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THE D-STABILITY PROBLEM FOR 4 × 4 REAL MATRICES

SERKAN T. IMPRAM⋄, RUSSELL JOHNSON⋄, RAFFAELLA PAVANI∗

Abstract. We give detailed discussion of a procedure for determining the
robust D-stability of a 4×4 real matrix. The procedure begins from the Hur-
witz stability criterion. The procedure is applied to two numerical examples.

1. Introduction

An n×n real matrix A is said to be D-stable (diagonally stable) if the product
matrix DA is Hurwitz stable for each diagonal matrix

(1) D =




d1 0

. . .

0 dn





with positive diagonal entries di, i = 1, . . . , n. This concept is of importance in
various contexts; see, for example, [1, 11, 7] for recent discussions of D-stability.
This notion arises naturally in problems exhibiting different time scales. In fact,
consider a problem of the form

ε1x
′
1 = f1(x1, . . . , xn)(2a)

ε2x
′
2 = f2(x1, . . . , xn)(2b)

...(2c)

εnx′
n = fn(x1, . . . , xn)(2d)

where fi(0, . . . , 0) = 0, i = 1, . . . , n. Let A be the n × n matrix obtained by
linearizing (2) at the origin 0 ∈ R

n. Then 0 is a linearly stable equilibrium of (2)
for all positive values of parameters ε1, . . . , εn if and only if A is D-stable.

The goal of this paper is to discuss a procedure for determining the D-stability
of 4×4 matrix, together with some examples illustrating the numerical implemen-
tation of this procedure. The starting point of our discussion is the paper [14],
where the first steps of our procedure were sketched. As pointed out there, the
problem of characterizing the D-stable n× n matrices is relatively simple if n ≤ 3
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(but not trivial if n = 3; see [4] for an elegant description of the 3 × 3, D-stable,
real matrices). However, for n ≥ 4, the characterization problem appears consid-
erably more complex. We note that C. R. Johnson [13] has given necessary and
sufficient conditions for the D-stability of a 4× 4 matrix which are related to ours
in the sense that their point of departure is the Routh-Hurwitz condition, but
which seem to be of a significantly more complicated nature. Also, it is not clear
how to implement his criterion numerically.

It is shown in [14] that the problem of characterizing the D-stability of a real
matrix A admits a polynomial decision procedure for each n ≥ 1. Precisely, an
n × n matrix A is D-stable if and only if a certain polynomial P in n variables
t1, . . . , tn has no real zeros (E1, . . . , En). The coefficients of P are certain fixed
polynomials in the coefficients of A. It is well-known since the work of Tarski and
Seidenberg [16] that there is a finite decision procedure for determining whether
or not P has a real zero.

Thus our problem is elementary. However, as often happens, it is not immedi-
ately clear how to realize the decision procedure in a concrete way which can be
carried out even with modern computational facilities: one must devise ways to
limit the number and the complexity of the calculations to be performed.

We will discuss the characterization of both the D-stable and the robustly D-
stable matrices. Recall that an n × n matrix A is said to be robustly D-stable
if it together with all sufficiently near matrices A′ are all D-stable. This concept
seems more natural and important in applied problems and, perhaps surprisingly,
seems somewhat easier to characterize than that of D-stability itself.

The following points will emerge from the discussion of our procedure for de-
termining the D-stability and the robust D-stability of a 4 × 4 matrix. First,
one can form a clear idea of the number of computations necessary to carry our
procedure to completion for a general 4 × 4 matrix. Though this number is large,
it can be concretely estimated in terms of the number of operations necessary to
calculate several hundred determinants whose orders are ≤ 48 and whose entries
are polynomials in one variable with degrees (almost) always ≤ 6, then to compare
the number of sign variations in about 200 pairs of chains of length ≤ 24 of such
determinants. This fact is perhaps worth emphasizing because general arguments
such as those of Seidenberg’s basic paper [16] give rise to decision procedures
which require that a not-clearly-determined but certainly astronomical number of
operations be performed. Second, the determination of the D-stability of a 4 × 4
matrix seems considerably more complicated than that of a 3 × 3 matrix. More-
over, it seems that the number of computational steps necessary to determine the
D-stability of a generic n×n matrix must increase rapidly (at least exponentially)
with the dimension n. The observation would seem to be consistent with the
conjecture of [7] that the problem of characterizing D-stability is NP-hard.

We apply our method to two examples in order to illustrate various aspects of
the D-stability concept. First, we consider Bessel matrices. Then, we examine
a matrix studied in [14], with the purpose of illustrating the calculation of the
determinants alluded to above. Our work with this and other matrices indicates
that the calculation of those determinants of order less than 40 can be carried
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out and that their sign variations can be determined. For matrices with certain
symmetry properties (related to a certain discriminant; see the example in Sec-
tion 4), one need only consider determinants of order less than 40, and for these,
the D-stability property can be studied with our methods. We remark further that
our procedure can sometimes be rendered very short by introducing supplemen-
tary algebraic manipulations, which are sufficient for D-stability, at an appropriate
point of the calculations. In particular, our supplemented procedure can be used
to determine the D-stability of certain matrices when such well-known sufficient
conditions for D-stability as positive definiteness or diagonal Lyapunov stability
do not hold.

We refer to the paper [15] for another approach to developing a procedure to
determine the D-stability of a 4 × 4 matrix. Though the starting point in [15]
is the same as ours, namely to show that a certain cubic polynomial of three
variables is positive on the positive orthant, there a polynomial programming
method is introduced, whereas we analyze chains of Hankel determinants. We
plan to compare the two approaches in further work.

2. Characterization of D-stable and robustly D-stable matrices

We will discuss in some detail a method suggested by [14] which yields necessary
and sufficient conditions for the D-stability and the robust D-stability of an n×n
matrix, n ≥ 4. Thus, let A =

∥∥aij

∥∥n

i,j=1
be a real matrix, and let D be a diagonal

matrix as in (1). The matrix A is called robustly D-stable if, for all n×n matrices
A′ whose Euclidean distance from A is sufficiently small, the product matrix DA′

is stable in the Hurwitz sense, i.e. all its eigenvalues lie in the (open) left half-
plane. We will emphasize the question of robust D-stability, and will usually leave
it to the reader to work out how the conditions we introduce should be modified
if the D-stability property is of interest.

The method of [14] gives rise to a polynomial decision procedure for determining
whether or not a given matrix A is robustly D-stable. The procedure consists
of finitely many steps, in each of which one checks whether certain polynomial
equalities and inequalities are valid. If at some step at least one equality-inequality
group fails to hold, then the matrix A is not robustly D-stable. It will be seen that
the procedure is quite simple for n ≤ 3. However, the case n = 4 is markedly more
complex from the computational point of view. The method can be extended
to dimensions n ≥ 5 to yield a polynomial decision procedure, but it will be
clear that, for this method, with each increase in dimension the complexity of the
calculations increases quickly. Our discussion can be regarded as further evidence
that the problem of deciding whether a matrix is robustly D-stable is an NP-hard
problem [7].

We restrict attention to the case n = 4; the reader will be able to apply our
method to the case n = 3; see [4] for a characterization of D-stability when n = 3.
We assume throughout that A itself is Hurwitz stable. The first step is, as in [14],
to combine the classical Hurwitz stability criterion with Orlando’s Theorem [9] to
deduce that A is D-stable if and only if the third Hurwitz determinant H3(DA) is
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positive for all matrices DA with D being as in (1):

(3) H3(DA) > 0

It is more convenient to write out H3(DA) explicitly. Thus, put

mi = aii

mij = i, jth principal minor of A

mijk = i, j, kth principal minor of A

M = detA

where 1 ≤ i < j < k ≤ 4. Setting

p0 = d1d2d3d4M

p1 =
∑

1≤i<j<k≤4

didjdkmijk

p2 =
∑

1≤i<j≤4

didjmij

p3 =
∑

1≤i≤4

dimi

one has

(4) H3(DA) = −p0p
2
3 − p2

1 + p1p2p3 .

Following [14], observe that H3 is homogeneous of degree 6 in d1, . . . , d4. In fact,
in dimension n, Hn−1(DA) is homogeneous of dimension n(n− 1)/2 in d1, . . . , dn.

One is led to homogenize (3) by dividing by d6
4 and setting x = d1/d4, y = d2/d4

and z = d3/d4. Define b(x, y, z) = H3(DA)/d6
4. Then, for all x, y, z > 0, (3) is

equivalent to

(5) b(x, y, z) > 0

where b(x, y, z) = B3(y, z)x3 + B2(y, z)x2 + B1(y, z)x + B0(y, z). Note that B3 is
quadratic in y and z, and that B2, B1 and B0 are cubic in y and z.

We now begin listing conditions which are necessary for robust D-stability of
a given Hurwitz stable matrix A. It will be convenient to separate them into
classes CI , CII , CIII and CIV corresponding to certain primitive Conditions I, II,
III and IV, respectively. Each such class will consist of polynomial equalities and
inequalities in the entries of A, certain subclasses of which are joined by the logical
connective or while others are joined by the logical connective and. In general,
given any such class C of polynomial equalities and inequalities in 16 variables
a11, . . . , a44, there is natural sense in which a given 4× 4 matrix either satisfies C
or does not satisfy C.

The first primitive condition is as below:

Condition I. b(x, 1, 1) > 0, ∀x > 0.
It is clear that, if A is D-stable, then Condition I holds. One can write a

class CI of polynomial relations as described above, involving the coefficients of A
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(or rather, the quantities m1, . . . , m12, . . . , m123, . . . , M) which are necessary and
sufficient for the validity of Condition I, for all matrices A′ sufficiently near A. In
other words, Condition I holds for all matrices A′ sufficiently near A if and only
if A satisfies CI .

In what follows we will write Q+ =
{
(y, z) ∈ R

2|y, z > 0
}
.

Condition II. B3(y, z) > 0 and B0(y, z) > 0, ∀(y, z) ∈ Q+.
This condition is necessary for the robust D-stability of A, because if, for exam-

ple, B3(y∗, z∗) = 0 for some (y∗, z∗) ∈ Q+, then every neighborhood of A contains

a point A′ for which there exists (y′, z′) ∈ Q+ such that BA′

3 (y′, z′) < 0 (here
and below, we use a superscript when it is necessary to indicate the dependence
of an object on A). Then we would have bA′

(x, y′, z′) < 0 for large x, and (5)
would be violated for A′. One can write down a class CII of polynomial relations
as described above, involving the quantities m1, . . . , M so that Condition II holds
for all matrices sufficiently near A if and only if A satisfies CII .

Assume now that A satisfies Conditions I and II. One verifies as in [14] that A
is D-stable if and only if, for each (y, z) ∈ Q+, the polynomial b(x, y, z) admits no
positive double root x∗. Now, the presence of complex double roots (necessarily
real in our case) is equivalent to the vanishing of the classical discriminant function

(6) ∆(y, z) ≡ ∆ = B2
1B2

2 − 4B0B
3
2 − 4B3

1B3 − 27B2
0B2

3 + 18B0B1B2B3.

As in [14], one can show that b(x, y, z) admits no positive double root x∗ if and
only if neither of the following problems admits a solution (y, z) ∈ Q+:

∆(y, z) = 0, B2(y, z) ≤ 0,

∆(y, z) = 0, B1(y, z) ≤ 0.

We are led to introduce the following conditions:

Condition III. If ∆(y, z) = 0 for (y, z) ∈ Q+, then B1(y, z) > 0.

Condition IV. If ∆(y, z) = 0 for (y, z) ∈ Q+, then B2(y, z) > 0.

Assuming that A satisfies CI and CII , our problem is now the following. We
must determine a class CIII of polynomial relations as described earlier, involving
the coefficients of A, so that Condition III holds for all matrices A′ sufficiently near
A if and only if A satisfies conditions CIII . We must also determine an analogous
class of polynomial relations CIV .

We will determine the appropriate class of polynomial relations CIII . It will be
clear that the determination of the class CIV can be carried out in much the same
way. It will also be clear that the determination of the classes CI and CII is much
easier.
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To better understand the quantities we must deal with, we write out certain
terms of the polynomials B3, B2, B1 and B0. We put

B3(y, z) = B
(2)
3 y2 + B

(1)
3 y + B

(0)
3

B2(y, z) = B
(3)
2 y3 + B

(2)
2 y2 + B

(1)
2 y + B

(0)
2

B1(y, z) = B
(3)
1 y3 + B

(2)
1 y2 + B

(1)
1 y + B

(0)
1

B0(y, z) = B
(3)
0 y3 + B

(2)
0 y2 + B

(1)
0 y

where

B
(2)
3 (z) = m1m12m123z + m1m12m124

B
(3)
2 (z) = m2m12m123z + m2m12m124 = ε1z + ε2

B
(3)
1 (z) = m2m23m123z

2 + (m2m12m234 + m2m23m124

+ m2m24m123 − m2
2M)z + m2m24m124 = ε3z

2 + ε4z + ε5

B
(3)
0 (z) = m2m23m234z

2 + m2m24m234z = ε6z
2 + ε7z

B
(0)
3 (z) = m1m13m134z

2 + m1m14m134z = ε13z
2 + ε14z

B
(0)
2 (z) = m3m13m134z

3 + (m4m13m134 + m3m14m134

+ m1m34m134 − m2
134)z

2 + m4m14m134z = ε10z
3 + ε11z

2 + ε12z

B
(0)
1 (z) = m3m34m134z

3 + m4m34m134z
2 = ε8z

3 + ε9z
2

B
(1)
0 (z) = m3m34m234z

3 + m4m34m234z
2

Observe that B
(2)
3 (z) > 0, ε6z

2 + ε7z > 0, ε13z
2 + ε14z > 0, and B

(1)
0 (z) > 0 for

all z > 0; see the discussion of Condition II.
Next we consider the discriminant ∆(y, z). It is of degree 12 in y; we can write

∆(y, z) =

12∑

i=0

δi(z)yi

where

δ12(z) = (ε1z + ε2)
2
{
(ε3z

2 + ε4z + ε5)
2 − 4(ε1z + ε2)(ε6z

2 + ε7z)
}

δ0(z) = (ε8z + ε9)
2
{
(ε10z

3 + ε11z
2 + ε12z)2 − 4(ε13z

2 + ε14z)(ε8z
3 + ε9z

2)
}

with ε1, . . . , ε14 being as given above. Let us assume for the time being that
∆(y, z∗) does not vanish identically in y for any z∗ > 0. Then, as observed in [14],
Condition III is equivalent to

(7) I∞0

(
∆′(y, z)

∆(y, z)

)
= I∞0

(
B1(y, z)∆′(y, z)

∆(y, z)

)
.

Here, the prime ′ indicates d
dy

, and I∞0 is the Cauchy index computed for 0 <

y < ∞ for each fixed positive z. We will obtain the appropriate conditions CIII

beginning from (7).
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There are (at least) two ways to study the Cauchy indices in (7). One method
consists of writing out generalized Sturm chains; this seems complicated even in
principle because of the many singular cases which can occur as z varies. A second
method consists of counting sign variations in a chain of Hankel determinants [9].
This method has the advantage that there are fixed rules for calculating the sign
variations even when some of the Hankel determinants are zero. We will apply
this method. To do so, we set y = t2 and consider the following Cauchy indices:

(8) Vz = I∞−∞

(
∆′(t2, z)

∆(t2, z)

)
, V̂z = I∞−∞

(
B1(t

2, z)∆′(t2, z)

∆(t2, z)

)
.

Note that we have put ∆′(t2, z) and not t∆′(t2, z) in the numerators of the quanti-

ties defining Vz and V̂z ; this has the advantage that t = 0 contributes neither to Vz

nor to V̂z (because if y = 0 is a zero of ∆(·, z), then t factors from ∆′(t2, z)/∆(t2, z)
with a negative even exponent). It follows that (7) is equivalent to the equality of

Vz and V̂z .
We are led to formulate the following condition:

Condition III1 Whenever z > 0 has the property that ∆(y, z) does not vanish

identically in y, then Vz = V̂z.
It is clear from the preceding discussion that Condition III1 is necessary in order

that A together with all matrices A′ sufficiently near A satisfy (7) for all z > 0
for which ∆(y, z) does not vanish identically in y. On the other hand, suppose
that one can formulate a class C(1) of polynomial relations in the coefficients of

A, certain subclasses of which are joined by the connective and while others are
joined by the connective or, such that Condition III(1) holds for all A′ near A if

and only if A satisfies C(1). Then, if A satisfies C(1), all matrices A′ sufficiently

near A satisfy (7) whenever z > 0 has the property that ∆(y, z) does not vanish
identically in y.

We consider briefly how to express the appropriate class of conditions C(1).

Formally we can write

∆′(y, z)

∆(y, z)
=

∑∞

k=1 kδk(z)yk−1

∑∞

k=0 δk(z)yk
(9)

δ3
12(z)

B1(y, z)∆′(y, z)

∆(y, z)
=

∑12
k=0 γk(z)yk

∑12
k=0 δk(z)yk

+ w(y, z)(10)

where w(y, z) is a polynomial quadratic in y. From [9] it is known that

Vz = m − 2V (1, D1(z), . . . , Dm(z))

V̂z = m̂ − 2V (1, D̂1(z), . . . , D̂ bm(z))

where m and m̂ are the ranks of the Hankel forms (in the variable t) corresponding
to the proper rational functions obtained by reducing the rational functions on

the right-hand sides of (9) and (10), respectively. Here, Ds (D̂s) is a 2s × 2s
determinant whose calculation reduces to that of several s × s determinants due
to the presence of zeros; see page 214 of [9], and note that we write Ds instead of
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∇2s. Let us observe that m̂ ≤ m (m̂ can be zero). Let us further observe that, if
m̂ < m, then ∆(t2, z) and B1(t

2, z) must have a common zero t∗. If t∗ 6= 0, then
∆(y, z) and B1(y, z) have a common positive zero y∗ = t∗, and A is not D-stable.
The possibility t∗ = 0 cannot be excluded, but it is relatively easy to check if A
has the property that y = 0 is a root of B(·, z) and of ∆(·, z) for some z > 0.

We now indicate a way to formulate conditions expressing the equality of Vz and

V̂z for all z > 0 for which ∆(y, z) does not vanish identically in y. Let 1 ≤ m ≤ 24
be an integer. One can write down a class Cm

(1) of polynomial relations in the

coefficients of A, certain subclasses of which are joined by the connective and and
others are joined by the connective or, such that A satisfies Cm

(1) if and only if

whenever z > 0 satisfies δ12(z) 6= 0, Dm(z) 6= 0, Dm+1(z) = · · · = D24(z) = 0,

then for all A′ sufficiently near A the relation V A′

z = V̂ A′

z is valid. In writing
down the classes C24

(1), . . . , C
1
(1) one will take account of the considerations of the

preceding paragraph, and will make a multitude of other considerations as well.
These classes of polynomial relations have a complex structure. However, they

are rendered simpler by certain circumstances when one sets about verifying them
for a given matrix A. One such circumstance is the following. Suppose that δ12(z)
does not vanish identically in z, and let m∗ = max{i ≥ 1|Di(z) does not vanish
identically}. It is clear that m∗ might be less than 24 because ∆′ and ∆ may
have a non-constant common polynomial factor; we will see an example of this
phenomenon in Section 4. Then if m < m∗, the class Cm

(1) is satisfied by A if and

only if it is satisfied by all matrices A′ near A. This is because Dm
∗

(z) has only
finitely many zeros.

We conjecture that a second simplifying circumstance is present. Namely, we
believe that, if A is D-stable, if δ12(z) and δ0(z) do not vanish identically in z,

and if m∗ is as above, then Vz = V̂z for all positive z satisfying δ12(z) 6= 0,
δ0(z) 6= 0, and Dm

∗

(z) 6= 0 if and only if for each i = 1, 2, . . . , m∗ − 2 there holds

Di(z) = 0 ⇒ Di+1(z) 6= 0 and D̂i(z) = 0 ⇒ Di+1(z) 6= 0.

Now let C(1,12) be the class of conditions C24
(1)∧· · ·∧C1

(1) where ∧ denotes logical

and. We construct further classes of conditions C(1,11), · · · , C(1,1) corresponding to

the possibilities that δ12(z) = 0, . . . , δi+1(z) = 0, δi(z) 6= 0 where 1 ≤ i ≤ 11. Put
finally C(1) = C(1,12) ∧ · · · ∧ C(1,1).

Let C(2) be a class of polynomial equalities and inequalities in the coefficients

of A, certain subclasses of which are joined by the connective and while others are
joined by the connective or, such that A satisfies C(2) if and only if all matrices A′

sufficiently near A have the following property: if for some z > 0 the discriminant
∆(y, z) vanishes identically in y, then B1(y, z) > 0 for all y > 0. Put C(III) =

C(1) ∧ C(2). We see that A satisfies C(III) if and only if Condition III holds for all

A′ sufficiently near A.
One can derive a class C(IV ) of conditions corresponding to Condition IV in

an analogous way. Putting C = CI ∧ · · · ∧ CIV , we see that A satisfies C if and
only if A is robustly D-stable. Clearly, the class C has a complicated structure.
However, we note that if the discriminant ∆ happens to have a degree lower than
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12 in y, then our procedure will, in general, be less complex. We also wish to
point out that our procedure is derived from the simple condition b(x, y, z) > 0
for positive values of x, y, and z, which in turn translates quickly into Condition
III and Condition IV.

The considerations given above suggest that the D-stability problem is of a
highly complex computational nature. They also indicate that the problem of
characterizing D-stability is substantially more complex than that of determin-
ing robust D-stability (see [10], which was corrected in [5]), since the robustness
property renders vacuous a large number of singular cases.

3. A hybrid procedure

The theoretical results of the previous section have been implemented as a
hybrid (numerical-symbolic) computer program which uses some basic commands
of MATLAB 5.3 and its MAPLE powered Symbolic Math Toolbox. Integrating two
different computation environments allows us to use their respective superiorities
in order to overcome some disadvantages of both. The main steps of the proposed
procedure are as follows:

(1) Compute symbolically the determinant of the matrix (λI − DA) where λ
is a symbolic variable, I is the 4 × 4 identity matrix, A is a given 4 × 4
matrix of reals, and D is the diagonal matrix with symbolic entries d1, d2,
d3 and d4 which are specified to be positive.

(2) Define as p3 the coefficient of λ3, as p2 the coefficient of λ2, as p1 the
coefficient of λ, and as p0 the sum of the remaining terms.

(3) Obtain H3(DA) using (4).

(4) Divide the resulting expression by d6
4, and suppress d4 and its powers;

hereafter d1, d2 and d3 mean d1/d4, d2/d4 and d3/d4, respectively.

(5) Substitute d1, d2 and d3 by x, y and z, respectively.

(6) Define as B3 the coefficient of x3, as B2 the coefficient of x2, as B1 the
coefficient of x, and as B0 the sum of the remaining terms.

(7) If B3, B2, B1 and B0 are always positive then stop. Else, if Condition I or
Condition II is violated then stop. Else, proceed with Condition III and
Condition IV.

The implementation of Steps 1-6 above is quite simple, and it runs reasonably
fast for a given A matrix. These statements are true also for Step 7, but only if
Conditions III and IV need not be checked. The main difficulty associated with
these two conditions has a computational nature, and arises when the determinants
of the Hankel matrices, whose entries are polynomials in z, are to be computed.
Recall from Section 2 that, in general, the determinants of 24 Hankel matrices
of order n × n, where n = 2, 4, 6, . . . , 48, need to be computed. However, it may
not always be possible to succeed in these computations which means that there
is an implicit restriction on the A matrices that can be treated. This restriction
is, of course, imposed by the limitations of MATLAB and MAPLE and, as such,
is inevitable. Another difficulty arises when δ12(z) = 0 for some z > 0. On the
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other hand, these positive z values for which δ12(z) = 0 can be isolated by simple
MATLAB and MAPLE commands. Then, the presence of D-stability (robust D-
stability) can be detected by studying certain conditions which we do not wish
to indicate in detail here. These conditions take account of whether some, or
all, of δ11(z), . . . , δ0(z) vanish as well. Finally, it may, of course, be possible to
determine the positivity of H3(DA) for all positive x, y and z by direct observation,
in which case Steps 6 and 7 are not necessary. Moreover, as already noted in the
Introduction, other simplifications may also occur.

4. Numerical examples

As a first example, we consider the Bessel matrices. They are stable for any
order n×n. Moreover, for large values of n, their simple eigenvalues lie in the left
half-plane along a well-determined curve. For n = 4, the Bessel matrix is

B =





−1 −0.5774 0 0
0.5774 0 −0.2582 0

0 0.2582 0 −0.1690
0 0 0.1690 0





By means of our procedure, we find that at Step 5

H3(DB) =
1

45
x3y2z

which is clearly positive for all positive x, y and z. Therefore, B is immediately
deemed to be D-stable, and the procedure is stopped without carrying out Steps
6 and 7 if D-stability is the property of interest. The matrix is, however, not
robustly D-stable because every neighborhood of A contains a matrix A′ such
that the corresponding coefficient B0 has the property that B0(y

′, z′) < 0 for
some y′, z′ > 0.

Next, consider the matrix

A =





−1 0 q 0
−1 −1 0 0
−1 −1 −1 0
−1 −1 −1 −1





where q is a real parameter. It is easy to show that A is stable for q > −8/3. From
[14], it is also known that A is D-stable if q ≥ −1. Here, the aim is not only to
verify this result by utilizing the procedure outlined in the previous section, but
also to see if Conditions III and IV can actually be checked in this example. To
this end, we set q = −1 from now on. It turns out that

B3(y, z) = (z + 1)y2 + y(11a)

B2(y, z) = (1 + z)y3 + (z2 + 2z + 2)y2 + (2z + 1)y(11b)

B1(y, z) = (z2 + 2z + 1)y3 + (z3 + 2z2 + 3z + 1)y2 + (2z2 + z)y(11c)

B0(y, z) = (z2 + z)y3 + (z3 + 2z2 + z)y2 + (z3 + z2)y(11d)



THE D-STABILITY PROBLEM FOR 4 × 4 REAL MATRICES 449

which are all clearly positive for all y, z > 0, and the procedure is stopped at
this point because of the first condition in Step 7. It is clear that the matrix A
is D-stable. It is not quite so obvious that A is not robustly D-stable; however,

this follows if we note first that B
(0)
3 (z) vanishes identically, then check that each

neighborhood of A contains a matrix A′ such that the corresponding coefficient

B
(0)
3 (z) is negative for some positive value z′ (B

(0)
3 (z′) < 0).

In any case, we choose to ignore these conditions; our aim is rather to determine
whether, for this matrix A, the calculations involved in checking Conditions III
and IV take a reasonable amount of time to execute. In fact, Conditions III and IV
are quite sophisticated and, thus, their verification requires much computational
effort. However, in the present case, certain simplifications occur. In fact, for
the A matrix under consideration, the coefficient functions δ3(z), . . . , δ0(z) are not
present, i.e. they are zero. Therefore, one would expect the denominator of the
rational function

(12)
∆′(t2, z)

∆(t2, z)

which was previously given in (8) to be of degree 16, and the corresponding Hankel
matrices to have sizes n×n with n being 2, 4, 6, . . . , 32. However, it turns out that
the denominator in (12) is of order 10. The reason for this extra reduction is due
to the common factors

(z + 1)y + z2 + z + 1

(z2 − 1)y2 + zy + 1

between ∆′(y, z) and ∆(y, z). Consequently, the largest Hankel matrix has dimen-
sions 20 × 20. Similar reductions occur also in the rational function given on the
right in (8), and its equivalent in Condition IV. It was observed that computing
the determinants of the Hankel matrices, and determining the positive z values
(if there exist any) at which these determinants vanish, demands most of the to-
tal computation time which, for the present example, was about 22 minutes on
a Pentium III driven PC. At this point, it must be pointed out that the leading
coefficient of ∆(y, z) is δ12(z) = (z + 1)4(z − 1)2 which vanishes at z = 1. Recall
from the previous section that this type of singularity cannot be handled system-
atically by the current version of the software implementation of the proposed
procedure. However, this is not a cause for concern since such singularities can be
easily singled out by calling simple commands. The code fragment which achieves
this is

rts = solve(d);

drts = double(rts);

inx = find((real(drts) <= 0) | (imag(drts) ~= 0));

rts(inx) = [];

where d is the determinant of a Hankel matrix. The first command solves for the
roots of d. Needless to say that these roots are the z values at which d vanishes.
The second command, namely double, converts the roots from symbolic to numeric
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format for subsequent use. Next, by invoking find, the roots with negative real
parts and those with imaginary parts are determined. The singularity z = 1 gives
rise to conditions on A which must be satisfied if A is D-stable (robustly D-stable).
In particular, these conditions take account of the possibility that ∆(y, z) = 0
admits positive roots y which are near ∞ if z is near 1; in fact, one must have

B
(3)
2 (1) > 0 and B

(3)
1 (1) > 0. For the A matrix under study, these conditions are

actually satisfied by A and by all matrices A′ near A.
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