2-sphere S2 [2];
(ii) g = 1 and deg(f)6= 0 [2];
(iii) m = 1, |deg(f)| > (n − 1)(g − 1) [3, 4];
(iv) m = 1, r(∂′

0)+r(∂′′
0 ) > 2n(g − 1) [4, 5]; where g denotes the genus of M ,

deg(f) is the degree of the map and r(∂′
0) and r(∂′′

0 ) are the ramification
indices of ∂′

0 and ∂′′
0 respectively.
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So far have we known above sufficient conditions to guarantee the existence of
degenerate ∂′-transform or ∂′′-transform, but when m > 1 and g > 1 or when M

is non-compact, it seems that there aren’t any results about it. The main purpose
of the present paper is to find some sufficient conditions to ensure the existence
of degenerate ∂′-transform or ∂′′-transform. In order to do this, we establish the
generalized Frenet formulae for harmonic maps and then use it to obtain some
relative results.

2. Harmonic sequences

We equip Cn with the standard Hermitian inner product 〈 , 〉, so that, for any
two column vectors X, Y ∈ Cn, 〈X, Y 〉 = Y ∗X , where Y ∗ denotes the conjugate
and transpose of Y .

Let M be a connected Riemannian surface with Riemannian metric ds2
M = ϕϕ,

where ϕ is a complex-valued 1-form defined up to a factor of norm one. The
structure equations of M are

(2.1) dϕ = −
√
−1ρ ∧ ϕ , dρ = −

√
−1

2
Kϕ ∧ ϕ ,

where ρ is the real connection 1-form of M , and K the Gaussian curvature of
M . Let f : M → G(m, n) be a harmonic map. Choose a local unitary frame
Z1, . . . , Zn along f suitably such that Z1, . . . , Zm span f . We write

(2.2) dZi = Xiϕ + Yiϕ mod f ,

where Xi, Yi ∈ f⊥, i = 1, . . . , m. It follows from [1] that except at isolated points
the ranks of span{X1, . . . , Xm} and span{Y1, . . . , Ym} are constant, and they define
two harmonic maps f1 = ∂′f : M → G(m1, n) and f−1 : M → G(m−1, n),
where m1 and m−1 are the ranks of span{X1, . . . , Xm} and span{Y1, . . . , Ym}
respectively. Repeating in this way, we can get the harmonic sequence (1.1),
where f±α : M → G(m±α, n). If mα > mα+1, then the ∂′-transform of fα is called
degenerate. Similarly, when m−α > m−α−1, then the ∂′′-transform of f−αis called
degenerate. In order to avoid confusion, sometimes we denote the ∂′-transform
and ∂′′-transform of fk by ∂′

k and ∂′′

k respectively, k = 0,±1, . . . If f−1⊥f1 then
f = f0 is called strongly conformal [6]. If for any α > 0, fα 6= 0, then the number

(2.3) r = max{j : f0⊥fi, ∀ 1 ≤ i ≤ j}
must be finite, and it is called the isotropy order of f [6]. It is known that when
∂′

k 6= 0 or ∂′′

k 6= 0, then ∂′

k or ∂′′

k has only isolated zeros, k = 0,±1, . . . Hence, when
M is compact, the number of zeros of ∂′

k or ∂′′

k , counted according to multiplicity,
is finite which is called the ramification index of ∂′

k or ∂′′
k , and will be denoted by

r(∂′

k) or r(∂′′

k ).
From [6] we know that there is a one-to-one correspondence between smooth

map f : M → G(m, n) and the subbundle f of the trivial bundle M × Cn of rank
m which has fiber at x ∈ M given by fx = f(x). Therefore, we can identify f

with the Hermitian orthogonal projection from M × Cn onto f . From this point
of view, we have
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Lemma 2.1 ([7]). Let f : M → G(m, n) ⊂ U(n) be a smooth map. Then f is

harmonic if and only if d ∗ A = 0, where A = 1
2s−1ds, s = f − f⊥.

For the harmonic sequence (1.1), let Z
(k)
1 , . . . , Z

(k)
mk

be the local unitary frame for
fk, k = 0,±1, . . . Then the Hermitian orthogonal projection fk can be expressed
by

(2.4) fk = WkW ∗

k ,

where Wk = (Z
(k)
1 , . . . , Z

(k)
mk

) is the (n × mk)-matrix.

3. The generalized Frenet formulae

Let f = f0 : M → G(m, n) be a harmonic map which generates the harmonic
sequence (1.1). The exterior derivative d has the decomposition d = ∂ + ∂. From
[6] we see that ∂′(∂′′fk) ⊂ fk and ∂′′(∂′fk) ⊂ fk, k = 0,±1, . . . Hence, locally there

exist (mk×mk)-matrices Bk, Dk, (mk+1×mk)-matrix Ak and (mk−1×mk)-matrix
Ck so that

∂Wk = (Wk+1Ak + WkBk)ϕ ,

∂Wk = (Wk−1Ck + WkDk)ϕ .

By the construction of the harmonic sequence (1.1), we have fk⊥fk+1 and so

WkW ∗

k = Imk
and WkW ∗

k+1 = 0. Operating ∂ on them we obtain Bk + D∗

k = 0
and A∗

k+Ck+1 = 0. Consequently we get the following generalized Frenet formulae:

∂Wk = (Wk+1Ak + WkBk)ϕ ,

∂Wk = −(Wk−1A
∗

k−1 + WkB∗

k)ϕ .(3.1)

Since rank(fk) is constant for each k except at isolated points, Ak is of full rank

except at these isolated points. When f is an isometric immersion, we have [8]

(3.2) |A0|2 + |A−1|2 = 1 , cosα = |A0|2 − |A−1|2 ,

here the norm |Q| of a matrix Q is defined by |Q|2 = tr(QQ∗) in a standard
manner, and α is the Kaehler angle of f .

Lemma 3.1. In the generalized Frenet formulae (3.1), we have

dAk + (AkB∗

k − B∗

k+1Ak)ϕ −
√
−1ρAk ≡ 0 mod ϕ ,

d(B∗

kϕ) − d(Bkϕ) = (A∗

kAk − Ak−1A
∗

k−1 + B∗

kBk − BkB∗

k)ϕ ∧ ϕ .(3.3)

Proof. Set sk = fk − f⊥

k , A(k) = 1
2s−1

k dsk. Thus A(k) is one half of the pull-back
of Maurer- Cartan form of U(n) by fk, and it satisfies

(3.4) dA(k) + 2A(k) ∧ A(k) = 0 .

From Lemma 2.1. we see that

(3.5) d ∗ A(k) = 0 .
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On the other hand, by virtue of (2.4), (3.1) and the definition of A(k) we get

A(k) = ( − Wk+1AkW ∗

k − WkAk−1W
∗

k−1)ϕ

+ (WkA∗

kW ∗

k+1 + Wk−1A
∗

k−1W
∗

k )ϕ .(3.6)

Combining (3.4)–(3.6) one can obtain (3.3)1. Substituting (3.1) into W ∗
k d2Wk = 0

yields (3.3)2. �

Lemma 3.2. If mk = mk+1, then at points where det Ak 6= 0, we have

(3.7) ∆ log | detAk| = mkK + 2(|Ak−1|2 − 2|Ak|2 + |Ak+1|2) .

Moreover, if M is a compact surface with genus g, then

(3.8) r(detAk) = 2mk(g − 1) + deg(fk) − deg(fk+1) ,

where r(detAk) denotes the number of zeros of detAk counted according to multi-

plicity.

Proof. Note that d log(det Ak) =tr(A−1
k dAk), by (3.3)1 we get

(3.9) d log(det Ak) + tr(B∗

k − B∗

k+1)ϕ −
√
−1mkρ ≡ 0 mod ϕ .

A standard computation together with (3.3)2 and (3.9) yields (3.7). Integrating
(3.7) on M and using Lemma 4.1 of [9], the Gauss-Bonnet theorem together with
the definition of deg(fk) and deg(fk+1) [2] we finally get (3.8). �

4. The main results

In this section we shall study the sufficient conditions to ensure the existence
of degenerate ∂′-transform or ∂′′-transform in harmonic sequence (1.1). First we
have

Theorem 4.1. Let M be a connected and complete Riemannian surface with non-

negative Gaussian curvature K and f : M → G(m, n) be a harmonic isometric

immersion. If there exists a positive number ε > 0 so that | cosα| ≥ ε, where α

is the Kaehler angle of the immersion f , then at least one of the ∂′-transforms or

∂′′-transforms in harmonic sequence (1.1) generated by f is degenerate.

Proof. Suppose that under the conditions of the theorem, none of the ∂′-transforms
and ∂′′-transforms in (1.1) generated by f is degenerate, that is to say, m =
m0 = m±1 = . . . Equivalently speaking, square matrices A0, A±1, . . . are all non-
singular. Without loss of generality, we may assume that cosα ≥ ε > 0. Then, for
any positive integer p, a direct computation together with (3.2) and (3.7) yields
(c.f. [8])

(4.1) ∆ log

−p
∏

k=−1

k
∏

j=−1

| det Aj |

=
1

2
mp(p + 1)K + (2p + 1) cosα − 1 + 2|A−p−1|2 .



ON DEGENERATION OF HARMONIC SEQUENCES 277

Since cosα ≥ ε > 0, we can choose p such that (2p + 1) cosα − 1 > 0. Thus from
(4.1) we conclude that

(4.2) ∆ log

−p
∏

k=−1

k
∏

j=−1

| detAj | > 0 ,

from which it follows that the function
−p
∏

k=−1

k
∏

j=−1

| detAj |

is a subharmonic function on a complete surface M with non-negative Gaussian
curvature, and it must be a constant. But this is in contradiction with (4.2). So
the theorem is proved. �

Corollary 4.2. Let f : M → CPn be an isometric minimal immersion of a com-

plete and connected surface M with non-negative Gaussian curvature into CPn. If

the Kaehler angle α of the immersion f satisfies | cosα| ≥ ε, where ε is a positive

number, then f must be isotropy.

Proposition 4.3. Let f : M → G(m, (p + 1)m) be a harmonic map of a com-

pact surface with genus g into G(m, (p + 1)m). If none of the ∂′-transforms and

∂′′-transforms in harmonic sequence (1.1) generated by f is degenerate, and the

isotropy order of f is p. Then | deg(f)| ≤ mp(g − 1).

Proof. It is easy to see that under the assumption of the proposition, f0, f1, . . . , fp

are mutually orthogonal, and that fk = fk+p+1, k = 0,±1, . . . Therefore, from the

definition of deg(·) it is clear that

(4.3)

p
∑

k=0

deg(fk) = 0 ,

from which together with (3.8) yields
p

∑

k=0

r(detAk) = 2m(g − 1)(p + 1) ,

p
∑

k=0

(p − k)r(detAk) = (p + 1) deg(f0) + mp(p + 1)(g − 1) ,(4.4)

p
∑

k=0

kr(detAk) = −(p + 1) deg(f0) + mp (p − 1)(g − 1) .

From (4.4) we get

| deg(f)| = | deg(f0)| =
1

2

∣

∣

∣

p
∑

k=0

(p − 2k

p + 1

)

r(detAk)
∣

∣

∣

≤ 1

2

p
∑

k=0

(∣

∣

∣

p − 2k

p + 1

∣

∣

∣
r(detAk)

)

≤ p

2(p + 1)

p
∑

k=0

r(detAk) = mp(g − 1) .
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Thus the proposition is proved. �

The following two theorems are the direct consequences of Proposition 4.3.

Theorem 4.4. Let f : M → G(m, 2m) be a harmonic map of a compact surface

M with genus g into G(m, 2m). If | deg(f)| > m(g − 1), then at least one of the

∂′-transforms or ∂′′-transforms in (1.1) is degenerate.

Theorem 4.5. Let f : M → G(m, 3m) be a strongly conformal harmonic map of

a compact surface M with genus g into G(m, 3m). If | deg(f)| > 2m(g − 1), then

at least one of the ∂′-transforms or ∂′′-transforms in (1.1) is degenerate.

Remark. Theorem 4.5 generalizes Proposition 7.8 of [10].

Now let M be a compact surface with genus g and f : M → G(m, n) be a
harmonic map which generates (1.1) with non-degenerate ∂′-transforms and ∂′′-
transforms. This implies that m = m0 = m±1 = . . . Suppose that the isotropy
order of f is p so that

W ∗

k+i+1Wk = 0 , 0 ≤ i ≤ p − 1 ,

W ∗

k+p+1Wk 6= 0 ,(4.5)

here k = 0,±1, . . . Set Pk = W ∗

k+p+1Wk, then from (3.1) and (4.5) we get

(4.6) A∗

k+pPk = Pk−1A
∗

k−1 , ∂Pk = (PkBk − Bk+p+1Pk)ϕ .

It follows from (4.6) that rank(P0)=rank(P±1)=. . . except at isolated points. Thus
we can choose the local frame Wk, k = 0, 1, . . . , 2p + 1 suitably such that

(4.7) Pk =

(

Qk 0
0 0

)

, k = 0, 1, . . . , p ,

where Qk’s are non-singular (t × t)-matrices except at isolated points, and t =
rank (P0) = rank (P1) = . . . Assume the corresponding blocks of the matrices Ak

and Bk are

(4.8) Ak =

(

Ak11 Ak12

Ak21 Ak22

)

, Bk =

(

Bk11 Bk12

Bk21 Bk22

)

.

Combining (4.6)–(4.8) it follows that

Ak21 = 0 , 0 ≤ k ≤ p − 1 ,

Bk12 = 0 , 0 ≤ k ≤ p ,(4.9)

Bk21 = 0 , p + 1 ≤ k ≤ 2p + 1 ,

from which together with (3.3) and (4.6) yields

dAk11 + (Ak11B
∗

k11 − B∗

k+1,11Ak11)ϕ −
√
−1ρAk11 ≡ 0 mod ϕ , 0 ≤ k ≤ p ,

∂Q0 = (Q0B011 − Bp+1,11Q0)ϕ .(4.10)

From (4.10) we can calculate out that

(4.11) d log
(

det(A011 . . . Ap11Q
∗

0)
)

−
√
−1t(p + 1)ρ ≡ 0 mod ϕ ,
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and consequently,

(4.12) ∆ log | det(A011 . . . Ap11Q
∗

0)| = t(p + 1)K .

Integrating (4.12) on M and making use of Gauss-Bonnet theorem, Lemma 4.1 of
[9] and Noticing the fact that

(4.13) r(∂′

k) = r(|Ak|) ≤ r(|Ak11|) ≤
1

t
r(detAk11) ,

we get

(4.14)

p
∑

k=0

r(∂′

k) ≤ 2(p + 1)(g − 1) .

Similarly we can prove

(4.15)

p−1
∑

k=−1

r(∂′

k) ≤ 2(p + 1)(g − 1) .

Note that r(∂′
−1)=r(|A−1|)=r(∂′′

0 ), from (4.15) we get

(4.16) r(∂′

0) + r(∂′′

0 ) ≤ 2(p + 1)(g − 1) ≤ 2
n

m
(g − 1) .

By (4.16) we can easily obtain the following theorem.

Theorem 4.6. Let f : M → G(m, n) be a harmonic map of a compact surface M

with genus g into G(m, n) which generates the harmonic sequence (1.1). If

r(∂′

0) + r(∂′′

0 ) > 2
n

m
(g − 1) ,

then at least one of the ∂′-transforms or ∂′′-transforms in (1.1) is degenerate.

Remark. Theorem 4.6 generalizes the corresponding results in [4,5].
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