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SPACES WITH σ-LOCALLY COUNTABLE WEAK-BASES

ZHAOWEN LI

Abstract. In this paper, spaces with σ-locally countable weak-bases are
characterized as the weakly open msss-images of metric spaces (or g-first
countable spaces with σ-locally countable cs-networks).

To find the internal characterizations of certain images of metric spaces is an
interesting research topic on general topology. Recently, S. Xia[12] introduced the
concept of weakly open mappings, by using it, certain g-first countable spaces
are characterized as images of metric spaces under various weakly open mappings.
The present paper establish the relationships spaces with σ-locally countable weak-
bases and metric spaces by means of weakly pen mappings and msss-mappings,
and give a characterization of spaces with σ-locally countable weak-bases.

In this paper, all spaces are regular and T1, all mappings are continuous and
surjective. N denotes the set of all natural numbers. ω denotes N ∪ {0}. For
a family P of subsets of a space X and a mapping f : X → Y , denote f(P) =
{f(P ) : P ∈ P}. For the usual product space

∏

i∈N

Xi, pi denotes the projection

from
∏

i∈N

Xi onto Xi.

Definition 1. Let P = ∪{Px : x ∈ X} be a family of subsets of a space X

satisfying that for each x ∈ X ,
(1) Px is a network of x in X ,
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
P is called a weak-base for X [1] if G ⊂ X is open in X if and only if for each

x ∈ G, there exists P ∈ Px such that P ⊂ G.
A space X is called g-first countable[1] if X has a weak-base P such that each

Px is countable.
A space X is called a g-metrizable space[4] if X has a σ-locally finite weak-base.

Definition 2. Let P be a cover of a space X .
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(1) P is called a k-network for X if for each compact subset K of X and its open
neighbourhood V , there exists a finite subfamily P ′ of P such that K ⊂ ∪P ′ ⊂ V .

(2) P is called a cs-network for X if for each x ∈ X , its open neighbourhood
V and a sequence {xn} converging to x, there exists P ∈ P such that {xn : n ≥
m} ∪ {x} ⊂ P ⊂ V for some m ∈ N .

A space X is called an ℵ-space if X has a σ-locally finite k-network.

Definition 3. Let f : X → Y be a mapping.
(1) f is called a weakly open mapping[12] if there exists a weak-base B =

∪{By : y ∈ Y } for Y and for y ∈ Y , there exists x(y) ∈ f−1(y) satisfying condition
(∗): for each open neighbourhood U of x(y), By ⊂ f(U) for some By ∈ By.

(2) f is called a msss-mapping[7] (i.e., metrizably stratified strong s-mapping)
if there exists a subspace X of the usual product space

∏

i∈N

Xi of the family {Xi :

i ∈ N} of metric spaces satisfying the following condition: for each y ∈ Y , there
exists an open neighbourhood sequence {Vi} of y in Y such that each pif

−1(Vi) is
separable in Xi.

Theorem 4. A space Y has a σ-locally countable weak-base if and only if Y is

the weakly open msss-image of a metric space.

Proof. Sufficiency. Suppose Y is the image of a metric space X under a weakly
open msss-mapping f . Since f is a msss-mapping, then exists a family {Xi : i ∈ N}
of metric spaces satisfying the condition of Definition 3 (2).

For each i ∈ N , let Pi be a σ-locally finite base for Xi, put

Bi =
{

X ∩
(

⋂

j≤i

p−1
j (Pj)

)

: Pj ∈ Pj and j ≤ i
}

,

B = ∪{Bi : i ∈ N} .

Then B is a base for X . For each n ∈ N , put

V =
⋂

j≤i

Vi ,

then {Q ∈ f(Bi) : V ∩Q 6= Φ} is countable. Thus f(Bi) is locally countable in Y .
Hence f(B) is σ-locally countable in Y .

Since f is a weakly open mapping, then exists a weak-base P = ∪{Py : y ∈ Y }
for Y such that for each y ∈ Y , there exists x(y) ∈ f−1(y) satisfying the condition
(∗) of Definition 3 (1). For each y ∈ Y , put

Fi,y = {f(B) : x(y) ∈ B ∈ Bi} ,

Fy = ∪{Fi,y : i ∈ N} ,

Fi = ∪{Fi,y : y ∈ Y } ,

F = ∪{Fy : y ∈ Y } .

Obviously, Fi ∈ f(Bi) for each i ∈ N , then Fi is locally countable in Y . Thus
F = ∪{Fi : i ∈ N} is σ-locally countable in Y . We will prove that F is a weak-base
for Y .
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It is obvious that F satisfies the condition (1) of Definition 1. For each y ∈ Y ,
suppose U, V ∈ Fy, then U ∈ Fm,y, V ∈ Fn,y for some m, n ∈ N . Thus there exist
B1 ∈ Bm and B2 ∈ Bn such that x(y) ∈ B1∩B2, f(B1) = U and f(B2) = V . Since
B1, B2 ∈ B and B is a base for X , then there exist l ∈ N and B ∈ Bl such that
x(y) ∈ B ⊂ B1 ∩ B2. Thus f(B) ∈ Fl,y ⊂ Fy and f(B) ⊂ f(B1 ∩ B2) ⊂ U ∩ V .
Hence F satisfies the condition (2) of Definition 1.

Suppose G ⊂ Y and for y ∈ G, there exists F ∈ Fy such that F ⊂ G, then there
exists B ∈ B such that x(y) ∈ B and F = f(B). Since B is an open neighbourhood
of x(y) and f is a weakly open mapping, then exists Py ∈ Py such that Py ⊂ f(B).
Thus for each y ∈ G, there exists Py ∈ Py such that Py ⊂ G. Hence G is open
in Y because P is a weak-base for Y . On the other hard. Suppose G ⊂ Y is
open in Y , then for each y ∈ G, x(y) ∈ f−1(G). Since B is a base for X , then
x(y) ∈ B ⊂ f−1(G) for some B ∈ B. Thus f(B) ∈ Fy and f(B) ⊂ G.

Therefore F is a weak-base for Y .
Necessity. Suppose Y has a σ-locally countable weak-base. Let P = ∪{Pi : i ∈
N} be a σ-locally countable weak-base for Y , where each Pi = {Pα : α ∈ Ai} is
a locally countable of subsets of Y which is closed under finite intersections and
Y ∈ Pi ⊂ Pi+1. For each i ∈ N , endow Ai with discrete topology, then Ai is a
metric space. Put

X =
{

α = (αi) ∈
∏

i∈N

Ai : {Pαi
: i ∈ N} ⊂ P

forms a network at some point x(α) ∈ X
}

,

and endow X with the subspace topology induced from the usual product topology
of the family {Ai : i ∈ N} of metric spaces, then X is a metric space. Since Y

is Hausdroff, x(α) is unique in Y for each α ∈ X . We define f : X → Y by
f(α) = x(α) for each α ∈ X . Because P is a σ-locally countable weak-base for Y ,
then f is surjective. For each α = (αi) ∈ M , f(α) = x(α). Suppose V is an open
neighbourhood of x(α) in Y , there exists n ∈ N such that x(α) ∈ Pαn

⊂ V , set
W = {c ∈ X : the n-the coordinate of c is αn}, then W is an open neighbourhood
of α in X , and f(W ) ⊂ Pαn

⊂ V . Hence f is continuous. We will show that f is
a weakly open msss-mapping.

(i) f is a msss-mapping. For each x ∈ X and each i ∈ N , there exists an open
neighbourhood Vi of x in X such that {α ∈ Ai : Pα ∩ Vi 6= Φ} is countable. Put

Bi = {α ∈ Ai : Pα ∩ Vi 6= Φ} ,

then pif
−1(Vi) ⊂ Bi. Thus pif

−1(Vi) is separable in Ai, Hence f is a msss-
mapping.

(ii) f is a weakly open mapping
For each n ∈ N and αn ∈ An, put

V (α1, · · · , αn) = {β ∈ X : for each i ≤ n, the i-th coordinate of β is αi} .

It is easy to check that {V (α1, · · · , αn) : n ∈ N} is a locally neighbourhood base
of α in X .

�
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Claim. f
(

V (α1, · · · , αn)
)

=
⋂

i≤n

Pαi
for each n ∈ N .

For each i ≤ n, f
(

V (α1, · · · , αn)
)

⊂ Pαi
, then f

(

V (α1, · · · , αn)
)

⊂
⋂

i≤n

Pαi
.

On the other hand. For each x ∈
⋂

i≤n

Pαi
, there is β = (βj) ∈ X such that

f(β) = x. For each j ∈ N , Pβj
∈ Pj ⊂ Pj+n, then there is αj+n ∈ Aj+n such

that Pαj+n
= Pβj

. Set α = (αj), then α ∈ V (α1, · · · , αn) and f(α) = x. Thus
⋂

i≤n

Pαi
⊂ f

(

V (α1, · · · , αn)
)

. Hence f
(

V (α1, · · · , αn)
)

=
⋂

i≤n

Pαi
.

Denote Py = {P ∈ P : y ∈ P}, then P = ∪{Py : y ∈ Y }.
For each y ∈ Y , by the idea P , there exists (αi) ∈

∏

i∈N

Ai such that {Pαi
: i ∈

N} ⊂ P is a network of y in Y , then α = (αi) ∈ f−1(y).
Suppose G is an open neighbourhood of α in X , then there exists j ∈ N

such that V (α1, · · · , αj) ⊂ G. Thus f
(

V (α1, · · · , αj)
)

⊂ f(G). By the Claim,

f
(

V (α1, · · · , αj)
)

=
⋂

i≤j

Pαi
. Since Py ⊂

⋂

i≤j

Pαi
for some Py ∈ Py. Hence Py ⊂

f(G).
Therefore there exists a weak-base P for Y and α ∈ f−1(y) satisfying the

condition (∗) of Definition 3 (1), and so f is a weakly open mapping.

Theorem 5. For a space X, (1) ⇐⇒ (2) ⇒ (3) below hold.

(1) X has a σ-locally countable weak-base.

(2) X is a g-first countable space with a σ-locally countable cs-network.

(3) X is a g-first countable space with a σ-locally countable k-network.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3). Suppose X is a g-first countable space with a σ-locally countable

cs-network. Let P = ∪{Pn : n ∈ N} be a σ-locally countable cs-network for X ,
where each Pn is locally countable in X . We will show that P is a k-network for
X . Suppose K ⊂ V with K non-empty compact and V open in X . For each
n ∈ N , put

An = {P ∈ Pn : P ∩ K 6= Φ and P ⊂ V } ,

then An is countable, and so A = ∪{An : n ∈ N} is countable. Denote A = {Pi :
i ∈ N}, then K ⊂

⋃

i≤n

Pi for some n ∈ N . Otherwise, K 6⊂
⋃

i≤n

Pi for each n ∈ N ,

so choose xn ∈ K\
⋃

i≤n

Pi. Because {P ∩K : P ∈ P} is a countable cs-network for

a subspace K and a compact space with a countable network is metrizable, then
K is a compact metrizable space. Thus {xn} has a convergent subsequence {xnk

},
where xnk

→ x. Obviously x ∈ K. Since P is a cs-network for X , then there exist
m ∈ N and P ∈ P such that {xnk

: k ≥ m} ∪ {x} ⊂ P ⊂ V . Now, P = Pj for
some j ∈ N . Take l ≥ m such that nl ≥ j, then xnl

∈ Pj . This is a contradiction.
Therefore, (2) ⇒ (3) holds.

(2) ⇒ (1). Suppose X is a g-first countable space with σ-locally countable
cs-network. Let P = ∪{Pm : m ∈ N} be a σ-locally countable cs-network for X ,
where each Pm is locally countable in X which is closed under finite intersections
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and X ∈ Pm ⊂ Pm+1, and for each x ∈ X , let {B(n, x) : n ∈ N} be a decreasing
weak neighbourhood sequence of x in X . Put

Fm,x = {P ∈ Pm : B(n, x) ⊂ P for some n ∈ N} ,

Fx = ∪{Fm,x : m ∈ N}

Fm = ∪{Fm,x : x ∈ X}

F = ∪{Fx : x ∈ X}

we will show that F is a σ-locally countable weak-base for X .
It is easy to check that F satisfies the condition (1), (2) of Definition 1.
Suppose G be an open subset of X , then for each x ∈ G, there exists P ∈ Fx

with P ⊂ G. Otherwise, denote {P ∈ P : x ∈ P ⊂ G} = {P (m, x) : m ∈ N}.
Then B(n, x) 6⊂ P (m, x) for each n, m ∈ N , so choose xn,m ∈ B(n, x)\P (m, x).

For n ≥ m, let xn,m = yk, where k = m + n(n−1)
2 . The the sequence {yk : k ∈ N}

converges to the point x. Thus, there exist m, i ∈ N such that {yk : k ≥ i}∪{x} ⊂
P (m, x) ⊂ G because P is a cs-network for X . Take j ≥ i with yj = xn,m for
some n ≥ m. Then xn,m ∈ P (m, x). This is a contradiction. On the other hand.
If G ⊂ X satisfies that for each x ∈ G there exists P ∈ Fx with P ⊂ G, then
B(n, x) ⊂ G for some n ∈ N . Thus G is open in X .

Hence F is a weak-base for X .
For each m ∈ N , Fm ⊂ Pm, then Fm is locally countable in X . Thus F =

∪{Fm : m ∈ N} is σ-locally countable in X . Therefore, (2) ⇒ (1) holds. �

Corollary 6. A paracompact space with a σ-locally countable weak-base is g-

metrizable.

Proof. Suppose X is a paracompact space with a σ-locally countable weak-base.
By Theorem 5, X is a g-first countable space with a σ-locally countable k-network.
Since a paracompact space with a σ-locally countable k-network is an ℵ-space ([9,
Lemma 1]), then X is an ℵ-space. Thus X is g-metrizable by Theorem 2.4 in
[6]. �

In conclusion of this paper, we pose the following question in view of Theorem 5.
Question 7. Does (3) ⇒ (1) in Theorem 6 hold?
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