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APPROXIMATION OF THE DISCRETE LOGARITHM IN

FINITE FIELDS OF EVEN CHARACTERISTIC BY REAL

POLYNOMIALS

NINA BRANDSTÄTTER AND ARNE WINTERHOF

Abstract. We obtain lower bounds on degree and additive complexity of

real polynomials approximating the discrete logarithm in finite fields of even
characteristic. These bounds complement earlier results for finite fields of
odd characteristic.

1. Introduction

Put q = pr where p is a prime and r is a positive integer. Denote by Fq the finite
field of order q. Moreover, let α be a defining element of Fq, i.e., Fq = Fp(α) and
{1, α, α2, . . . , αr−1} is a (polynomial) basis of Fq over Fp. We order the elements
ξ0, ξ1, . . . , ξq−1 of Fq in the following way,

ξk = k1 + k2α+ . . .+ krα
r−1

if

k = k1 + k2p+ . . .+ krp
r−1, 0 ≤ k1, k2, . . . , kr < p ,

for 0 ≤ k ≤ q − 1. Let γ be a primitive element of Fq. The discrete logarithm

(or index) of a nonzero element ξ ∈ Fq to the base γ, denoted indγ(ξ), is the
unique integer l with 0 ≤ l ≤ q − 2 such that ξ = γl. The discrete logarithm

problem is to find a computationally feasible method for determining the discrete
logarithm. The security of many public-key cryptosystems depends on the pre-
sumed intractability of the discrete logarithm problem (see e. g. [13]). This paper
provides some theoretical support to this assumption of hardness of the discrete
logarithm problem. In the monograph [22] (or its predecessor [21]) and the series
of papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 25, 26] several results on
the discrete logarithm problem supporting the assumption of its hardness were
proven. In particular, in [22, Chapter 11] several results on the complexity of real
polynomials approximating the discrete logarithm in the case r = 1 are given. In
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the case p > 2 most of these results can be extended to arbitrary r in a rather
straightforward way along the lines of [7, 8, 16, 25]. However, in the case p = 2 sev-
eral new ideas are needed. For example for p = 2 we have no quadratic character
and need a compensation. In this article we prove two results on approximation
polynomials of the discrete logarithm in the case q = 2r. In Section 3 we prove
a lower bound on the additive complexity of an interpolation polynomial and in
Section 4 we prove a lower bound on the degree of polynomials which determine
the rightmost bit of the discrete logarithm in Fq for a large set of given data.

2. Preliminaries

The additive complexity C±(f) of a polynomial f(X) is the smallest number
of ’+’ and ’−’ signs necessary to write down this polynomial. In [17, 18] the
number of different zeros of a real polynomial was estimated in terms of its additive
complexity.

Lemma 1. For a nonzero polynomial f(X) ∈ R[X ] having N different real zeros

we have

C±(f) ≥
(1

5
log2(N)

)1/2

,

where log2(N) is the binary logarithm.

Put eT (z) = exp(2πiz/T ).

Lemma 2. For any integer 1 ≤ N ≤ T we have

T−1
∑

u=1

∣

∣

∣

N−1
∑

n=0

eT (un)
∣

∣

∣
≤ T

( 4

π2
lnT + 0.8

)

,

where lnT denotes the natural logarithm.

Proof. We have

T−1
∑

u=1

∣

∣

∣

N−1
∑

n=0

eT (un)
∣

∣

∣
=

T−1
∑

u=1

∣

∣

∣

sin(πNu/T )

sin(πu/T )

∣

∣

∣

≤
4

π2
T lnT + 0.38T + 0.608 + 0.116

gcd(N,T )2

T

by [1, Theorem 1]. �

For the following bound on incomplete character sums see [24, Section 3, p. 469].

Lemma 3. Let χ be a nontrivial multiplicative character of Fq and f(X) ∈ Fq[X ]
a monic polynomial which is not an ordχ-th power and has m different zeros in

its splitting field over Fq. Then we have for any additive subgroup V of Fq and

a ∈ F∗
q,

∣

∣

∣

∑

ξ∈V

χ(af(ξ))
∣

∣

∣
≤ mq1/2 .
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Lemma 4. Let q = 2r. Under the conditions of Lemma 3 we have

∣

∣

∣

K−1
∑

k=0

χ(af(ξk))
∣

∣

∣
≤ mrq1/2 , 1 ≤ K ≤ q .

Proof. The set {ξ0, . . . , ξK−1} can be written as union of at most r cosets of
additive subgroups. Hence, the result follows by Lemma 3. �

3. Interpolation

In this section we deal with arbitrary finite fields but focus on small character-
istic including characteristic 2.

Theorem 1. Let f(X) ∈ R[X ] be a polynomial such that

indγ(ξk) = f(k) for all k ∈ S

for a set S ⊆ {1, . . . , q − 1} of cardinality |S| = q − 1 − s. Then we have

deg f ≥
q/p− 1

2
− s

and

C±(f) ≥

(

1

20
log2

(q/p− 1

2
− s

)

)1/2

− 1 .

Proof. Let R be the set of all k ∈ S with 1 ≤ k ≤ q
p − 1 such that

indγ(ξk) = f(k) and indγ(ξkp) = f(kp) .

Then we have |R| ≥ q/p− 1 − 2s. For each k ∈ R we have either

f(kp) = indγ(ξkp) = indγ(αξk) = indγ(ξk) + indγ(α) = f(k) + indγ(α)

or

f(kp) = indγ(αξk) = indγ(ξk) + indγ(α) − q + 1 = f(k) + indγ(α) − q + 1 .

Hence, at least one of the polynomials

hω(X) = f(pX) − f(X) − ω

with ω ∈ {indγ(α), indγ(α) − q + 1} has at least |R|/2 zeros. The polynomials
hω(X) are not identically zero since hω(0) = −ω 6= 0 and it follows

deg f ≥ deg hω ≥
q/p− 1

2
− s .

Lemma 1 yields

C±(hω) ≥

(

1

5
log2

(q/p− 1

2
− s

)

)1/2

and C±(hω) ≤ 2C±(f) + 2 implies the result. �
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Remarks. 1. For p > 2 we may also use the relation

indγ(ξ2k) ≡ indγ(ξk) + indγ(2) mod q − 1

if k = k1 + k2p+ . . .+ krp
r−1 with 0 ≤ k1, k2, . . . , kr ≤ (p− 1)/2 to obtain

deg f ≥
((p+ 1)/2)r − 1

2
− s

and

C±(f) ≥

(

1

20
log2

(((p+ 1)/2)r − 1

2
− s

)

)1/2

− 1

which improves Theorem 1 for large p with respect to r. This approach works also
for an arbitrary basis instead of a polynomial basis in the definition of the ξk.

2. For rational interpolation polynomials f(X) ∈ Q[X ] we may also use the lower
bound on the additive complexity of [19, 20] to improve Theorem 1.

4. Approximation

Now we restrict ourselves to the case of even characteristic and prove a result
on polynomials which determine the rightmost bit of the discrete logarithm.

Theorem 2. Let q = 2r with r ≥ 3, 1 ≤ H ≤ q− 1, and let f(X) ∈ R[X ] be such

that for all k of a subset S ⊆ {1, . . . , H} of cardinality |S| = H − s we have

f(k) ≥ 0 , if indγ(ξk) is even,

f(k) < 0 , otherwise.

Then we have

deg f ≥
2

9
(H − 1) − 4.2r q1/2

(

4

π2
ln(q − 1) + 0.8

)2

− 2s− 1 .

Proof. Let χ be a primitive character of Fq and put η := χ(γ)−1. For 0 ≤ l ≤ q−2
and ξ ∈ F∗

q we put

ψl(ξ) :=

{

1 , if ξ = γl ,

0 , otherwise,

and

ψ(ξ) :=

{

1 , if ξ = γ2m with 0 ≤ m ≤ q/2 − 1 ,

−1 , otherwise.

Note that

ψl(ξ) =
1

q − 1

q−2
∑

j=0

ηjlχj(ξ)
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and

ψ(ξ) = 2

q/2−1
∑

m=0

ψ2m(ξ) − 1 .

Put

T := {1 ≤ k ≤ H : k even and ψ(ξk) 6= ψ(ξk + 1)} .

For all k ∈ T we have ξk+1 = ξk + 1.
The number of k ∈ T such that either k /∈ S or k + 1 /∈ S is at most 2s+ 1.
So we have f(k)f(k + 1) < 0 for at least |T | − 2s− 1 different k. The polynomial
f changes its sign at least |T | − 2s− 1 times and has at least so many zeros. So
we have

deg f ≥ |T | − 2s− 1.

On the other hand we have

|T | = −
∑

k∈T

ψ(ξk)ψ(ξk + 1)

= −

⌊H/2⌋
∑

k=1

ψ(ξ2k)ψ(ξ2k + 1) + ⌊H/2⌋ − |T | .

Hence, with ξ2k = αξk for 0 ≤ k ≤ q/2 − 1 we get

|T | = −
1

2

⌊H/2⌋
∑

k=1

ψ(αξk)ψ(αξk + 1) +
1

2
⌊H/2⌋ .

Next we use

ψ(ξ)ψ(ξ + 1) = 4

q/2−1
∑

m1,m2=0

ψ2m1
(ξ)ψ2m2

(ξ + 1) − 2

q/2−1
∑

m=0

(ψ2m(ξ) + ψ2m(ξ + 1)) + 1

and

ψ2m1
(ξ)ψ2m2

(ξ + 1) =
1

(q − 1)2

q−2
∑

j1,j2=0

η2(j1m1+j2m2)χj1(ξ)χj2 (ξ + 1)

to get

|T | = −2

q/2−1
∑

m1,m2=0

⌊H/2⌋
∑

k=1

ψ2m1
(αξk)ψ2m2

(αξk + 1)

+

q/2−1
∑

m=0

⌊H/2⌋
∑

k=1

(ψ2m(αξk) + ψ2m(αξk + 1))
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=
−2

(q − 1)2

q−2
∑

j1,j2=0

q/2−1
∑

m1,m2=0

η2(j1m1+j2m2)

⌊H/2⌋
∑

k=1

χj1(αξk)χj2(αξk + 1)

+
1

q − 1

q−2
∑

j=0

q/2−1
∑

m=0

η2jm

⌊H/2⌋
∑

k=1

(χj(αξk) + χj(αξk + 1)) .

The summand for j1 = j2 = 0 in the first sum,

−q2

2(q − 1)2
⌊H/2⌋ ,

and the summand for j = 0 in the second sum,

q

q − 1
⌊H/2⌋ ,

add to

t :=
(q − 2)q

2(q − 1)2
⌊H/2⌋ ≥

2

9
(H − 1) , q ≥ 4 .

So we have

∣

∣|T | − t
∣

∣ ≤
2

(q − 1)2

q−2
∑

j1,j2=1

∣

∣

∣

q/2−1
∑

m1,m2=0

η2(j1m1+j2m2)
∣

∣

∣

∣

∣

∣

⌊H/2⌋
∑

k=1

χj1(αξk)χj2 (αξk + 1)
∣

∣

∣

+
∣

∣

∣

1

q − 1
−

q

(q − 1)2

∣

∣

∣

q−2
∑

j=1

∣

∣

∣

q/2−1
∑

m=0

η2jm
∣

∣

∣

∣

∣

∣

⌊H/2⌋
∑

k=1

(χj(αξk) + χj(αξk + 1))
∣

∣

∣

< 4rq1/2
( 4

π2
ln(q − 1) + 0.8

)2

+
2r

q − 1
q1/2

( 4

π2
ln(q − 1) + 0.8

)

< 4.2r q1/2
( 4

π2
ln(q − 1) + 0.8

)2

by Lemmas 2 and 4 and the result follows. �

For odd characteristic the knowledge of the rightmost bit of the discrete log-
arithm of an element ξ is equivalent to knowing if ξ is a square. In this case ψ
defined in the proof of Theorem 2 is the quadratic character and we may apply
character sum bounds of [23] much earlier. For even characteristic all elements of
Fq are squares and ψ is not multiplicative.
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50 N. BRANDSTÄTTER AND A. WINTERHOF

[24] Winterhof, A., Incomplete additive character sums and applications, In: Jungnickel, D. and
Niederreiter, H. (eds.): Finite fields and applications, 462–474, Springer, Heidelberg 2001.

[25] Winterhof, A., Polynomial interpolation of the discrete logarithm, Des. Codes Cryptogr. 25
(2002), 63–72.

[26] Winterhof, A., A note on the linear complexity profile of the discrete logarithm in finite

fields, Progress Comp. Sci. Appl. Logic 23 (2004), 359–367.

Johann Radon Institute for Computational and Applied Mathematics

Austrian Academy of Sciences

Altenberger Straße 69, A-4040 Linz, Austria

E-mail: nina.brandstaetteroeaw.ac.at,

arne.winterhofoeaw.ac.at


		webmaster@dml.cz
	2012-05-10T16:11:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




