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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 41 (2005), 451 – 460

ON AN EFFECTIVE CRITERION OF SOLVABILITY OF

BOUNDARY VALUE PROBLEMS FOR ORDINARY

DIFFERENTIAL EQUATION OF n-TH ORDER

NGUYEN ANH TUAN

Abstract. New sufficient conditions for the existence of a solution of the
boundary value problem for an ordinary differential equation of n-th order
with certain functional boundary conditions are constructed by a method of
a priori estimates.

Introduction

In this paper we give new sufficient conditions for the existence of a solution of
the ordinary differential equation

(1) u(n)(t) = f
(
t, u(t), . . . , u(n−1)(t)

)

with the boundary conditions

(2) Φ0i

(
u(i−1)

)
= ϕi(u) i = 1, . . . , n,

resp.

(31) li

(
u, u′, . . . , u(k0−1)

)
= 0 i = 1, . . . , k0,

(32) Φ0i

(
u(i−1)

)
= ϕi

(
u(k0)

)
i = k0 + 1, . . . , n,

where f : [a, b] × Rn → R satisfies the local Carathéodory conditions, n ≥ 2, and
1 ≤ k0 ≤ n − 2.

For each index i, the functional Φ0i in the conditions (2), resp. (32), is supposed
to be linear, nondecreasing, nontrivial, continuous on C([a, b]), and concentrated
on [ai, bi] ⊆ [a, b] (i.e., the value of functional Φ0i depends only on a function
restricted to [ai, bi] and this segment can be degenerated to a point). In general
Φ0i(1) ∈ R, without loss of generality we can suppose that Φ0i(1) = 1, which
simplifies the notation.
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In the condition (31), the functionals li : [C([a, b])]k0 → R (i = 1, . . . , k0) are
linear and continuous.

For each index i (i = 1, . . . , n), the functional ϕi : Cn−1([a, b]) → R in the
conditions (2) is continuous and satisfies

(41) ξi(ρ) =
1

ρ
sup

{
|ϕi(ρv)| : ‖v‖C

n−1
([a,b])

≤ 1
}
→ 0 as ρ → +∞ .

For each index i (i = k0 + 1, . . . , n), the functional ϕi : Cn−1−k0 ([a, b]) → R in
the conditions (32) is continuous and satisfies

(42) δi(ρ) =
1

ρ
sup

{
|ϕi(ρv)| : ‖v‖

C
n−1−k0
([a,b])

≤ 1
}
→ 0 as ρ → +∞ .

The special cases of boundary conditions (2) are

(51) u(i−1)(ti) = ϕi(u) i = 1, . . . , n ,

where a ≤ ai ≤ ti ≤ bi ≤ b (i = 1, . . . , n) or

(52)

∫ bi

ai

u(i−1)(t) dσi(t) = ϕi(u) i = 1, . . . , n .

The integral is understood in the Lebesgue–Stieltjes sense, where σi is nondecreas-
ing in [ai, bi] and σ(bi)− σ(ai) > 0 (i = 1, . . . , n). We know that the problem (1),
(51) was studied by B. Půža in the paper [4], so in this paper we will receive more
general results than in [4].

Problem (1), (3) was studied by Nguyen Anh Tuan in the paper [5] and by
Gegelia G. T. in the paper [1]. In this paper, however, we will give new sufficient
conditions for the existence of a solution of the problem (1), (3).

Main results

We adopt the following notation:
[a, b] – a segment, −∞ < a ≤ ai ≤ bi ≤ b < +∞ (i = 1, . . . , n).
Rn – n-dimensional real space with elements x = (xi)

n
i=1 normed by ‖x‖ =

n∑
i=1

|xi|.

Rn
+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}, (0, +∞) = R+ − {0}.

Cn−1([a, b]) – the space of functions continuous together with their derivatives
up to the order (n − 1) on [a, b] with the norm

‖u‖C
n−1
([a,b])

= max
{ n∑

i=1

|u(i−1)(t)| : a ≤ t ≤ b
}

.

ACn−1([a, b]) – the set of all functions absolutely continuous together with their
derivatives up to the order (n − 1) on [a, b].
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Lp([a, b]) – the space of functions Lebesgue integrable on [a, b] in the p-th power
with the norm

‖u‖L
p

([a,b])
=






( b∫
a

|u(t)|p dt
) 1

p

if 1 ≤ p < +∞ ,

ess sup
{
|u(t)| : a ≤ t ≤ b

}
if p = +∞ .

Lp([a, b], R+) = {u ∈ Lp([a, b]) : u(t) ≥ 0 for a. a. a ≤ t ≤ b}.
Let x = (xi(t))

n

i=1 , y = (yi(t))
n

i=1 ∈ [C([a, b])]
n
. We will say that x ≤ y if

xi(t) ≤ yi(t) for all t ∈ [a, b] and i = 1, . . . , n.
A functional Φ : [C([a, b])]n → R is said to be nondecreasing if Φ(x) ≤ Φ(y) for

all x, y ∈ [C([a, b])]n, x ≤ y, and positively homogeneous if Φ(λx) = λΦ(x) for all
λ ∈ (0, +∞) and x ∈ [C([a, b])]n.

Let us consider the problems (1), (2) and (1), (3). Under a solution of the
problem (1), (2), resp. (1), (3), we understand a function u ∈ ACn−1([a, b]) which
satisfies the equation (1) almost everywhere on [a, b] and fulfils the boundary
conditions (2), resp. (3).

Theorem 1. Let the inequalities

(61)
f(t, x1, x2, . . . , xn) signxn ≤ ω (|xn|)

n−1∑

i=1

m∑

j=1

gij(t)hij (xi) |xi+1|
1

qij

for t ∈ [an, b], (xi)
n
i=1 ∈ Rn

(62)
f(t, x1, x2, . . . , xn) sign xn ≥ −ω (|xn|)

n−1∑

i=1

m∑

j=1

gij(t)hij (xi) |xi+1|
1

qij

for t ∈ [a, bn], (xi)
n
i=1 ∈ Rn

hold, where gij ∈ Lpij ([a, b], R+), pij , qij ≥ 1, 1/pij+1/qij = 1 (i = 1, . . . , n−1; j =
1, . . . , m), ω : R+ → (0, +∞) and hij : R → R+ (i = 1, . . . , n− 1; j = 1, . . .m) are

continuous nondecreasing functions satisfying

(7) Ω(ρ) =

ρ∫

0

ds

ω(s)
→ +∞ as ρ → +∞

and

lim
ρ→+∞

Ω(ρξn(ρ))

Ω(ρ)
= 0 = lim

ρ→+∞

‖hij‖L
qij

([−ρ,ρ])

Ω(ρ)
(8)

i = 1, . . . , n − 1 ; j = 1, . . . , m .

Then the problem (1), (2) has at least one solution.

To prove Theorem 1 we need the following

Lemma 1. Let the functions ω, Ω, gij, hij and the numbers pij, qij (i = 1, . . . , n−
1; j = 1, . . . , m) be given as in Theorem 1, and let ηi : R+ → R+ (i = 1, . . . , n) be
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nondecreasing functions satisfying

(9) lim
ρ→+∞

Ω(ηn(ρ))

Ω(ρ)
= 0 = lim

ρ→+∞

ηi(ρ)

ρ
i = 1, . . . , n.

Then there exists a constant ρ0 > 0 such that the estimate

(10) ‖u‖
C

n−1
([a,b])

≤ ρ0

holds for each solution u ∈ ACn−1([a, b]) of the differential inequalities

(111) u(n)(t) sign u(n−1)(t)

≤ ω(|u(n−1)(t)|)

n−1∑

i=1

m∑

j=1

gij(t)hij

(
u(i−1)(t)

)
|u(i)(t)|

1
qij

for t ∈ [an, b]

(112) u(n)(t) sign u(n−1)(t)

≥ −ω
(
|u(n−1)(t)|

) n−1∑

i=1

m∑

j=1

gij(t)hij

(
u(i−1)(t)

)
|u(i)(t)|

1
qij

for t ∈ [a, bn]

with the boundary condition

(12) min
{
|u(i−1)(t)| : ai ≤ t ≤ bi

}
≤ ηi

(
‖u‖

C
n−1
([a,b])

)
i = 1, . . . , n .

Proof. Put

µ =
n∑

i=1

(b − a)n−i and ε = [2µ(n − 1)]−1 .

Then according to (9) there exists a number r0 > 0 such that

(13) ηi(ρ) ≤ ερ for ρ > r0 i = 1, . . . , n .

We suppose that the estimate (10) does not hold. Then for arbitrary ρ1 ≥ r0 there
exists a solution u of the problem (11), (12) such that

(14) ‖u‖C
n−1
([a,b])

> ρ1 .

We put

(15) ρ = max
{
|u(n−1)(t)| : a ≤ t ≤ b

}

and choose τi ∈ [ai, bi] (i = 1, . . . , n) such that

|u(i−1)(τi)| = min
{
|u(i−1)(t)| : ai ≤ t ≤ bi

}
.

Then from (12) we have

(16) |u(i−1)(τi)| ≤ ηi

(
‖u‖C

n−1
([a,b])

)
i = 1, . . . , n .



ON AN EFFECTIVE CRITERION OF SOLVABILITY OF BVP. . . 455

Using (15), (16) we have

(17)
|u(n−2)(t)| ≤

∣∣∣
t∫

τn−1

|u(n−1)(τ)| dτ
∣∣∣ + |u(n−2)(τn−1)|

≤ (b − a)ρ + ηn−1

(
‖u‖C

n−1
([a,b])

)
for t ∈ [a, b] .

Integrating u(n−2) from τn−2 to t and using (16) and (17) again we get

|u(n−3)(t)| ≤
∣∣∣

t∫

τn−2

|u(n−2)(τ)| dτ
∣∣∣ + |u(n−3)(τn−2)|

≤ (b − a)2ρ + (b − a)ηn−1

(
‖u‖C

n−1
([a,b])

)
+ ηn−2

(
‖u‖C

n−1
([a,b])

)

for t ∈ [a, b]. Applying this procedure (n − 1)-times we obtain

‖u‖C
n−1
([a,b])

≤ µ
(
ρ +

n−1∑

i=1

ηi

(
‖u‖C

n−1
([a,b])

))
.

Using (13) and (14) we get

‖u‖C
n−1
([a,b])

≤ µ
(
ρ + (n − 1)ε ‖u‖C

n−1
([a,b])

)
= µρ +

1

2
‖u‖C

n−1
([a,b])

.

Therefore we have

(18) ‖u‖C
n−1
([a,b])

≤ 2µρ.

We choose a point τ∗ ∈ [a, b] such that τ∗ 6= τn and

|u(n−1)(τ∗)| = max
{
|u(n−1)(t)| : a ≤ t ≤ b

}
.

Then either τn < τ∗ or τ∗ < τn.
If τn < τ∗, then the integration of (111) from τn to τ∗, in view of (18) and

using Hölder’s inequality, we get

(19)

τ∗∫

τn

u(n)(t) signu(n−1)(t) dt

ω
(
|u(n−1)(t)|

) ≤

τ∗∫

τn

n−1∑

i=1

m∑

j=1

gij(t)hij

(
u(i−1)(t)

)
|u(i)(t)|

1
qij dt

≤

n−1∑

i=1

m∑

j=1

‖gij‖L
pij

([a,b])

‖hij‖L
qij

([−2µρ,2µρ])

.

Applying (15), (16), (18), and the definition of Ω in (19), we get

Ω(ρ) ≤ Ω(ηn(2µρ)) +
n−1∑

i=1

m∑

j=1

‖gij‖L
pij

([a,b])

‖hij‖L
qij

([−2µρ,2µρ])

.

Now, in view of (8), (9), (14), and (18), since ρ1 was chosen arbitrarily, we get

lim
ρ→+∞

Ω(ρ)

Ω(2µρ)
= 0 .
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On the other hand, in view of (7) and the facts that 2µ > 1 and ω is a nonde-
creasing function, we have

lim inf
ρ→+∞

Ω(ρ)

Ω(2µρ)
> 0 ,

a contradiction.
If τ∗ < τn, then the integration of (112) from τ∗ to τn yields the same contra-

diction in analogous way. �

Proof of Theorem 1. Let ρ0 be the constant from Lemma 1. Put

χ(s) =






1 if |s| ≤ ρ0

2 −
|s|

ρ0
if ρ0 < |s| < 2ρ0,

0 if |s| ≥ 2ρ0

(20)
f̃(t, x1, . . . , xn) = χ (‖x‖) f(t, x1, . . . , xn) for a ≤ t ≤ b, (xi)

n
i=1 ∈ Rn ,

ϕ̃i(u) = χ
(
‖u‖C

n−1
([a,b])

)
ϕi(u) for u ∈ Cn−1([a, b]) i = 1, . . . , n

and consider the problem

u(n)(t) = f̃
(
t, u(t), . . . , u(n−1)(t)

)
,(21)

Φ0i

(
u(i−1)

)
= ϕ̃i(u) i = 1, . . . , n .(22)

From (20) it immediately follows that f̃ : [a, b] × Rn → R satisfies the local
Carathéodory conditions, ϕ̃i : Cn−1([a, b]) → R (i = 1, . . . , n) are continuous
functionals and

(231) sup
{
|f̃(·, x1, . . . , xn)| : (xi)

n
i=1 ∈ Rn

}
∈ L([a, b]) ,

(232) sup
{
|ϕ̃i(u)| : u ∈ Cn−1([a, b])

}
< +∞ i = 1, . . . , n .

Now we will show that the homogeneous problem

v(n)(t) = 0 ,(210)

Φ0i

(
v(i−1)

)
= 0 i = 1, . . . , n(220)

has only the trivial solution.
Let v be an arbitrary solution of this problem. Integrating (210) we get

v(n−1)(t) = const for a ≤ t ≤ b .

According to (220) we have

v(n−1)(a)Φ0n(1) = 0 .

However, since Φ0n(1) = 1, we have v(n−1)(t) = 0 for a ≤ t ≤ b. Referring to (220)
and Φ0i(1) = 1 (i = 1, . . . , n− 1), we come to the conclusion that v(t) ≡ 0. Using
Theorem 2.1 from [3], in view of (23) and the uniqueness of the trivial solution of
the problem (210), (220), we get the existence of a solution of the problem (21),
(22).
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Let u be a solution of the problem (21), (22). Then, using (6), we get

u(n)(t) signu(n−1)(t) = f̃(t, u(t), . . . , u(n−1)(t)) sign u(n−1)(t)

= χ
( n∑

j=1

∣∣u(j−1)(t)
∣∣
)
f(t, u(t), . . . , u(n−1)(t)) sign u(n−1)(t)

≤ ω
(∣∣u(n−1)(t)

∣∣)
n−1∑

i=1

m∑

j=1

gij(t)hij(u
(i−1)(t))|u(i)(t)|

1
qij

for t ∈ [an, b], and

u(n)(t) signu(n−1)(t) = f̃(t, u(t), . . . , u(n−1)(t)) sign u(n−1)(t)

= χ
( n∑

j=1

∣∣u(j−1)(t)
∣∣
)
f(t, u(t), . . . , u(n−1)(t)) sign u(n−1)(t)

≥ −ω
(∣∣u(n−1)(t)

∣∣)
n−1∑

i=1

m∑

j=1

gij(t)hij(u
(i−1)(t))|u(i)(t)|

1
qij

for t ∈ [a, bn]. Put

ηi(ρ) = sup
{∣∣ϕ̃i(v)

∣∣ : ‖v‖C
n−1
([a,b])

≤ ρ
}

i = 1, . . . , n .

From (41) and (8), it immediately follows that the functions ηi (i = 1, . . . , n)
satisfy (9) and

min
{∣∣u(i−1)(t)

∣∣ : ai ≤ t ≤ bi

}
= Φ0i

(
min

{∣∣u(i−1)(t)
∣∣ : ai ≤ t ≤ bi

})

≤
∣∣Φ0i

(
u(i−1)

)∣∣ =
∣∣ϕ̃i(u)

∣∣ ≤ ηi

(
‖u‖C

n−1
([a,b])

)

i = 1, . . . , n .

Therefore, by Lemma 1 we get

‖u‖C
n−1
([a,b])

≤ ρ0 .

Consequently,

χ
( n∑

i=1

|u(i−1)(t)|
)

= 1 for a ≤ t ≤ b

and

χ
(
‖u‖C

n−1
([a,b])

)
= 1 .

Using these equalities in (20), we obtain that u is a solution of the problem (1),
(2). �

Remark 1. If Φ0i(u
(i−1)) = u(i−1)(ti), a ≤ ai ≤ ti ≤ bi ≤ b (i = 1, . . . , n), then

Theorem 1 is Theorem in [4].



458 NGUYEN ANH TUAN

Now we give new sufficient conditions guaranteeing the existence of a solution
of the problem (1), (3) provided that the equation

(24) u(k0) = 0

with the boundary conditions (31) has only the trivial solution.

Theorem 2. Let the problem (24), (31) have only the trivial solution and let the

inequalities

(251)
f(t, x1, . . . , xn) sign xn ≤ ω (|xn|)

n−1∑

i=k0+1

m∑

j=1

gij(t)hij(xi)|xi+1|
1

qij

for t ∈ [an, b], (xi)
n
i=1 ∈ Rn

(252)
f(t, x1, . . . , xn) signxn ≥ −ω (|xn|)

n−1∑

i=k0+1

m∑

j=1

gij(t)hij(xi)|xi+1|
1

qij

for t ∈ [a, bn], (xi)
n
i=1 ∈ Rn

hold, where gij ∈ Lpij ([a, b], R+), pij , qij ≥ 1, 1/pij + 1/qij = 1 (i = k0 + 1, . . . ,
n − 1; j = 1, . . . , m), ω : R+ → (0, +∞) and hij : R → R+ (i = k0 + 1, . . . ,
n − 1; j = 1, . . . , m) are continuous nondecreasing functions satisfying (7) and

(26)

lim
ρ→+∞

Ω(ρδn(ρ))

Ω(ρ)
= 0

lim
ρ→+∞

‖hij‖L
qij

([−ρ,ρ])

Ω(ρ)
= 0 i = k0 + 1, . . . , n − 1; j = 1, . . . , m .

Then the problem (1), (3) has at least one solution.

To prove Theorem 2 we need the following

Lemma 2. Let the problem (24), (31) have only the trivial solution and let

the functions ω, Ω, gij, hij and the numbers pij, qij (i = k0 + 1, . . . , n − 1;
j = 1, . . . , m) be given as in Theorem 2, and let ηi : R+ → R+ (i = k0 + 1, . . . , n)
be nondecreasing functions satisfying

lim
ρ→+∞

Ω(ηn(ρ))

Ω(ρ)
= 0 = lim

ρ→+∞

ηi(ρ)

ρ
i = k0 + 1, . . . , n .

Then there exists a constant ρ0 > 0 such that the estimate (10) holds for each

solution u ∈ ACn−1([a, b]) of the differential inequalities

u(n)(t) sign u(n−1)(t) ≤ ω
(
|u(n−1)(t)|

) n−1∑

i=k0+1

m∑

j=1

gij(t)hij

(
u(i−1)(t)

)
|u(i)(t)|

1
qij

for t ∈ [an, b](271)
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u(n)(t) sign u(n−1)(t) ≥ −ω
(
|u(n−1)(t)|

) n−1∑

i=k0+1

m∑

j=1

gij(t)hij

(
u(i−1)(t)

)∣∣∣u(i)(t)
∣∣∣

1
qij

for t ∈ [a, bn](272)

with the boundary conditions (31) and

(28) min
{
|u(i−1)(t)| : ai ≤ t ≤ bi

}
≤ ηi

(
‖u(k0)‖

C
n−k0−1

([a,b])

)
i = k0 + 1, . . . , n .

Proof. Let u be an arbitrary solution of the problem (27), (31), (28). Put

(29) v(t) = u(k0)(t) .

Then the formulas (27) and (28) imply that

v(n−k0)(t) sign v(n−k0−1)(t) ≤ ω
(
|v(n−k0−1)(t)|

)

×

n−k0−1∑

i=1

m∑

j=1

gij(t)hij

(
v(i−1)(t)

)
|v(i)(t)|

1
qij

for t ∈ [an, b] ,

v(n−k0)(t) sign v(n−k0−1)(t) ≥ −ω
(
|v(n−k0−1)(t)|

)

×

n−k0−1∑

i=1

m∑

j=1

gij(t)hij

(
v(i−1)(t)

)
|v(i)(t)|

1
qij

for t ∈ [a, bn] ,

and

min
{
|v(i−1)(t)| : ai ≤ t ≤ bi

}
≤ ηi

(
‖v‖

C
n−k0−1

([a,b])

)
i = 1, . . . , n − k0 .

Consequently, according to Lemma 1 there exists ρ1 > 0 such that

(30) ‖v‖
C

n−k0−1

([a,b])

≤ ρ1 .

By virtue of the assumption that the problem (24), (31) has only the trivial
solution, there exists a Green function G(t, s) such that

(31) u(i−1)(t) =

b∫

a

∂i−1G(t, s)

∂ti−1
v(s) ds for t ∈ [a, b] i = 1, . . . , k0

(see e.g., [2]).
Put

ρ2 = max
a≤t≤b

b∫

a

k0∑

i=1

∣∣∣
∂i−1G(t, s)

∂ti−1

∣∣∣ ds .

According to (30) and (31) we have

‖u‖
C

k0−1

([a,b])

≤ ρ1ρ2 .

Therefore we obtain (10), where ρ0 = ρ1 + ρ2ρ1. �
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Theorem 2 can be proved analogously to Theorem 1 using Lemma 2.
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